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ABSTRACT
This paper proposes an auction protocol for solving a re-
source allocation problem in dynamic environments. In such
environments, the valuation of resources has uncertainty for
each bidder, i.e., this valuation depends on the situation not
only at the point when the auction is held but also at the
point when the allocated resources are actually used. For
example, a bidder’s valuation in fine weather may be differ-
ent from that in rainy weather. A solution for dealing with
this problem is to execute auctions whenever an event occurs
and then to re-allocate resources. Re-allocating resources,
however, may cause disutility. Moreover, it does not always
provide an equilibrium strategy because it can be viewed
as a sequential auction, which means that we cannot accu-
rately predict what outcome will be obtained. To solve this
problem, we propose an auction protocol that allows bidders
to declare the cost due to re-allocation and then decides an
allocation based on this cost of re-allocation as well as the
surplus obtained from the allocated resources themselves in
the realized situation. We prove that a bidder’s truth telling
is in equilibrium and that a socially efficient allocation is ob-
tained in the proposed protocol.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; K.4.4 [Computers and So-
ciety]: Electronic Commerce

General Terms
Design, Economics
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1. INTRODUCTION
Auctions have been widely studied in the field of multi-

agent research to efficiently allocate resources [1]. A major
focus in auction studies is asymmetric information among
sellers and buyers, i.e., how to elicit private information
from participants and find an efficient allocation. Inter-
net and agent-mediated electronic commerce involve uncer-
tainty, which causes various types of problems, e.g., uncer-
tainty of a participant’s identity [14], uncertainty of auc-
tioned goods [4], execution failure [9], and so on.

This paper focuses on auctions in dynamic environments.
Dynamic environments are another source of uncertainty.
A computational agent’s behavior in dynamic environments
has been actively studied, e.g., how to control an autonomous
robot in real-world environments. These planning studies
have examined whether an agent should continue to exe-
cute an existing plan or behave reactively [11, 5]. A similar
problem occurs in resource allocation in auctions.

Consider a meeting room assignment problem. There are
multiple seminar organizers contending for particular time-
slots, with an auction determining the winner. Here, a val-
uation of resources often depends on environmental condi-
tions. The number of participants depends on weather, e.g.,
fine or rainy. Therefore, the seminar organizer who antic-
ipates that the weather will be fine and has won the par-
ticular time-slot of the large meeting room may discovers
after winning that it is going to rain on the day of the sem-
inar, thus lowering the expected turnout. In this case, the
valuation of the large meeting room becomes very low.

Re-allocation seems to mitigate this problem. However,
re-allocation significantly affects the bidder incentive prob-
lem. If we held auctions whenever some environmental con-
ditions change in order to re-allocate resources whose valua-
tions change, a bidder could not always have an equilibrium
strategy because this could be viewed as a sequential auc-
tion. This causes the problem of a bidder having to examine
many strategies to obtain better utility, and the system de-
signer cannot accurately predict what outcome he or she can
obtain through an auction.

Another problem of re-allocation is that changing from an
existing allocation to another one incurs some cost. For ex-
ample, if the seminar organizer had announced that the sem-
inar will be held in room 3 in building A but then changes
the room on the morning of the seminar day, it may cause
some trouble. Here, note that seminar participants have
a preference for the change in the room. Their disutility is
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small if the newly assigned room is located on the same floor
as the previously assigned room. Their disutility becomes
larger if the newly assigned room is located on a different
floor in the same building, and it becomes much larger if the
newly assigned room is located in a different building. Such
a participant’s preference affects the number of participants,
which leads to affecting the organizer’s profit.

A solution for reducing the re-allocation cost is to give up
the idea of deciding an allocation in advance and obtain a
resource allocation on that day. However, this does not allow
the organizer to announce the seminar venue in advance,
making it difficult to gather many participants.

To solve resource allocation problems in dynamic envi-
ronments, we have developed a new auction protocol. This
protocol allows bidders to declare their preference for re-
allocation and make an allocation plan that specifies the ini-
tial allocation and a set of transition rules describing when
and how to change the allocation. An allocation plan en-
ables a bidder to understand how the allocated resources
will be changed in advance.

The contributions of this paper are (1) the proposition
of an auction framework that accounts for re-allocation in
dynamic environments, (2) the introduction of a new auction
protocol that can induce bidders to tell their true valuation
and disutility caused by re-allocation by extending the well-
established Vickrey-Clarke-Groves (VCG) protocol, and (3)
the proof that the protocol can obtain an ex ante Pareto
efficient allocation.

Section 2 describes the model of an auction in dynamic
environments. In section 3, we propose a new protocol that
can avoid the inefficiency caused by environmental changes,
and in section 4, we illustrate how our protocol works. Sec-
tion 5 describes theoretical analysis, section 6 discusses re-
lated works, and section 7 concludes the paper.

2. MODEL
This section presents a formal model to enable rigorous

discussion. In a trading environment, there exist a seller,
i.e., an auctioneer in this paper, and multiple bidders bidder i
(i = 1, · · · , n). The seller may have multiple goods to sell,
g1, g2, · · · , gm. This paper assumes the following situation.

Assumption 1. There is an interval between the point
when the auction is held and the point when the allocated
goods are actually used by the winners.

We assume a private value model, i.e., bidder i’s valua-
tion of goods is independent of those of the other bidders.
As discussed earlier, the benefit from having a good derives
not only from using the good but also from whether it is
allocated far in advance or just before its use. In other
words, the former can be viewed as the primary benefit ob-
tained as a result of using the good, while the latter can be
viewed as the secondary benefit obtained during the inter-
val between an allocation determination and the use of the
allocated good.

Assumption 2. For bidder i, the valuation is given as
follows.

vi() = vP
i () + vS

i ()

vP represents the benefit obtained as a result of using the al-
located good, while vS represents the benefit obtained during
the interval between an allocation determination and the use
of the allocated good.

vS
i might represent disutility, since we examine the possi-

bility of re-allocation of goods in this paper. For example,
if a seminar organizer wins a room reservation auction but
then unfortunately the place of the seminar has changed,
the organizer has to inform the seminar participants of the
change, which incurs some cost. Thus, we call vS

i () disutility
caused by re-allocation. Note that the organizer can hand a
room reservation over to another bidder if the reserved date
has not come yet, while the cost of announcing the seminar
is a sunk cost.

In addition, we assume that vP
i depends on the environ-

mental conditions when the allocated goods are actually
used by the winner.

Assumption 3. The environmental conditions are repre-
sented as a set of random variables, {cond} = {cond1, cond2,
· · · , condl}.
Moreover, we assume the following.

Assumption 4. The domain of a random variable is given
and an auctioneer and all bidders know the probability dis-
tribution p of each random variable.

For example, the domain of a random variable of weather
is {fine, rainy} and a weather report is shared among an
auctioneer and all bidders.

The valuation vP
i of bidder i is represented as follows.

Assumption 5. Let G denote an allocation of goods and
Gi denote allocated goods to bidder i in G.

For bidder i, the valuation for a bundle of goods Gi is
denoted by vP

i = vP
i (Gi; cond1, cond2, · · · , condl).

We use a notation of vP
i (Gi) as vP

i (Gi; cond1, cond2, · · · , condl)
if there is no confusion.

We focus on the effect of re-allocation in this paper. Thus,
disutility vS

i of bidder i is represented as follows.

Assumption 6. For bidder i, vS
i is denoted by vS

i (Gprev
i ,

Gcurrent
i ). Gprev

i represents a bundle of goods previously al-
located to bidder i and Gcurrent

i represents bidder i’s current
allocation of goods.

vS
i might be a function of time, e.g., an elapsed time or a

remaining time.
Figure 1 shows an example of a bidder’s valuation vP

i .
Bidders are seminar organizers contending for particular
time-slots of meeting rooms. g1 and g2 represent time-slots
of a large meeting room and a small meeting room, respec-
tively. (g1, g2) indicates obtaining the time-slots of both
rooms simultaneously. In this case, obtaining g1 or g2 is suf-
ficient for each bidder, i.e., each bidder has a substitutable
preference over the two goods. Here, {cond} = {weather}
and its domain is {fine, rainy}.

Figure 2 shows an example of disutility vS
i of bidder 1

caused by the re-allocation itself. Different bidders have
different values of disutility. null means that no good is al-
located. Disutility caused by changing null to g1 represents
the disutility that g1 is not allocated in advance but just be-
fore its use, and thus there is not enough time for preparing
something to use the allocated good. The disutility caused
by changing g1 to null represents disutility, e.g., the cost for
announcing that the seminar has to be canceled because a
seminar room of g1 is no longer available. Introducing these
disutilities into the discussion is a characteristic of this pa-
per’s approach.
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g1 g2 (g1, g2)
bidder 1 10 2 10
bidder 2 4 6 6
bidder 3 3 4 4

(a) fine

g1 g2 (g1, g2)
bidder 1 5 6 6
bidder 2 7 5 7
bidder 3 6 1 6

(b) rainy

Figure 1: Valuations of goods conditioned on
weather

TO

FROM

null g1 g2 (g1, g2)
null 0 −1 −1 −1
g1 −3 0 −1 0
g2 −3 −1 0 0
(g1, g2) −3 0 0 0

Figure 2: Disutility of bidder 1 caused by re-
allocation itself

This representation means that a total valuation of goods
is determined by the final allocation of the goods, the en-
vironmental conditions, and (dis-)utility accumulated cor-
responding to the re-allocation from the initial allocation
to the final allocation. This enables us to easily describe
various problem domains, although it might be possible to
assume another functional form of valuations.

To maximize social surplus, i.e., the sum of an auction-
eer’s and bidders’ utilities, we need to examine the transi-
tion process from one allocation to another as well as the
allocation itself, i.e., we have to deal with an allocation
plan. An allocation plan consists of an initial allocation
and a set of transition rules that specify which allocation
is to be changed when some values of random variables oc-
cur. Figure 3 shows an example of an allocation plan. This
means that (g1, g2) = (bidder 1, bidder 2) is an initial allo-
cation and it changes to (g1, g2) = (bidder 2, bidder 1), i.e.,
bidder 1 and bidder 2 swap the rooms, if it rains. If it is
fine, the initial allocation is not changed.

initial allocation: (g1, g2) = (bidder 1, bidder 2)
final allocation:

(g1, g2) = (bidder 1, bidder 2) if fine
(g1, g2) = (bidder 2, bidder 1) if rainy

Figure 3: Example of an allocation plan

Next, we give an expression of utility.

Assumption 7. bidder i’s utility, ui(), is represented as
follows.

ui() = vi(AP ) − paymenti(AP )

= vP
i (Gfinal

i ; {cond}) + vS
i (AP )

− paymenti(AP )

This is called a quasi-linear utility. AP represents an allo-
cation plan. Gfinal

i represents a bundle of goods allocated to
bidder i in the final allocation.

A method for determining the amount of payment paymenti

is described in the next section. We assume that a primary
benefit depends only on the final allocation and environmen-
tal conditions. The disutility of vS

i is summed up along the
transition path of allocations.

If an allocation plan of AP is given, we can calculate the
expected utility because we assume that the probability dis-
tribution of random variables, p, is known.

3. AUCTION PROTOCOL
In this section, we propose a new protocol that determines

an allocation plan. First, we describe desirable properties
of an auction protocol and point out that a simple proto-
col does not satisfy these properties, then we present our
protocol.

3.1 Desirable properties of auction protocols
Desirable properties of auction protocols include individ-

ual rationality and Pareto efficiency. Individual rationality
means that a bidder does not suffer any loss by participat-
ing in an auction if he or she is rational. Pareto efficiency
means a bidder’s utility cannot be increased without reduc-
ing the auctioneer’s or other bidders’ utilities. In an auction,
if Pareto efficiency is satisfied, social surplus, i.e., the sum
of an auctioneer’s and all bidders’ utilities, is maximized be-
cause an auctioneer and bidders can make a money transfer
and we assume a quasi-linear utility.

In designing a protocol, we impose the constraint of incen-
tive compatibility, which means that truth telling is a best
policy for each bidder. The revelation principle states that
imposing an incentive compatibility constraint does not lose
any generality of discussion [7]. This contributes to reduc-
ing the search space of protocols. In addition, in computa-
tional environments, if this constraint holds, a bidder does
not have to spy on other bidders’ valuations, and the bidder
benefits from telling his or her valuation to the auctioneer,
which leads to attaining system stability and making the
implementation of a computational agent easier.

3.2 Failure of simple auction protocols
In the following, we explain why simple auction protocols

do not work well. A simple method for allocating goods is
to employ the Vickrey-Clarke-Groves (VCG) protocol and to
stick to it, i.e., behave in a conservative manner. The VCG
protocol chooses an optimal allocation, i.e., an allocation
that maximizes the expected social surplus and imposes the
following payment on bidder i.

paymenti =
∑

j

vj(G
∗
−i) −

∑

j �=i

vj(G
∗)

Here, G∗ represents the optimal allocation and G∗
−i repre-

sents the optimal allocation when bidder i does not exist. As
a reference, we call this method the allocation-fixed method.
However, this method fails to flexibly change an allocation in
response to environmental changes, which reduces the social
surplus.

Example 1. Suppose that there are bidder 1, bidder 2,
bidder 3 and g1, g2. Bidders’ valuations are given in Fig-
ure 1 and the disutility caused by re-allocation is −0.5 for a
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g1 g2 (g1, g2)
bidder 1 7.5 4 8
bidder 2 5.5 5.5 6.5
bidder 3 4.5 2.5 5

Figure 4: Expected valuations of goods

bidder if its allocation changes and 0 if its allocation does not
change. In addition, we assume p(weather = fine) = 0.5
and p(weather = rainy) = 0.5.

Figure 4 shows the expected valuations at the point when
the auction is held. Based on these values, g1 and g2 are
awarded to bidder 1 and bidder 2, respectively. Payments
for bidder 1 and bidder 2 are 4.5 and 2.5, respectively.

Here, if bidder 1 and bidder 2 swap g1 and g2 when
weather is known to be rainy, the social surplus increases by
6+7−5−5−0.5−0.5 = 2. Note that bidder 1 and bidder 2
each suffer the disutility of −0.5 due to re-allocation. How-
ever, the allocation-fixed method misses this opportunity to
increase the social surplus.

The second simple method for allocating goods in dynamic
environments is to do nothing before the results of environ-
mental changes are known, i.e., to behave reactively. How-
ever, if the disutility caused by an allocation change from
null to some allocation is quite large, it reduces social sur-
plus. For example, we cannot expect many participants at
a seminar if it is announced just before it starts.

Another reactive method is to employ re-allocation when-
ever environmental changes occur. However, this brings
about an incentive problem, i.e., a participant worries about
whether the goods previously allocated to him or her should
be released and thus seeks different goods because there is
no equilibrium strategy.

Example 2. Suppose the same situation as Example 1.
An allocation and payments are determined based on Fig-
ure 4, i.e., bidder 1 wins g1 and pays 4.5 and bidder 2 wins
g2 and pays 2.5.

Here, if bidder 3 overstates its valuation of g1, i.e., bidder 3
declares 5 instead of 3 if the weather is fine, bidder 1’s pay-
ment becomes 5.5. In this case, if the weather turns out
to be rainy, bidder 1’s utility becomes less than zero, i.e.,
u1 = vP

1 (g1; rainy) − payment1 = 5 − 5.5 = −0.5. There-
fore, bidder 1 tries to sell g1 and bidder 3 has a chance
to buy g1. Thus, bidder 3 can manipulate the allocation of
goods.

To change an allocation in response to environmental changes
and prevent bringing about an incentive problem, we have
to develop a method for carefully selecting the part of an
allocation to be changed. In the next subsection, we explain
how to construct an allocation plan and select a desirable
allocation plan among a number of possible plans. In our
method, the payment is determined based on the allocation
plan, i.e., incorporating the effect of disutility caused by re-
allocation into its calculation, which can avoid an incentive
problem.

3.3 Protocol for determining an allocation plan
We propose an auction protocol in dynamic environments

that re-allocates the goods in response to environmental

change. An extension of the message space and construc-
tion of an allocation plan are novel, although the payment
calculation is based on the VCG protocol.

First, we explain a method for constructing an allocation
plan that is used to determine an allocation and a payment.
It requires enormous computation if we simply enumerate
all cases. Thus, we take a method based on dynamic pro-
gramming.

Here, we assume that there is an order in which values
of random variables turn out, specifically such a sequence
cond1 < cond2 < · · · < condl, where first the value of cond1

is produced.
The construction method of an allocation plan is as fol-

lows.

1. Bidders declare valuations of any bundle of goods in
any combination of values of random variables to the
auctioneer. These valuation values may be true or
false.

2. The auctioneer enumerates a combination of bidders’
bids so that the allocation feasibility is satisfied, i.e.,
the same good is not allocated to different bidders si-
multaneously.

3. The auctioneer calculates social surplus in each case.

4. Next, the auctioneer examines the state before a value
of the random variable, condl, turns out. For each
possible allocation, find the optimal transition rule.
Here, optimal means that it maximizes the expected
social surplus. Note that possible allocations include
allocations that some of goods are not allocated to any
bidders.

5. Next, the auctioneer considers the state before the val-
ues of random variables, condl−1 and condl turn out.
For each possible allocation, the auctioneer finds the
optimal transition rule.

6. The auctioneer continues the above steps until reach-
ing the state before all values of the random variables
turn out. At this point, a set of allocation plans, each
of which consists of an initial allocation and a set of
transition rules, is constructed.

7. The auctioneer finds the allocation plan that maxi-
mizes the expected social surplus. If there are more
than one allocation plans that maximize the expected
social surplus, the tie is randomly broken.

Next, we explain how to execute an allocation plan. The
execution method of an allocation plan is as follows.

1. Given an allocation plan, the auctioneer announces it
to bidders and then sets the initial allocation in an
allocation plan to the current allocation.

2. If the value of random variable cond1 turns out, the
auctioneer changes the current allocation to another
allocation specified in the allocation plan and announces
it to bidders.

3. After values of all random variables turn out, the cur-
rent allocation (a final allocation) is chosen. The auc-
tioneer imposes the following payment on bidders.

paymenti =
∑

j

vj(AP ∗
−i) −

∑

j �=i

vj(AP ∗)

646



Here, AP ∗ represents the optimal allocation plan and
AP ∗

−i represents the optimal allocation plan when bidder i
does not exist. The amount of paymenti is equal to
the other bidders’ decreases in expected valuations due
to bidder i’s participation.

4. EXAMPLES
This section illustrates how to construct an allocation plan

and how to determine an allocation and payments by using
an example.

Suppose the same problem setting as Example 2. In the
proposed protocol, the auctioneer enumerates the combi-
nation of bidders’ bids in step 2 and calculates the social
surplus in step 3, which are shown in Figure 5

g1 g2 s.s. s.s.
fine rainy

bidder 1 bidder 1 10 6
bidder 1 bidder 2 16 10
bidder 1 bidder 3 14 6
bidder 2 bidder 1 6 13
bidder 2 bidder 2 6 7
bidder 2 bidder 3 8 8
bidder 3 bidder 1 5 12
bidder 3 bidder 2 9 11
bidder 3 bidder 3 4 7

s.s. stands for social surplus.

Figure 5: Results obtained in steps 2 and 3

In step 4, each pair of transition rules are examined. There
are 81 pairs of transition rules.

• 1: change an allocation to

– (bidder 1, bidder 1) if fine,

– (bidder 1, bidder 1) if rainy.

• 2: change an allocation to

– (bidder 1, bidder 2) if fine,

– (bidder 1, bidder 1) if rainy.

• (3-81: We omit the other pairs of transition rules due
to space limitation.)

This example includes only one random variable. Thus
steps 5 and 6 are skipped. In step 7, the auctioneer finds
the allocation plan that maximizes the expected social sur-
plus. The social surplus of the allocation plan in Figure 3
is calculated as follows. If it is fine, the disutility caused
by re-allocation is 0 and the social surplus of the final al-
location is 16, while if it rains, the disutility caused by
re-allocation is −0.5 − 0.5 = −1 and the social surplus
of the final allocation is 13. Therefore, the expected so-
cial surplus is 0.5 × 16 + 0.5 × (−1 + 13) = 14 because
p(weather = fine) = 0.5 and p(weather = rainy) = 0.5.
The allocation plan in Figure 3 maximizes the expected so-
cial surplus. Another one is shown in Figure 6.

There are two possible allocation plans to be selected. A
tie is randomly broken. Here, we choose the allocation plan
in Figure 3. The payment of bidder 1 is calculated as follows.
First, suppose bidder 1 does not participate in this auction.

initial allocation: (g1, g2) = (bidder 2, bidder 1)
final allocation:

(g1, g2) = (bidder 1, bidder 2) if fine
(g1, g2) = (bidder 2, bidder 1) if rainy

Figure 6: Another allocation plan that maximizes
the expected social surplus

initial allocation: (g1, g2) = (bidder 3, bidder 2)
final allocation:

(g1, g2) = (bidder 3, bidder 2) if fine
(g1, g2) = (bidder 3, bidder 2) if rainy

Figure 7: Allocation plan when bidder 1 does not
exist

In this case, the allocation plan that maximizes the expected
social surplus is shown in Figure 7.

Therefore, bidder 1’s payment is calculated as follows.

payment1 = 0.5 × (6 + 3) + 0.5 × (5 + 6)

− (0.5 × 6 + 0.5 × (7 − 0.5))

= 3.75

The above expression can be written as follows by making a
calculation separately in the fine case and in the rainy case.

payment1 = 0.5 × (6 + 3) + 0.5 × (5 + 6)

− (0.5 × 6 + 0.5 × (7 − 0.5))

= 0.5 × (6 + 3 − 6)

+ 0.5 × (5 + 6 − (7 − 0.5))

= 0.5 × 3 + 0.5 × 4.5

Therefore, the auctioneer can impose the payment of 3.75 on
bidder 1 in any case or impose the payment of 3 in the fine
case and the payment of 4.5 in the rainy case on bidder 1.
payment2 is calculated to be 4.75 in a similar manner.

In Example 2, we pointed out that bidder 3 can manipu-
late the allocation. Suppose bidder 3 tells a lie and declares
10 − ε for g1 in the fine case and 7 − ε for g1 in the rainy
case. If the proposed protocol is employed, the payment of
bidder 1 becomes 7.75 (10 − ε in the fine case and 5.5 − ε)
instead of 3.75. Here, bidder 1’s utility is 10−(10−ε) = ε in
the fine case and 6 − 0.5 − (5.5 − ε) = ε, thus bidder 1 does
not suffer a loss. If bidder 3 further overstates his or her
valuations, it changes the allocation plan to a different one.
It can be easily verified that bidder 3’s utility becomes less
than zero in such a case. Thus, bidder 3 does not benefit
from his or her lie.

5. PROPERTIES OF PROPOSED PROTO-
COL

This section proves that the proposed protocol satisfies
desirable properties.

Proposition 1. For each bidder, truth telling is a best
strategy.
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Proof. The utility of each bidder is calculated as follows.

ui = vi(AP ∗
i ) − paymenti(AP ∗)

= vP
i (AP ∗) + vS

i (AP ∗)

− (
∑

j

vj(AP ∗
−i) −

∑

j �=i

vj(AP ∗))

= vP
i (Gfinal

i ; {cond}) + vS
i (AP ∗)

+
∑

j �=i

vP
j (Gfinal

j ; {cond}) +
∑

j �=i

vS
j (AP ∗)

−
∑

j

vj(AP ∗
−i)

By inspecting the above expression, the fifth term is inde-
pendent from bidder i’s declaration, i.e., bidder i cannot
manipulate the fifth term. The first to fourth terms are
equal to the objective function that an auctioneer tries to
maximize. Therefore, for bidder i, truth telling is a best
strategy.

Proposition 2. The proposed protocol can attain an al-
location that maximizes the expected social surplus.

Proof. The proposed protocol can induce bidders to de-
clare their true valuations and find a path that maximizes
the expected social surplus. Thus, the proposed protocol at-
tains an allocation that maximizes the expected social sur-
plus.

Proposition 3. The proposed protocol satisfies the indi-
vidual rationality constraint on expected values.

Proof. If a bid of bidder i does not have any effect on the
final allocation, it is not included in the series of tentative
allocations, which means its utility is 0. On the other hand,
if a bid of bidder i is included in the final allocation, bidder i’
utility becomes equal to the increase in social surplus by
bidder i’s participation. In addition, a possibility exists that
nothing is allocated. Thus, even if disutility caused by re-
allocation is incurred by bidders, individual rationality on
the expected value is still satisfied.

Note that proposition holds on expected values. It may
happen that a bidder’s utility becomes less than zero in some
cases, although the expected utility is larger than or equal to
0. However, as shown in section 4, if we impose a conditional
payment on bidders, a bidder’s utility is more than or equal
to 0.

Proposition 4. The proposed protocol can increase the
expected social surplus to higher than or equal to that by the
allocation-fixed method.

Proof. An allocation obtained by the allocation-fixed
method is included in a candidate of an allocation plan,
and the selected allocation plan gives the highest expected
social surplus among all possible allocation plans.

Lastly, we discuss the computational burden. The VCG
protocol needs to solve a combinatorial optimization prob-
lem in calculating an allocation and a payment. Many win-
ner determination algorithms have been proposed [2, 12]. In
our proposed protocol, the computation cost is more serious
because a combination of allocations is examined to obtain
an optimal transition rule, although dynamic programming

mitigates this problem. Developing an efficient way of find-
ing an allocation plan is part of our future work.

An efficient way of finding an allocation plan might in-
clude an approximation method. However, comparing the
result obtained by approximation methods to the optimal
case is useful for evaluating how effective these approxima-
tion methods are. Therefore, we believe that this paper
contributes to the field of auctions by setting a reference
point for auctions in dynamic environments.

6. DISCUSSION
Dynamic games with incomplete information have been

studied in game theory [10]. In this paper, we focused on
the effect of re-allocation in the context of an auction. One
way of attaining re-allocation is resale. In the economic
literature, the effect of resale opportunities in auctions has
been discussed [3]. Resale may improve inefficiency in some
cases.

Milgrom, however, pointed out that there exists no mech-
anism that can reliably untangle an initial misallocation in
any two-sided negotiation [8]. That is, at the point of resale,
the seller has an incentive to exaggerate its value and the
buyer has an incentive to pretend its value is lower. These
misrepresentations can delay or scuttle a trade.

Moreover, in combinatorial cases, if we consider dynamic
environments and the fact that a bidder’s utility depends on
the environmental conditions when the allocated goods are
actually used, the loser can strategically manipulate an allo-
cation, which results in the failure of an efficient allocation,
as shown in Example 2.

Therefore, we examine a way to induce bidders to tell their
true valuations. To do so, our model explicitly incorporates
the cost due to re-allocation and the proposed auction pro-
tocol considers the disutility caused by the re-allocation as
well as the valuations of goods.

Sandholm and Lesser proposed leveled commitment con-
tracts [13]. Although a contract may be profitable to an
agent when viewed ex ante, it may not be profitable when
viewed after some future events have occurred, i.e., it comes
to be viewed ex post. Leveled commitment contracts are
a method of taking advantage of the possibilities provided
by probabilistically known future events. Compared to the
leveled commitment contacts method, Sandholm and Lesser
pointed out the problems of contingency contracts; there
is a potential combinatorial explosion of goods to be condi-
tioned on and it is often impossible to enumerate all possible
relevant future events in advance.

Our primary concern is to examine whether an auctioneer
can induce a bidder’s truth telling in the case where re-
allocation is possible. In addition, we introduce the dynamic
programming method of constructing an allocation plan to
reduce computational cost.

Larson and Sandholm [6] studied deliberation and bidding
strategies of bidders with unlimited but costly computation
who are participating in auctions. A bidder does not a pri-
ori know his or her valuations for auctioned goods. Here,
strategic computation becomes a problem. In their problem
setting, a signal, i.e., a factor that determines bidders’ valu-
ations, is not shared, while in our setting, a signal, e.g., the
result of weather, is shared among bidders. Therefore, we
can attain an ex ante efficient allocation.

Ito et. al. [4] dealt with cases where the valuations of
goods depend on their qualities and experts can learn these
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qualities but amateurs have no idea about the qualities.
They have proposed a series of protocols that can elicit ex-
perts’ information about the quality of the goods and attain
an efficient allocation. In their problem setting, an ama-
teur’s valuation of the auctioned good is determined if the
quality of the good is revealed. This rather resembles the
problem setting in this paper. However, this paper assumes
that nobody knows the value of a random variable in ad-
vance, which is a big difference between their studies and
this paper from the viewpoint of mechanism design.

Conditional planning conditioned on environmental change
and re-planning caused by environment changes have been
also studied in planning research [11]. These research ef-
forts have not dealt with an agent incentive problem, and
thus this paper is different from these planning studies.

This paper assumes that probabilistic distribution of ran-
dom variables is common knowledge. Consider the weather.
It is easy to obtain weather information from a weather re-
port and it is not likely that one bidder is considerably better
informed of the weather forecast than the other bidders. In
some cases, an assumption of common knowledge could be
too restrictive and we may have to deal with cases in which
bidders are differently informed. Extending the proposed
protocol and dealing with such cases are our future work.

7. CONCLUSIONS
This paper proposed an auction protocol in dynamic en-

vironments. A bidder’s valuation of goods depends on envi-
ronmental conditions when the allocated goods are actually
used. If the environmental conditions are represented by
some random variables and the probabilistic distributions
of the values of these random variables are given, a solution
is to ask bidders to declare their expected valuations under
the probabilistic distribution and find an efficient allocation
of the goods. Flexibly re-allocating goods whenever a value
of random variables turns out may increase social surplus;
however, if we introduce re-allocation in a simple manner,
the existence of an equilibrium is no longer guaranteed. This
would cause bidders to worry about what bids to submit and
it would make it difficult for a system designer to predict
what outcome is obtained.

To solve this problem, this paper proposed an auction
protocol that asks bidders to declare disutility caused by re-
allocation as well as valuations of goods in each case and
makes an allocation plan that specifies an initial plan and
transition rules. The proposed protocol can find an alloca-
tion that maximizes the expected social surplus including
the disutility caused by re-allocation and benefits obtained
from the allocated goods in a final allocation. In this pa-
per, we (1) proposed an auction framework that accounts
for re-allocation in dynamic environments, (2) introduced a
new auction protocol that can induce bidders to tell their
true valuation and disutility caused by re-allocation by ex-
tending the well-established Vickrey-Clarke-Groves (VCG)
protocol, and (3) proved that the protocol can obtain an ex
ante Pareto efficient allocation.

If environments become more complicated and more ran-
dom variables are required to represent the environment,
the problem of computational cost again becomes serious.
Our future work includes conducting a complexity analysis
and/or a computer simulation to assess the performance of
the proposed protocol in terms of the size of problems.

Moreover, we would need to find a way that first makes an

abstract allocation plan by using the proposed protocol and
then makes a detailed plan in a reactive manner. Examining
how it would affect a bidder’s strategy and social surplus is
our future work.
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