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ABSTRACT
The capabilities of an autonomous agent are often deter-
mined by the resources that are available to it. We examine
the problem of allocating scarce resources among multiple
self-interested agents, operating in complex, stochastic en-
vironments (modeled as MDPs), where the value of a par-
ticular resource bundle to an agent is the expected payoff
of the best control policy the agent can implement using
these resources. Combinatorial auctions are popular mech-
anisms for allocating resource bundles among agents with
such complex preferences. In particular, generalized Vickrey
auctions (GVAs) yield socially optimal outcomes and have
excellent strategic complexity, but suffer from high com-
putational complexity for the agents’ preference-valuation
and the auctioneer’s winner-determination problems. We
describe a GVA-based mechanism that exploits knowledge
of the agents’ MDP-based resource preferences, and we show
analytically and demonstrate empirically that this leads to
an exponential improvement in computational efficiency over
a straightforward GVA implementation with flat preferences.
We also present a distributed implementation of the winner-
determination problem that leads to further speedup while
maintaining strategy-proofness of the mechanism, and with-
out revealing agents’ private MDP information.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Design

Keywords
Markov Decision Processes, Combinatorial Auctions, Gen-
eralized Vickrey Auctions, Distributed Implementation
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1. INTRODUCTION
The task of formulating an optimal control policy for an

autonomous agent operating in a stochastic environment is
often modeled as a Markov decision process (MDP). In a
standard MDP (e.g., [14]), an agent has a set of actions
and must choose, for each state of the world, an action that
will maximize some measure of performance. Implicit in
the standard model is the assumption that a policy can be
comprised of any combination of actions (an agent’s choice
of action in one state does not affect its choices in other
states). However, this might not be the case for a con-
strained agent, where devoting limited resources to some
actions might make it impossible to also carry out other ac-
tions. For example, a delivery agent might have limited ca-
pacity and choosing to deliver some packages might preclude
it from delivering others on the same trip. The constrained
policy optimization problem the agent faces thus requires
finding a policy that maximizes payoffs without violating
the agent’s constraints.

The problem becomes even more challenging when it in-
volves multiple self-interested agents that share the limited
resources, such as multiple delivery agents that obtain their
delivery contracts from the same place (rewards are received
upon fulfillment of delivery contracts). Now, not only are
the agents separately presented with difficult constrained
policy optimization problems, but they also have conflicting
objectives, since each agent wants to acquire the combina-
tion of resources that would enable it to execute its optimal
control policy. Limitations in the amounts of shared re-
sources generally mean that not every agent can acquire the
combination of resources it would most desire.

Thus, the goal of the work described in this paper is to
design a mechanism for allocating scarce shared resources
among multiple constrained agents who are formulating MDP
policies to selfishly maximize their individual expected re-
wards, and are weakly-coupled [11, 17], meaning that the
agents’ only interactions are due to contention over shared
resources. We would like the mechanism to produce alloca-
tions that are efficient from the economic point of view (so-
cial welfare is maximized), and do so in a computationally-
efficient manner.

Combinatorial auctions [5] are a natural starting place
for designing such a mechanism. In particular, Generalized
Vickrey Auctions (GVAs) [10] are widely-studied because
they produce socially-optimal allocations and have excellent
strategic complexity (agents’ strategic reasoning is simple,
because they have dominant bidding strategies). However,
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a weak point of GVAs is the high computational complex-
ity of the agents’ preference-valuation problem (how much to
bid for resource bundles) [12], and the winner-determination
problem of the auctioneer (given the bids, how to allocate re-
sources and how to set prices) [15]. The high computational
complexity stems from the fact that, in general, the agents
need to specify preferences over an exponential number of
resource bundles, and the auctioneer has to solve a combina-
torial winner-determination problem on that space of bundle
allocations. However, in many domains, agents’ preferences
are not arbitrary and are well-structured, which suggests
using concise preference-specification languages that exploit
that structure. In particular, logical bidding languages have
been proposed [3] that allow the agents to specify their val-
uations on logical formulas over allocations of goods, as well
as efficient winner-determination algorithms that make use
of such concise preference specifications [1]. In a similar
fashion, we propose techniques for improving the computa-
tional efficiency for MDP-based agents.

Our main contribution in this paper is that we present
a GVA-based mechanism that exploits the knowledge of
agents’ MDP-based preferences to achieve exponential gains
in computational efficiency over a näıve GVA implementa-
tion that uses a flat representation for agents’ preferences.
Our mechanism inherits the nice properties of the standard
GVAs, such as their socially-optimal outcomes and excellent
strategic complexity. We also present a distributed imple-
mentation of the winner-determination problem that leads
to additional speedup, and accomplishes this without sacri-
ficing strategy-proofness of the mechanism and without re-
quiring the agents to reveal their private MDP information.
To avoid nonessential complications, in this paper, we focus
on non-consumable resources that enable agents to execute
actions but are themselves not consumed in the process,
and then briefly mention the (simpler) case of consumable
resources in Section 8.

In the rest of the paper we first briefly review some back-
ground and introduce our model in Section 2. Then, in
Section 3, we discuss a straightforward implementation of
a combinatorial auction for our MDP-based problem. Our
new mechanism is developed in the sections that follow: in
Section 4, we show how to improve computational efficiency
of the bundle-valuation and winner-determination problems,
Section 5 further speeds up the winner-determination pro-
cess via a distributed algorithm that utilizes the computa-
tional power of the agents, and Section 6 discusses informa-
tion privacy issues. We present an empirical evaluation of
our mechanism in Section 7, and conclude in Section 8 with
a discussion of generalizations of our approach and some
interesting unanswered questions.

2. MODEL AND BACKGROUND
In the first half of this section we describe some well-

known facts from the theory of classical MDPs and introduce
our constrained MDP model. In the second half, we briefly
review some properties of combinatorial auctions.

2.1 Weakly-Coupled Constrained MDPs
A classical single-agent, fully-observable MDP can be de-

fined as a 4-tuple 〈S ,A, p, r〉, where: S = {i} is a finite set
of states the agent can be in; A = {a} is a finite set of ac-
tions it can execute; p : S × A × S �→ [0, 1] is a stochastic
(
P

j piaj = 1) transition function (piaj is the probability the

agent will transition to state j upon executing action a in
state i); r : S × A �→ [−rmax, rmax] is a bounded reward
function (the agent gets a reward of ria for executing action
a in state i).

A solution to an MDP is a policy (a procedure for selecting
an action in every state) that maximizes some measure of
aggregate reward. In this paper we will focus on MDPs with
the total expected discounted reward optimization criterion,
but our results can easily be extended to other optimiza-
tion criteria as well. It is known (e.g., [14]) that, for such
MDPs, there always exist policies that are uniformly-optimal
(optimal for all initial conditions), history-independent (ac-
tion depends only on the current state), stationary (time
independent), and deterministic (always select the same ac-
tion in a given state). Such policies can be described as
mappings of states to probability distributions over actions
π : S × A �→ [0, 1], where πia defines the probability that
the agent will execute action a in state i.1

A policy π and the initial conditions α : S �→ [0, 1] that
specify the probability distribution over the state space at
time 0 (the agent starts in state i with probability αi) to-
gether determine the evolution of the system and the total
expected discounted reward the agent will receive:

Uγ(π, α) =
∞X

t=0

γt
X

i,a

ϕi(t)πiaria, (1)

where ϕi(t) refers to the probability of being in state i at
time t, and γ ∈ [0, 1) is the discount factor.

A standard [14, 9] way of solving MDPs that is well-suited
for modeling resource constraints is to formulate the prob-
lem as the following linear program (this maximization LP
is the dual to the more-commonly used minimization LP in
the value function coordinates):

max
X

i,a

riaxia

˛
˛
˛
˛
˛
˛
˛

X

a

xja − γ
X

i,a

xiapiaj = αj ,

xia ≥ 0

(2)

The set of optimization variables xia is often called the oc-
cupation measure of a policy, where xia can be interpreted
as the total expected discounted number of times action a
is executed in state i. Then,

P
a xia gives the total ex-

pected discounted flow through state i, and the constraints
in the above LP can be interpreted as the conservation of
flow through each of the states.

An optimal policy can be computed from a solution to
the above LP as: πia = xia/

P
a xia. Although this appears

to lead to randomized policies, in the absence of external
constraints, and if we use strictly positive initial conditions
(αi > 0), a basic feasible solution to this LP always maps to
a deterministic policy [14, 9]. The above LP also produces
policies that are uniformly-optimal, i.e., optimal for all ini-
tial distributions. However, the solution (xia) to the LP
(eq. 2) retains its interpretation as the expected discounted
number of times action a is executed in state i only for the
initial probability distribution α that was used in the LP.

We now introduce our model of weakly-coupled constrained
MDPs with limited shared resources, which is a slightly

1We use degenerate distributions for representing determin-
istic policies (instead of the more standard mappings of
states to actions), because that notation maps more nat-
urally to other concepts used in this paper.
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rephrased version of the constrained agent model used in
[6]. As mentioned earlier, weakly-coupled MDPs are widely
used [11, 17] to model agents that only affect each other
through the shared resources, and once a resource alloca-
tion is fixed, they act completely independently.

There are two types of constraints our model needs to
represent: the global resource scarcity constraints, and the
agents’ local limitations on the combinations of resources
they can use. To represent the latter, we use the concept of
a capacity : we say that agents’ actions require resources (the
total amounts of which are limited), and that each resource
(if used by an agent) consumes some of the agent’s limited
capacities. For example, delivery agents might contend for
packages to be delivered (limited resources), and each agent
might have bounds on the total size and weight of packages
that it can deliver in one trip (limited capacities).

To simplify the discussion, throughout the main part of
the paper we will assume that agents’ resource requirements
are binary, i.e., an action either uses a unit of a resource
or does not use it at all. This does not greatly limit the
generality of our model, because arbitrary integer resource
requirements can be reduced to binary ones by expanding
the resource set. It is also possible to avoid this expansion of
the input by directly generalizing our model and algorithms
to integer-valued bundles, as described in Section 8.

More formally, given a set of agents M who share a set
of indivisible resources O, a weakly-coupled multiagent con-
strained MDP has the following components, where C refers
to the set of agents’ capacities:

• Λm = 〈S ,A, pm, rm, αm〉 is the standard unconstrained
MDP of agent m. To simplify notation, we assume that
agents have the same state and action spaces, but different
transition and reward functions, and initial conditions.

• ρm : A×O �→ {0, 1} defines action resource requirements;
ρm

ao specifies whether action a of agent m needs resource
o in order to be executable.

• bρ : O �→ R defines global resource bounds; bρo gives the
total amount of resource o available to the agents.

• κ : O × C �→ R defines capacity costs of resources; κoc is
the amount of capacity c consumed by a unit of resource
o.

• bκm : C �→ R defines capacity bounds for each agent; bκm
c is

the upper bound on capacity c for agent m.

We include the initial conditions α in the MDP of each agent,
because unlike unconstrained MDPs, where uniformly-optimal
policies always exist, this is not true for constrained prob-
lems [6]. From the resource-allocation perspective, this means
that the value of a resource bundle depends not only on the
rewards and dynamics of an agent’s MDP, but also on the
initial conditions.

To summarize, given the above model, our task is to de-
sign a computationally and economically efficient mecha-
nism for allocating resources O (subject to scarcity con-
straints bρo) among self-interested agents M, given that each
agent m ∈ M will be using the resources to selfishly maxi-
mize the expected total discounted reward of its MDP Λm,
subject to individual capacity constraints bκm

c .

2.2 Combinatorial Auctions
The problem of finding an optimal resource allocation

among self-interested agents that have complex valuations
over combinations of resources arises in many different do-

mains (e.g., [7, 19]) and is often called a combinatorial allo-
cation problem. A natural and widely-used mechanism for
solving such problems is a combinatorial auction (CA) (e.g.,
[5]). In a CA, each agent submits bids for a set of resource
bundles to the auctioneer, who then decides what resources
each agent will get and at what price.

Let us consider the problem of allocating among a set of
agents M a set of indivisible resources O, where the total
quantity of resource o ∈ O is bounded by bρo. Our earlier
assumption that actions’ resource requirements are binary
implies that agents will only be interested in bundles that
contain no more than one unit of a particular resource.

In a combinatorial auction, each agent m ∈ M submits a
bid bm

w (specifying how much the agent is willing to pay) for
every bundle w ∈ Wm that has some value um

w > 0 to the
agent. After collecting all the bids, the auctioneer solves the
winner-determination problem (WDP), a solution to which
prescribes how the resource bundles should be distributed
among the agents and at what prices. If agent m wins bundle
w at price qm

w , its utility is um
w − qm

w (we are assuming risk-
neutral agents with quasi-linear utility functions). Thus,
the optimal bidding strategy of an agent depends on how
the auctioneer allocates the resources and sets prices.

A Generalized Vickrey Auction (GVA) [10], which is an
extension of Vickrey-Clarke-Groves mechanisms [18, 4, 8] to
combinatorial auctions, allocates resources and sets prices as
follows. Given the bids of all agents, the auctioneer chooses
an allocation that maximizes the sum of agents’ bids. This
problem is NP-complete [15] and can be expressed as the
following integer program, where the optimization variables
zm

w = {0, 1} are indicator variables that show whether bun-
dle w is assigned to agent m, and nwo = {0, 1} specifies
whether bundle w contains o:

max
X

m∈M

X

w∈Wm

zm
w bm

w

˛
˛
˛
˛
˛
˛
˛
˛

X

w∈Wm

zm
w ≤ 1

X

m∈M

X

w∈Wm

zm
w nwo ≤ bρo,

(3)

The first constraint in (eq. 3) says that no agent can receive
more than one bundle, and the second constraint ensures
that the total amount of resource o assigned to the agents
does not exceed the total amount available.

A GVA assigns resources according to the optimal solution
ez to (eq. 3) and sets the payment for agent m to:

qm
w = V ∗

−m −
X

m′ �=m

ezm′
w bm′

w , (4)

where V ∗
−m is the value of (eq. 3) if m were to not participate

in the auction (the optimal value if m does not submit any
bids), and the second term is the sum of other agents’ bids
in the solution ez to the WDP with m participating.

A GVA has a number of nice properties. It is strategy-
proof, meaning that the dominant strategy of every agent
is to bid its true value for every bundle: bm

w = um
w . The

auction is economically efficient, meaning that it allocates
the resources to maximize the social welfare of the agents
(because, when agents bid their true values, the objective
function of (eq. 3) becomes the social welfare). Finally, a
GVA satisfies the participation constraint, meaning that the
agents never decrease their utility by participating in the
auction. A weak point of GVAs is their computational com-
plexity, as discussed in more detail in the next section.
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3. NAIVE GVA DESIGN
In this section, we describe a straightforward implemen-

tation of a GVA for our MDP-based problem.
Let each agent m ∈ M enumerate all possible resource

bundles Wm that satisfy its local capacity constraints (bκm
c ).

For each bundle w ∈ Wm, agent m would determine the
feasible action set A(w) and formulate an MDP Λm(w) =
〈S ,A(w), pm(w), rm(w), αm〉, where pm(w) and rm(w) are
projections of the agent’s transition and reward functions
onto A(w). Every agent would then solve each Λm(w) cor-
responding to a feasible bundle to find the optimal policy
eπm(w), whose expected discounted reward would define the
value of bundle w: um

w = Um
γ (eπm(w), αm).

Then, the auction proceeds in the standard GVA manner.
The agents submit their bids bm

w to the auctioneer, who
solves the standard winner-determination problem (eq. 3)
and sells the resources to the agents at prices (eq. 4). Since
this is just a special case of a GVA, the strategy-proof prop-
erty implies that agents would not deviate from bidding their
true values um

w = Um
γ (eπm(w), αm), and the mechanism will

yield socially-optimal resource allocations.
This mechanism suffers from two major complexity prob-

lems. First, the agents have to enumerate an exponential
number of resource bundles and compute the value of each
by solving the corresponding MDP. Second, the auctioneer
has to solve an NP-complete winner-determination problem
on exponential input. The next two sections are devoted to
tackling these complexity problems.

4. AVOIDING BUNDLE ENUMERATION
Let us begin by considering the agents’ valuation prob-

lem. We can trivially simplify the agents’ lives by creating
an auction where they submit the specifications of their con-
strained MDPs to the auctioneer as bids. This is an extreme
application of the revelation principle that moves the bur-
den of solving the valuation problem from the agents to the
auctioneer. Clearly, by itself this not only leads to abso-
lutely no efficiency gains, but it also has implications on
information privacy issues, because the agents have to re-
veal their local MDPs to the auctioneer (which they might
not want to do). Nevertheless, we can build on this idea
to increase the efficiency of solving both the valuation and
winner-determination problems and do so without sacrific-
ing agents’ privacy. We address ways of maintaining infor-
mation privacy in Section 6 and focus on the valuation and
the winner-determination problems in this section.

The question we pose in this section is as follows. Given
that the bid of each agent consists of its MDP and re-
source information, can the auctioneer formulate and solve
the winner-determination problem more efficiently than by
simply enumerating each agent’s resource bundles and solv-
ing the standard exponentially-sized integer program (eq. 3)?

Our approach is based on the mixed integer linear pro-
gramming (MILP) method described in [6] for optimal cen-
tralized resource allocation and policy formulation for fully
cooperative agents. Here, we briefly summarize that method
and discuss its use in the context of our auction mechanism.

Given that each agent submits to the auctioneer its MDP
Λm = 〈S ,A, pm, rm, αm〉, its resource requirements ρm, and
its capacity bounds bκm, the valuation and the winner-determination
problems can be combined into one constrained optimiza-
tion problem, which will solve the policy optimization and

resource allocation problems simultaneously. This problem
can be expressed in terms of the occupation measures xm

ia of
the agents as follows:

max
X

m,i,a

xm
iarm

ia

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

X

a

xm
ja − γ

X

i,a

xm
iapm

iaj = αm
j

X

o

κocH
`
ρm

ao

X

i

xm
ia

´ ≤ bκm
c

X

m

H
`
ρm

ao

X

i

xm
ia

´ ≤ bρo

xm
ia ≥ 0

(5)

where H is the Heaviside “step” function of a nonnegative
argument, defined as H(0) = 0, and H(z) = 1 for z >
0. The first and last sets of constraints in (eq. 5) are the
standard conservation of flow and non-negativity constraints
on the occupation measure of agent m (as in (eq. 2)). The
second set constrains the combinations of resources that can
be assigned to agent m by ensuring that its capacity limits
bκm are not exceeded. Notice that the resource costs of a
policy are expressed via the step function, which models the
fact that resources are non-consumable, i.e., regardless of
how many times action a is executed, the policy will require
ρm

ao units of resource o as long as ρm
ao

P
i xm

ia > 0. The third
set of constraints models resource scarcity: the total amount
of resource o assigned to the agents cannot exceed bρo.

As shown in [6], problem (eq. 5) is NP-complete, but can
be reduced to a mixed integer program, which can be solved
using a variety of efficient tools. The nonlinearity of (eq. 5)
can be alleviated by appropriately normalizing the occupa-
tion measure x and augmenting the program with a set of
binary variables ∆m

o ∈ {0, 1}, where

∆m
o = H

“X

a

ρm
ao

X

i

xm
ia

”

is an indicator variable that shows whether agent m plans
to use resource o. Using these variables, resource and capac-
ity constraints can be expressed as linear functions of ∆m

o .
Furthermore, the relationship between ∆m

o and xm
ia can be

maintained via a set of linear inequality constraints, yielding
the following MILP:

max
X

m,i,a

xm
iarm

ia

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

X

a

xm
ja − γ

X

i,a

xm
iapm

iaj =
αm

j

X

X

o

κoc∆
m
o ≤ bκm

c

X

m

∆m
o ≤ bρo

X

a

ρm
ao

X

i

xm
ia ≤ ∆m

o

xm
ia ≥ 0, ∆m

o ∈ {0, 1}

(6)

where X ≥ max
P

a ρao

P
i xia is an upper bound on the ar-

gument of H(·), used for normalization. The bound is guar-
anteed to exist for discounted MDPs and can be obtained in
polynomial time [6]. The first three sets of constraints have
the same meaning as in (eq. 5), and the fourth set of con-
straints ties binary resource-usage indicator variables ∆m

o

and the occupation measures xm
ia.

The MILP (eq. 6) allows the auctioneer to efficiently solve
the WDP without having to enumerate the possible resource
bundles. As compared to the standard WDP formulation
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(eq. 3), which has on the order of |M|2|O| binary variables,
(eq. 6) has only |M||O| binary variables. This exponen-
tial reduction is attained by exploiting the knowledge of the
agents’ MDP-based valuations and combining the policy op-
timization and resource allocation problems.

The resulting mechanism is an instantiation of the GVA,
so by the well-known properties of VCG mechanisms, this
auction is strategy-proof (the agents have no incentive to lie
to the auctioneer about their MDPs), it attains the socially
optimal resource allocation, and the agents never decrease
their utility by participating in the auction.

To sum up the results of this section: by having the agents
submit their MDP information to the auctioneer instead
of their valuations over resource bundles, we have essen-
tially removed all computational burden from the agents
and at the same time significantly simplified the auction-
eer’s winner-determination problem (the number of integer
optimization variables is reduced exponentially). As men-
tioned earlier, the approach raises some information privacy
concerns, and we will discuss them in Section 6.

5. DISTRIBUTING THE WDP
Unlike the straightforward GVA implementation discussed

earlier, where the agents shared some computational burden
with the auctioneer, in the mechanism from the previous sec-
tion, the agents submit their information to the auctioneer
and then just idle while waiting for a solution. This suggests
further potential efficiency improvements. Indeed, given the
complexity of MILPs, it would be beneficial to exploit the
computational power of the agents to offload some of the
computation from the auctioneer back to the agents (we as-
sume that agents have no cost for “helping out” and would
prefer for the outcome to be computed faster).2 Thus, the
goal of this section is to distribute the computation of the
winner-determination problem (eq. 6).

For concreteness, we will base the algorithm of this section
on the branch and bound method for solving MILPs [20], but
exactly the same techniques will also work for other MILP
algorithms (e.g., cutting planes) that perform a search in the
space of LP relaxations of the MILP. In branch and bound
for MILPs with binary variables, LP relaxations are created
by choosing a binary variable and setting it to either 0 or
1, and relaxing the integrality constraints of other binary
variables. If a solution to an LP relaxation happens to be
integer-valued, it provides a lower bound on the value of the
global solution. A non-integer solution provides an upper
bound for the current subproblem, which (combined with
other lower bounds) is used to prune the search space.

Thus, a simple way for the auctioneer to distribute the
branch and bound algorithm is to simply farm out LP relax-
ations to other agents and ask them to solve the LPs. How-
ever, it is easy to see that this mechanism is not strategy-
proof. Indeed, an agent that is tasked with solving parts
of the global winner-determination problem could benefit
from lying to the auctioneer, i.e., the agent might be better
off optimizing a function that differs from the social wel-
fare. This is a common phenomenon in distributed mech-
anism implementations (e.g., [13]): whenever some WDP

2As observed by Parkes [13], this assumption is a bit con-
troversial, since a desire for efficient computation implies
nonzero cost for computation, while the agents’ cost for
“helping out” is not modeled. It is, nonetheless, a common
assumption in distributed mechanism implementations.

calculations are offloaded to an agent participating in the
auction, the agent might be able to benefit from sabotag-
ing the computation. As suggested by Parkes [13], there are
several approaches to ensuring the strategy-proofness of a
distributed implementation. The approach best suited for
our problem is based on the idea of redundant computation,
where multiple agents are asked to do the same task and
any disagreement is carefully punished to discourage lying.
In the rest of this section, we demonstrate that this is very
easy to implement in our case.

The basic idea is very simple: let the auctioneer distribute
LP relaxations to the agents, but check their solutions and
re-solve the problems if the agents return incorrect solutions
(this would make truthful computation a weakly-dominant
strategy for the agents, and a nonzero punishment can be
used to achieve strong dominance). This strategy of the
auctioneer removes the incentive for the agents to lie and
yields exactly the same solution as the centralized algorithm.
However, in order for this to be beneficial, the complexity
of checking a solution must be significantly lower than the
complexity of solving the problem. Fortunately, this is true
for LPs due to a well-known property.

Suppose the auctioneer has to solve the following LP,
which can be written in two equivalent ways (let us refer
to the one on the left as the primal, and to the one on the
right as the dual):

min αT v
˛
˛
˛ AT v ≥ r , max rT x

˛
˛
˛
˛
˛

Ax = α

x ≥ 0
(7)

By the strong duality property, if the primal LP has a solu-
tion v∗, then the dual also has a solution x∗, and αT v∗ =
rT x∗. Furthermore, given a solution to the primal LP, it
is easy to compute a solution to the dual: by complimen-
tary slackness, v∗T = rT B−1 and x∗ = B−1α, where B is
a square invertible matrix, composed of columns of A that
correspond to basic variables of the solution.

These well-known properties can be used by the auction-
eer to quickly check optimality of solutions returned by the
agents. Suppose that an agent returns v as a solution to the
primal LP. The auctioneer can calculate the dual solution
vT = rT B−1 and check whether rT x = αT v. Thus, the
most expensive operation that the auctioneer has to per-
form is the inversion of B, which can be done in sub-cubic
time. As a matter of fact, from the implementation perspec-
tive, it would be more efficient to ask the agents to return
both the primal and the dual solutions, since many popular
algorithms compute both in the process of solving LPs.

Thus, we have provided a simple method that allows us
to effectively distribute the winner-determination problem,
while maintaining strategy-proofness of the mechanism and
with a negligible computation overhead for the auctioneer.

6. PRESERVING INFORMATION PRIVACY
The mechanism discussed earlier has the drawback that it

requires agents to reveal complete information about their
MDPs to the auctioneer. The problem is also exacerbated by
the distributed WDP algorithm from the previous section,
since not only does each agent reveal its MDP information
to the auctioneer, but that information is then also spread
to other agents via the LP relaxations of the global MILP.
In this section we try to alleviate this problem.

Let us note that, in saying that agents prefer not to re-
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veal their local information, we are implicitly assuming that
there is an external factor that affects agents’ utilities, and
it depends on how much information is revealed. The value
of information is typically measured by how it changes one’s
decision-making process and its outcomes. Since this effect
is not part of our model (in fact, it contradicts our weak-
coupling assumption), we cannot in a domain-independent
manner define what constitutes “useful” information, and
how bad it is for an agent to reveal too much about its
MDP. Modeling such effects and carefully analyzing them is
an interesting research task, but it is outside the scope of
this paper. Thus, for the purposes of this section, we will
be content with a mechanism that hides enough informa-
tion to make it impossible for the auctioneer or an agent to
uniquely determine the transition or reward function of any
other agent (in fact, information revealed to any agent will
map to infinitely many MDPs of other agents).3

The main idea of our approach is to modify the previous
mechanism so that the agents submit their private informa-
tion to the auctioneer in an “encrypted” form that will allow
the auctioneer to solve the winner-determination problem,
but will not allow it to infer agents’ original MDPs.

Let us observe that, instead of passing an MDP to the
auctioneer, each agent can submit an equivalent LP (eq. 2).
So, the question becomes: can the agent transform its LP
in such a way that the auctioneer will be able to solve it,
but will not be able to infer the transition and reward func-
tions of the originating MDP? In other words, the problem
reduces to the following. Given an LP L1 (created from an
MDP Λ = 〈S ,A, p, r〉 via (eq. 2)), we need to find a trans-
formation L1 → L2 such that a solution to the transformed
LP L2 will uniquely map to a solution to the original LP L1,
but L2 will not reveal the transition or the reward functions
of the original MDP (p or r). We show that a simple change
of variables suffices.

Suppose agent m1 has an MDP-originated LP and is go-
ing to ask agent m2 to solve it. In order to maintain the
linearity of the problem (to keep it simple for m2 to solve),
m1 should limit itself to linear transformations. Consider
a linear, invertible, and positive (to maintain the sign of
inequality constraints) transformation of the primal coordi-
nates u = Fv, and a linear, invertible transformation of the
dual coordinates y = Dx. Then, the LP from (eq. 7) will be
transformed (by applying F , switching to the dual, and then
applying D) to an equivalent LP in the new coordinates y:

max rT D−1y

˛
˛
˛
˛
˛

(F−1)T AD−1y = (F−1)T α

D−1y ≥ 0
(8)

The value of the optimal solution to (eq. 8) will be the same
as the value of the optimal solution to (eq. 7), and given
an optimal solution y∗ to (eq. 8), it is easy to compute
the solution to the original: x∗ = D−1y∗. Indeed, from
the perspective of the dual, the primal transformation F
is equivalent to multiplying the dual equality constraints
Ax = α by constants and adding some equations together,
which (given that F is positive and invertible) has no effect
on the solution or the objective function. Furthermore, the
dual transformation D is equivalent to a change of variables
that modifies the solution but not the value of the objective

3A more stringent condition would require that agents’ pref-
erences over resource bundles are not revealed [12], but we
set a lower bar here.

function.
However, a problem with the above transformations is

that it gives away D−1. Indeed, agent m2 will be able to
simply read (up to a set of multiplicative constants) the
transformation off the constraints D−1y ≥ 0. Therefore,
only diagonal matrices with positive coefficients (which are
equivalent to stretching the coordinate system) are not triv-
ially deduced by m2, since they also map to y ≥ 0. Choos-
ing a negative multiplier for some xi (inverting the axis) is
pointless, because that flips the non-negativity constraints
to yi ≤ 0, immediately revealing the sign to m2.

Let us demonstrate that, given any MDP Λ and the cor-
responding LP L1, we can choose D and F such that it will
be impossible for m2 to determine the coefficients of L1 (or
equivalently the original transition and reward functions p
and r). When agent m2 receives L2 (as in (eq. 8)), all it
knows is that L2 was created from an MDP, so the columns
of the constraint matrix of the original LP L1 must sum to
a constant:

X

j

Aji = 1 − γ
X

j

piaj = 1 − γ. (9)

This gives m2 a system of |S| nonlinear equations for the di-
agonal D and arbitrary F , which have a total of |S||A|+|S|2
free parameters. For everything but the most degenerate
cases (which can be easily handled by an appropriate choice
of D and F ), these equations are hugely under-constrained
and will have infinitely many solutions. As a matter of fact,
by sacrificing |S| of the free parameters, m1 can choose D
and F in such a way that the columns of constraints in L2

will also sum to a constant c ∈ (0, 1), which would have
the effect of transforming L1 to an L2 that corresponds to
another valid MDP Λ2. Therefore, given an L2 there are
infinitely many original MDPs Λ and transformations D, F
that map to the same LP L2.

One aspect of the auctioneer’s problem that we have not
considered so far is the connection of resource and capac-
ity costs to agents’ occupation measures in the global WDP
(eq. 6). There are essentially two things that the auctioneer
has to be able to do: 1) determine the value of each agent’s
policy (to be able to maximize the social welfare), and 2)
determine the resource requirements of the policies (to check
the resource constraints). So, the question is, how does our
transformation affect these? As noted earlier, the transfor-
mation does not change the objective function, so the first
requirement holds. On the other hand, D does change the
occupation measure xm

ia by arbitrary multipliers. However,
a multiplicative factor of xm

ia has no effect on the usage of
non-consumable resources, as it only matters whether the
corresponding xm

ia is zero or not (step function H nullifies
the scaling effect). Thus, the second condition also holds.

To sum up, we can, to a large extent, maintain informa-
tion privacy in our mechanism by allowing agents to apply
linear transformations to their original LPs. The informa-
tion that is revealed by our mechanism consists of agents’
resource costs ρm

ao, capacity bounds bκm
c , and the sizes of their

state and action spaces.4 The revealed information can be
used to infer agents’ preferences and resource requirements.
Further, numeric policies are revealed, but the lack of in-
formation about transition and reward functions makes it
difficult to map that to meaningful courses of action.

4Resource information is revealed for non-consumable re-
sources, but can be hidden for consumable ones (Section 8).
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Figure 1: Gains in Computation Efficiency: MDP-
based GVA versus a naıv̈e GVA implementation.

7. EMPIRICAL EVALUATION
A thorough empirical evaluation of our mechanism would

analyze it from the perspectives of both information reve-
lation and computational efficiency. However, as discussed
earlier, the model of agents’ interactions we used in this
work is not rich enough to allow us to properly quantify the
amount of revealed information. Therefore, we will focus
solely on evaluating the mechanism from the computational
efficiency perspective.

For our experiments, we implemented a simple multiagent
delivery problem (based on the multiagent rover problem in
[6]), where several agents operate in a grid world with deliv-
ery locations randomly placed throughout the grid. There is
a limited number of delivery contracts to be fulfilled by the
agents, where each contract consists of delivering a set of
packages to a location on the grid. Each package has some
weight, and each agent has a bound on how much weight
it can carry (limited capacity). Agents (delivery vehicles)
also differ in size: the bigger the agent, the more packages
it can carry (thus capable of making more deliveries in one
trip), but the more costly it is to operate (bigger trucks need
more gas). The agents’ movements through the grid have
a stochastic component to it. The agents participate in an
auction where they bid on delivery contracts. In this setting,
the value of a contract depends on what other contracts the
agent acquires (e.g., it is beneficial to obtain contracts for
locations that are geographically close, because that reduces
the expenses). Given a set of contracts, an agent’s policy
optimization problem is to find the optimal delivery route.5

We compared the performance of our MDP-based auction
(Section 4) to the performance of the standard GVA with flat
preferences (Section 3). The results are summarized in Fig-
ure 1, which compares the time it takes (using CPLEX 8.1
on a P-4) to solve the standard winner-determination prob-
lem on the space of all resource bundles (eq. 3) to the time
needed to solve the combined MDP-WDP problem (eq. 6)
used in our mechanism (without the additional speedup of
parallelization of Section 5), as the number of resources is
increased (with 5 agents, on a 5-by-5 grid). Despite the fact
that both algorithms have exponential worst-case running
time, the number of integer variables in (eq. 3) is exponen-
tially larger than in our MILP (eq. 6), the effect of which is

5We also investigated other, randomly generated domains,
and the results were qualitatively the same.
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Figure 2: Scaling the MDP-based WDP to larger
problems.

clearly demonstrated in Figure 1. This comparison gives an
optimistic view of the performance of the standard CA, as
it does not take into account the additional complexity of
solving the valuation problem, which is embedded into the
WDP of our mechanism (eq. 6). Including the time for solv-
ing the valuation problem in the comparison only magnifies
the effect. No parallelization of the WDP was performed for
these experiments for either algorithm.

We also evaluated our method on larger problems infeasi-
ble for the standard CA. Figure 2 shows that in under five
minutes we could solve problems that, in the standard CA,
would require the agents to enumerate up to 2100 bundles
(yielding as many MDPs to solve), and the auctioneer to
solve an NP-complete WDP with an input of that size.

8. GENERALIZATIONS AND DISCUSSION
We made a number of assumptions in this paper. Some

of them are fundamental to the work, such as weak-coupling
of the agents, without which the value of a resource bundle
to an agent might depend on other agents’ bundles, which
violates an important GVA assumption. Other assumptions
can be relaxed without too much effort, as discussed below.

Our work can be easily extended to handle consumable
resources that are used up whenever agents execute actions.
In fact, the problem can be considerably simplified for do-
mains with only these kinds of resources. The most impor-
tant change is that we have to redefine the value of a par-
ticular resource bundle to an agent. The difficulty is that,
given a policy, the total use of consumable resources is un-
certain. One possibility is to define the value of a bundle as
the payoff of the best policy whose expected resource usage
does not exceed the amounts of resources in the bundle. The
interpretation of ρm

ao would also change to mean the amount
of resource o consumed by action a every time it is executed.
This would make the constraints in (eq. 6) linear in the oc-
cupation measure, which would tremendously simplify the
WDP (making it polynomial). Information privacy can be
handled similarly to the case of non-consumable resources.
However, given the transformation y = Dx, the resource
cost function ρm will also have to be scaled by D−1 (since
the total consumption of consumable resources is propor-
tional to the occupation measure). This has the additional
benefit of hiding the resource cost functions (unlike the case
of non-consumable resources where they were revealed).
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In this work, we assumed that ρm
ao = {0, 1}, implying that

agents are only interested in binary resource bundles. The
model and algorithms can be easily generalized to integer re-
source costs ρm

ao. To accommodate this, we would not have
to change anything, except the reduction of the WDP (eq. 5)
to the MILP (eq. 6). To handle integer ρm, we will need to
introduce binary indicator variables ∆m

a (instead of ∆m
o )

that show whether agent m uses action a in its policy (in-
stead of resource o). The linearization of (eq. 5) would also
change, and would require |M|Qo no capacity constraints,
where no is the number of actions that use resource o (in-
stead of |M||O| for the binary costs).

To summarize the results of this paper, we presented a
computationally-efficient variant of a GVA for resource al-
location among self-interested agents whose valuations of
resource bundles are defined by their weakly-coupled con-
strained MDPs. For such problems, we showed analyti-
cally and empirically that our mechanism, which exploits
knowledge of the structure of agents’ MDP-based prefer-
ences, achieves exponential speedup over a straightforward
GVA implementation, and does so without sacrificing any
of the nice properties of GVAs (optimal outcomes, strategy-
proofness, and voluntary participation). We also discussed
a distributed implementation of the mechanism that retains
strategy-proofness (using the fact that an LP solution can
be easily verified), and does not reveal agents’ private MDP
information (using a transformation of agents’ MDPs).

However, as mentioned earlier, in order to carefully study
information revelation in this setting, it is necessary to ex-
pand our model to define how revealed information affects
agents’ behavior, which is an interesting direction of future
work. In this work, we considered MDPs with “flat” state
and action spaces, which do not scale well due to the curse
of dimensionality. In order for our mechanism to be appli-
cable to real-world MDP instances, we need to modify it
to work with factored MDPs [2], and the approximate lin-
ear programming methodology [16] seems particularly well-
suited for this purpose. Finally, we have not given special
treatment to the problem of price determination. It can be
easily solved by repeatedly applying exactly the same sorts
of techniques as for the WDP, but an interesting question is
whether this can be done more effectively than just running
our algorithm on |M| separate sub-problems.
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