
Matchmaking Multi-Party Interactions Using Historical
Performance Data

David Lambert and David Robertson
School of Informatics

University of Edinburgh
Edinburgh, Scotland

d.j.lambert@sms.ed.ac.uk, dr@inf.ed.ac.uk

ABSTRACT
Matchmaking will be an important component of future agent and
agent-like systems, such as the semantic web. Most research on
matchmaking has been directed toward sophisticated matching of
client requirements with provider capabilities based on capability
descriptions. This is a vital mechanism for conducting matchmak-
ing, but ignores the likelihood that in practice, and for various rea-
sons, capability descriptions will not fully characterise the interac-
tion behaviour of agents. This problem is further compounded in
systems with many interacting agents, all of which have idiosyn-
crasies. As in everyday life, some groupings of agents will be more
effective than others, regardless of their individual competencies or
suitability to the task. The quality of the interaction between agents
is a crucial factor. Using the incidence calculus and the lightwei-
ght coördination calculus, we show that we can easily implement
matchmaking agents that will learn from experience how to select
those groups known to inter-operate well for particular tasks.

General Terms
Algorithms, Reliability

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Correlation and regression anal-
ysis; I.2.11 [Distributed Artificial Intelligence]: Coherence and
coordination; I.2.11 [Distributed Artificial Intelligence]: Multia-
gent systems

Keywords
incidence calculus, service composition

1. INTRODUCTION
The issue of matchmaking is key to the deployment of many

types of multi-agent systems [1]. It first appeared as a research
problem at the dawn of agent systems [2], and has resurfaced as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

a fundamental problem in newer areas like the semantic web and
Grid computing.

Most of the previous research into agents has addressed interac-
tions with only two-parties, service -requester and -provider. This
bias continues on the semantic web. OWL-S [3], for instance, imag-
ines that any interaction will be two-party. One can imagine in-
teractions that are inherently multi-agent and which would thus re-
quire any matchmaker to find an appropriate set of agents. Indeed,
recent developments in web services choreography [4] reveal the
growing realisation that many real-world processes require multi-
ple participants.

The technique presented here developed out of work on the light-
weight coördination calculus (LCC) [5], a language for specifying
and executing multi-party dialogues, where we found it necessary
to provide a middle-agent to supply collaborators for the fulfilment
of protocols.

We do not commit to any particular deployment environment.
While we have implemented it for LCC, we believe the approach
would have value any setting where service capabilities are spec-
ified in a flexible, semantic encoding. Consequently, we see ap-
plications not only in multi-agent systems, but on the Grid [6] and
semantic web, and in work-flow and peer-to-peer systems.

The remainder of this paper is organised thus: We first exam-
ine the problem in greater detail in section 2, before introducing
the two key ideas we use to tackle it—the lightweight coördination
calculus and the incidence calculus—in section 3. Section 4 shows
how we use the incidence calculus to select an appropriate team of
agents for a task. Section 5 surveys related work, and section 6
concludes.

2. MOTIVATION
The motivation for matchmaking is clear: in any environment

with large numbers of agents, the only feasible mechanism for con-
necting those requesting a service with those willing to provide it is
via middle agents [1, 7]. However, most previous work has exam-
ined only the case of selecting a single agent (or in some cases, a
range of agents, leaving the final selection of the agent to the client)
for a single role. To our knowledge, [8] is the only exception.

While current interactions are primarily client-server, we can
imagine a future where matchmade agent interactions are more dis-
tributed, involve many agents, and operate in a more peer-to-peer
manner. It can be expected that these newer forms of dialogue will
make even greater use of, and demands upon, matchmaking ser-
vices than do current modes of employment.

611

2.1 Capability description is not enough
In [8] the assumption is that agent implementations would vary

in their intrinsic ability to complete a task, even if the task were
completely specified and accurately advertised. We adopt this view,
and extend it: we think that, as well as the agent’s specific task-
specific talent, there is also reason to believe that issues of onto-
logical mismatch and other ‘social’ effects will reduce the efficacy
of purely logical agent capability descriptions. Regardless of how
carefully service providers specify the behaviour of their systems,
there will always remain some level of ‘semantic slack’ such that
matchmaking based on purely semantic service description can be
improved by statistical or other learning techniques. In these cir-
cumstances, an approach like ours would be beneficial. Below, we
examine several reasons for this encoding gap. Note that only the
first is a technical problem: in the others, non-technical reasons pre-
vent additional semantic information being embedded in profiles.

• The capability description language lacks expressiveness.
This does not imply a criticism of the language: it is unrea-
sonable to expect any general purpose capability description
language to allow the communication of arbitrarily complex
constraints in every imaginable domain. However, it would
frequently be possible for matchmakers, especially domain-
specific ones, to discover such constraints.

• User ignorance of ability of the language to express a con-
straint, or of the effect of declaring the constraint. As
constraints become more complex, and services more com-
mon, it becomes increasingly likely that a user would be un-
aware of her ability to aid the matchmaker.

• User expectation that the information will not be used
by clients or matchmakers. Service providers may refrain
from supplying this kind of data until they observe a signifi-
cant portion of the agent ecosystem using it.

• Not wanting to express particular information. In some
instances, there is an incentive for service providers to keep
the description of their services as general as possible, though
not to the extent of attracting clients they have no possibility
of pleasing. Alternatively, the provider may not wish to be
terribly honest or open about her service’s foibles.

• The inter-relationship is not known to the provider. Some
of the dependencies may be subtle, even if they have a large
effect.

• Comprehensive constraints too expensive to generate or
use. Even if none of the above hold, it would often simply
not be worthwhile for the service provider to analyse and
encode the information. Further, in the case of web, semantic
web and Grid services, it is reasonable to expect that users
are discouraged by standards flux from investing much time
in this endeavour.

But what underlying causes are there for these problems that are
so difficult to encode? Below are some reasons why such issues
might arise:

• ‘Social’ reasons. For instance, different social communities,
or communities of practice, may each cluster around partic-
ular service providers for no a priori reason, yet this would
result in improved performance on some tasks if agents were
selected from the same social pool.

• Inter-business partnerships. An airline may have a special
deal with other airlines or car-hire companies.

• Components designed by same group. Organisations that
seem to have nothing in common may well be using software
created by a single group. Such software would be more
likely to inter-operate well than software from others.

• Different groups of engineers held differing views of a
problem, even though the specification is the same.Thus,
the implementations are subtly incompatible, or at least do
not function together seamlessly.

• Particular resources or constraints shared between provi-
ders. In a Grid environment, a computation server and a file
store might share a very high bandwidth connection, lead-
ing to improved service. This particular case underlies our
example scenario, detailed in figure 3.

3. TECHNICAL PRELIMINARIES
Our matchmaker relies on two techniques developed previously:

the lightweight coördination calculus, and the incidence calculus.
We briefly explain these here.

3.1 Lightweight coördination calculus
The lightweight coördination calculus (LCC) [5] is a method for

specifying agent interaction protocols. A generalisation of the Elec-
tronic Institutions [9] model, it is based on process calculi, specif-
ically CCS [10]. It provides a simple message passing framework
(denoted ⇒ for sending, and ⇐ for receiving) with the operators
then (sequence), or (choice), par (parallel execution), and ←

(if). The grammar is shown in figure 1. An LCC protocol frame-
work is interpreted in a logic-programming style, using unification
of variables which are gradually instantiated as the conversation
progresses. Along with this dialogue framework, which specifies
the various messages that can be transmitted and when, a proto-
col carries ‘common knowledge’ (data, specific to a conversation,
that every participant in the dialogue can access and modify) and
clauses which indicate to the agents where they have reached in the
dialogue.

This style of protocol definition is flexible, and allows us to eas-
ily capture, and perform matchmaking for, multi-agent interactions,
the primary contribution of this paper. Conveniently, LCC allows us
to use the same language to express various degrees of decentrali-
sation. For example, we can convert a protocol from one in which
the middle-agent functions as a broker (routing all communication
through itself, delivering only the final result to the client), to a
matchmaker (once the middle-agent has identified agents for the
required roles, it informs the client of the decisions and plays no
further part in the protocol’s execution).

The protocols can be created dynamically, but for this paper we
choose to situate the matchmaker system in an environment where
a library of standard protocols exists. Each protocol functions as a
pre-defined plan. An agent, wishing to accomplish some task (such
as creating an auction, or calling a meeting, finding participants,
and arranging a mutually suitable time) will select a protocol from
a library, and ask its matchmaker to suggest service-provider agents
for each role. In some sense, each role is equivalent to an atomic
service capability, although a role carries also the responsibility of
participating in a specific pattern of on-going conversation.

612

Figure 1: Grammar for the LCC dialogue framework

Framework ::= Clause,Clause+
Clause ::= Agent :: De f
Agent ::= a(Role, Id)

De f ::= Agent | Message | De f then De f |
De f or De f | De f par De f

Message ::= M ⇒ Agent | M ⇒ Agent ←C |

M ⇐ Agent |C ← M ⇐ Agent
C ::= Term |C∧C |C∨C

Role ::= Term
Id ::= Term
M ::= Term

Figure 2: Incidence calculus rules

i(>) = allworlds i(⊥) = {}

i(¬α) = i(>)\i(α)
i(α∧β) = i(α)∩ i(β) i(α∨β) = i(α)∪ i(β)
i(α → β) = i(¬α∨β) = (i(>)\i(α))∪ i(β)

Probabilities are derived from incidences thus:

p(φ) = |i(φ)|
|i(>)|

p(φ|ψ) = |i(φ∧ψ)|
|i(ψ)|

3.2 Incidence calculus
The incidence calculus [11] is a truth-functional probabilistic

calculus in which the probabilities of composite formulae are com-
puted from intersections and unions of the sets of worlds for which
the atomic formulae hold true, rather than from the numerical val-
ues of the probabilities of their components. The probabilities are
then derived from these incidences. The rules are given in fig-
ure 2. The key feature of the calculus is that, in general, p(φ∧ψ) 6=
p(φ) · p(ψ). This raises the fidelity of derived probabilities in com-
parison to other probabilistic logics. The conditional probabilities
of incidences drive our matchmaking, as we see in the next section.

As an illustration, consider the following set of incidences de-
scribing the weather in a given week:

i(>) = {mon,tue,wed,thu, f ri,sat,sun}
i(rain) = {mon,wed,thu, f ri,sat,sun}
i(wind) = {mon,thu, f ri,sun}
i(sun) = {tue,wed,sat,sun}
i(snow) = {sat}
i(rain∧ sun) = i(rain)∩ i(sun) = {wed,sat,sun}
i(¬rain∨ snow) = i(¬rain)∪ i(snow) = {tue,sat}

To illustrate the computation of probabilities of compound for-
mulae from the incidences, note that the probabilities of wind and
sun are both 4

7 , but their conjunctions with rain (probability 6
7) are

different, at 4
7 and 2

7 respectively.
The incidence calculus is not frequently applied, since one re-

quires exact incidence records to use it. For the application at
hand, however, we have detailed information about each match-
maker invocation, and the calculus provides a simple, intuitive way
of dealing with the problem. More sophisticated mechanisms ex-
ist in the calculus for dealing with situations where knowledge is
incomplete, though we do not exploit them in this paper.

4. THE LCC MATCHMAKER
In using LCC for matchmaking, we must ask how we arrive at

a protocol. A client agent has a task or goal it wishes to achieve.
Using either a pre-agreed lookup mechanism, or by reasoning about
the protocols available, the agent will select a protocol: more than
one might be suitable. This done, it must recruit a matchmaker to
propose other agents to fill the various roles in the protocol. These
other agents we term ‘collaborators’ and denote col(Role,AgentId).

The success of a protocol and the particular team of collabora-
tors is decided by the client: on completion or failure of a protocol,
the client informs the matchmaker whether the outcome was satis-
factory to the client.

Each completed brokering session is recorded as an incident,
represented as an integer. Our propositions are ground predicate
calculus expressions, e.g. col(astronomy database,greenwich), or
outcome(good). Each proposition has an associated list of worlds
(incidents) for which it is true. Initially, the incident database is
empty, and the broker selects agents at random. As more data is
collected, a threshold is reached, at which point the matchmaker
begins to use the probabilities. For our example scenario (figure 3),
the database might look like this:

i(protocol(BLACK HOLE SEARCH), [1,2, . . . ,25])
i(outcome(good), [1,2,3,4,6,10,11,12,16,22,23,24])
i(col(astronomy database,greenwich), [18,19,20,21,22,23,24,25])
i(col(astronomy database,herschel), [10,11,12,13,14,15,16,17])
i(col(astronomy database,keck), [1,2,3,4,5,6,7,8,9])
i(col(black hole f inder,barcelona sc), [8,9,16,17,24])
i(col(black hole f inder,ucsd sdsc), [1,2,3,4,10,11,12,13,18,19,20])
i(col(black hole f inder,uk hpcx), [5,6,7,14,15,21,22,23])
i(col(visualizer,ncsa), [1,2, . . . ,25])

For instance, the Barcelona supercomputer is rarely successful:

i(col(black hole f inder,barcelona sc)∧outcome(good)) = {16}

not because it is a worse supercomputer than UCSD-SDSC or UK-
HPCX, but because its network connections to the databases re-
quired for this task present a bottleneck, reducing client satisfac-
tion.

4.1 Algorithms
We have developed three algorithms for choosing agents, though

others are possible. The first, called MATCHMAKE-JOINT, fills all
the vacancies in a protocol at the outset. It works by computing
the joint distribution for all possible permutations of agents in their
respective roles, selecting the grouping with the largest probability
of a good outcome. More concretely, MATCHMAKE-JOINT oper-
ates thus: extract the roles required in the protocol P ; compute the
joint distribution for all agent permutations for these roles; select
the agent set with greatest likelihood of success.

For MATCHMAKE-JOINT, extendcollaborators for our Grid ex-
ample looks like this:

extendcollaborators(P ,C ,R) =

col(astronomy database,AD)∧
col(black hole f inder,BHS)∧
col(visualizer,V)}

where AD, BHS and V are chosen to maximise:

P

col(astronomy database,AD)∧
col(black hole f inder,BHS)∧
col(visualizer,V)∧outcome(good)
| protocol(BLACK HOLE SEARCH)

The second approach, MATCHMAKE-INCREMENTAL, is to select
only one agent at a time, as required by the executing protocol. This
is done by the matchmaker on demand. The various agents already
engaged in the protocol, on needing to send a message to an as

613

Figure 3: Astronomy workflow scenario with LCC dialogue framework
We take a hypothetical Grid workflow for our example scenario. We name this protocol BLACK HOLE SEARCH. Astrid, our astronomer, is
attempting to find and visualise a suspected black hole in a region of space around Cygnus-X1. The voluminous data about this segment of
space is kept in the very large file cygnus x1, which is stored at numerous repositories, all of which can fill the role astronomy database. She
uses a computationally intensive service called black hole finder to actually determine if there is a black hole present. The black hole finder,
if successful, will send the data (now refined and significantly smaller) to a visualisation service, which will pass the final image to Astrid. The
variables AD, BHF , and V represent the systems providing the services (astronomy database, black hole finder, and visualizer respectively).
Each of these will be selected by the matchmaker when the protocol is executed.
The conceit on which this example hangs is that network bandwidth between various pairs of black hole finder and astronomy database will
be different, largely unknown to the persons providing the individual services, and hence not declared to the matchmaker. Since the file
cygnus x1 is particularly large, this network bandwidth is likely to be a strong determiner of the satisfaction of Astrid.

a(astronomer(File),Astronomer) :: search(File) ⇒ a(black hole f inder,BHF) then
(

success ⇐ a(black hole f inder,BHF) then
receive visualisation(Thing,V) ← visualising(Thing) ⇐ a(visualizer,V)

)

or
f ailed ⇐ a(black hole f inder,BHF)

a(black hole f inder,BHF) :: search(File) ⇐ a(astronomer(File),Astronomer) then
grid f t p get(File) ⇒ a(astronomy database,AD) then

grid f t p sent(File) ⇐ a(astronomy database,AD) then
success ⇒ a(astronomer,Astronomer)

← black hole present(File,Black hole) then
visualize(Black hole,Astronomer) ⇒ a(visualizer,V)

or
f ailed ⇒ a(astronomer(File),Astronomer)

a(astronomy database,AD) :: grid f t p get(File) ⇐ a(black hole f inder,BHF)
grid f t p sent(File) ⇒ a(black hole f inder,BHF) ← grid f t p completed(File,AD)

a(visualizer,V) :: visualize(Thing,Client) ⇐ a(black hole f inder,Requester) then
visualising(Thing) ⇒ a(astronomer(Filename),Client) ← serve visualisation(Thing,Client)

Note that LCC is being used only to coördinate the interaction: when domain-specific protocols, such as Grid FTP, are available and more
appropriate, they are used to perform the heavy lifting.

614

Figure 4: Rewrite rules governing matchmaking for an LCC protocol
These rewrite rules constitute an extension to those described in [5]. A rewrite rule

α Mi,Mo,P ,O,C ,C ′

−−−−−−−−−→ β

holds if α can be rewritten to β where: Mi are the available messages before rewriting; Mo are the messages available after the
rewrite; P is the protocol; O is the message produced by the rewrite (if any); C is set of collaborators before the rewrite; and
C ′ (if present) is the—possibly extended—set of collaborators after the rewrite. C is a set of pairs of role and agent name, e.g.
{col(astronomy database,greenwich),col(black hole f inder,ucsd sdsc)}

A :: B
Mi,Mo,P ,C ,O
−−−−−−−−→ A :: E if B

Mi,Mo,P ,C ,O
−−−−−−−−→ E

A1 or A2
Mi,Mo,P ,C ,O
−−−−−−−−→ E if ¬closed(A2)∧A1

Mi,Mo,P ,C ,O
−−−−−−−−→ E

A1 or A2
Mi,Mo,P ,C ,O
−−−−−−−−→ E if ¬closed(A1)∧A2

Mi,Mo,P ,C ,O
−−−−−−−−→ E

A1 then A2
Mi,Mo,P ,C ,O
−−−−−−−−→ E then A2 if A1

Mi,Mo,P ,C ,O
−−−−−−−−→ E

A1 then A2
Mi,Mo,P ,C ,O
−−−−−−−−→ A1 then E if closed(A1)∧ collaborators(A1) = C ′ ∧A2

Mi,Mo,P ,C ′
,O

−−−−−−−−→ E

A1 par A2
Mi,Mo,P ,C ,O1∪O2
−−−−−−−−−−−→ E1 par E2 if A1

Mi,Mn,P ,C ,O1
−−−−−−−−→ E1 ∧A2

Mn,Mo,P ,C ,O2
−−−−−−−−−→ E2

C ← M ⇐ A
Mi,Mi\{M⇐A},P ,C , /0
−−−−−−−−−−−−−→ c(M ⇐ A,C) if (M ⇐ A) ∈ Mi ∧ satis f ied(C)

M ⇒ A ←C
Mi,Mi,P ,C ,C ′

,{M⇒A}
−−−−−−−−−−−−−→ c(M ⇒ A,C ′) if satis f ied(C)∧C ′ = extendcollaborators(P ,C ,role(A))

null ←C
Mi,Mi,P ,C , /0
−−−−−−−→ c(null,C) if satis f ied(C)

a(R, I) ←C
Mi,Mo,P ,C , /0
−−−−−−−→ a(R, I) :: B if clause(P ,C,a(R, I) :: B)∧ satis f ied(C)

collaborators(c(Term,C)) = C

collaborators(A1 then A2) = collaborators(A1)∪ collaborators(A2)
collaborators(A :: B) = collaborators(A)∪ collaborators(B)

We can capture our various algorithms for matchmaking using the same rewrite rules: the issue is when the set of collaborators is actually
decided. extendcollaborators determines the selection of a new agent: it is the matchmaking function. It varies slightly, depending on the
exact matchmaking algorithm in use. By using the same rewrite rules regardless of the matchmaking policy, we make it easier to re-use
model-checking [12] and other tools on the protocols.

yet unidentified agent, will ask the broker to find an agent to fulfil
the role at hand. The process of MATCHMAKE-INCREMENTAL is:
compute probability of successful outcome for each agent available
for role R given C , the collaborators chosen so far; select the most
successful agent.

Consider the operation of MATCHMAKE-INCREMENTAL in the
context of our Grid workflow scenario. Initially, Astrid contacts the
matchmaker to request an agent for the black hole finder role. The
BHF agent’s first action is to request the data file from an astron-
omy database. It therefore returns the protocol to the matchmaker,
which selects the astronomy database most likely to provide a suc-
cessful outcome, given that the black hole finder is already instan-
tiated to BHF . That is, we select AD to maximise

P

col(astronomy database,AD)∧outcome(good)
| protocol(BLACK HOLE SEARCH)∧

col(black hole finder,BHF))

The final method, MATCHMAKE-TREE is a mix of the first two.
Like MATCHMAKE-JOINT, it runs only once, before the protocol
executes. Like MATCHMAKE-INCREMENTAL, it selects only one
agent at a time (that is, when a message is sent). This seeming
paradox is resolved by considering that MATCHMAKE-TREE walks
through the protocol, exploring each possible branch, and select-
ing an agent when necessary in the same manner as MATCHMAKE-
INCREMENTAL. This tree of possible choices can be stored with
the protocol that is sent to the client, and consulted as required.

All three algorithms support the pre-selection of agents for par-
ticular roles. An example of this might be a client booking a holi-
day: if it were accumulating frequent flyer miles with a particular
airline, it could specify that airline be used, and the matchmaker

would work with this choice. This mechanism also allows us to di-
rect the matchmaker’s search: selecting a particular agent suggests
that the client wants similar agents, from the same social pool, for
the other roles. For instance, in a peer-to-peer search, by selecting
an agent you suspect will be helpful in a particular enquiry, the bro-
ker can find further agents that are closely ‘socially’ related to that
first one.

4.2 Discussion
Having described the three algorithms, we must decided which

to use, and when. MATCHMAKE-JOINT is preferable when one
wishes to avoid multiple calls to the matchmaker, either because
of privacy concerns, or for reasons of communication efficiency.
MATCHMAKE-INCREMENTAL and MATCHMAKE-TREE would be
more suitable in protocols where many roles go unfilled: total work
on the broker would be reduced, and the results would probably be
at least as good as for brokering all agents. Such a protocol, in
which many roles are never used, could be viewed as a generalisa-
tion of a class of more specific protocols: it is worthwhile asking
if it is better to have many very specialised protocols (which might
not be used often and hence leave the matchmaker short of data), or
fewer, more general-purpose protocols that offer plentiful, but less
specific, information on how to select agents.

One cannot determine in general which of the algorithms will
provide the optimal selection of agents. MATCHMAKE-JOINT ap-
pears to provide the ‘optimal’ solution, but there are some issues
with it. The most immediate is that, unlike MATCHMAKE-INCRE-
MENTAL and MATCHMAKE-TREE, agents can be unfairly black-
balled for apparently under-performing in unsuccessful protocols
in which they never actively participated. Secondly, we hope to

615

Figure 5: Agent selection improves as matchmaking database
grows

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5 0

 50

 100

 150

 200

 0

 50

 100

 150

 200

Successful Outcomes

Incidence calculus matchmaking
Random matchmaking

File size

Invocations

Successful Outcomes

add backtracking to LCC, such that we might undo certain agent
selections: this is more difficult if all roles are filled at the outset.

4.3 Results
The broker is currently implemented in Prolog. Performance,

even in a naı̈ve implementation, is adequate for tens of thousands of
records, with response times well within the time frame that would
be expected on the Internet.

We have so far executed simulations using agents constructed
with plausible inter-agent relationships. A typical result (using
MATCHMAKE-INCREMENTAL in the astronomy scenario) is shown
in figure 5. We see that, as the file size increases, network band-
width between nodes becomes more important in achieving a suc-
cessful outcome. The incidence calculus matchmaker can detect
and partially correct for this, while random matchmaking degrades
much more quickly. This gives an impression of the benefit that
can be expected, although actual performance will be sensitive to
the scenario and the agents involved.

4.4 Inherent difficulties in the problem
We note here two significant problems that seem to be inescap-

able issues intrinsic to the problem: trusting clients to report hon-
estly and in a socially ‘normal’ manner the outcome of protocol ex-
ecutions; and the problems of locating mutually co-operative agents
in a large society.

Since individual client agents are responsible for the assigning
of success metrics to matchmakings, there is scope for agents with
unusual criteria, or downright malicious intentions, to contaminate
the database.

Matchmaking is a social activity: clients wish to communicate
with service providers that, by definition, they are unaware of. It is
unclear how this aspect of agency will develop, and it will depend
in many respects on companies’ economic decisions, and the be-
haviour of individuals as to how many agents are deployed. There
is a spectrum of possibilities, ranging from areas that are dominated
by their 500lb gorillas (Google, Amazon, and E-Bay) through those
that have dozens or hundreds of providers (insurers), to millions
(personal calendar agents). We suppose that there will be a mix,
and would presume that, for most purposes where one would use a
matchmaker, we would be dealing with roles that supported num-
bers toward the lower end of the scale. Further, we must ask how

many service types will be provided. Again, in each domain, we
might have a simple, monolithic suck-it-and-see interface (Google
again), or an interface with such fine granularity that few engineers
ever fully understand or exploit it. Here, it is perhaps harder to
predict the outcome.

While our technique handles large numbers of incidences, it does
not scale for very large numbers of agents or roles. For any proto-
col with a set of roles R, and with each role having |providers(ri)|
providers, the number of ways of choosing a team is

∏
ri∈R

|providers(ri)|

This is O(mn), making it an insuperable problem when consider-
ing protocols with large numbers of roles, or where each role has a
large number of possible providers. This is not a specific criticism
of our approach: no matchmaking system could possibly hope to
examine all the various permutations of agents, although machine
learning techniques might be helpful in finding non-obvious group-
ings of agents that simply could not be found by trial-and-error.
How much of an issue this actually becomes in any particular do-
main will be heavily influenced by the outcomes to the social and
economic issues discussed above.

5. RELATED WORK
The matchmaking/brokering problem arises in agent systems, se-

mantic web, and grid environments. The matchmaking problem is
discussed in [1, 7, 13]. We consciously ignored methods like those
found in [14], though they would be crucial in any real-world de-
ployment: we believe our technique would usefully augment such
systems, and we intend to fuse the two approaches.

Our problem conception—matchmaking multiple roles for the
same dialogue—is anticipated by the SELF-SERV system [15], al-
though we believe our approach is novel in detecting emergent
properties that are not known to the operator, and is more transpar-
ent, requiring less intervention (i.e. specification of service param-
eters) from the client. Our use of performance histories is predated
by a similar approach found in [8], although that only examines the
case of two-party interactions.

6. CONCLUSION AND FUTURE WORK
We have shown that, in plausible scenarios, the successful com-

pletion of a task may depend not only on the advertised abilities of
agents but on their collective suitability and inter-operability. We
presented a simple, but effective, technique for detecting success-
ful groupings of agents. We highlighted the intractability of the
problem in environments with large numbers of available provider
agents and/or roles.

Despite talk of disintermediation and peer-to-peer systems, multi-
agent scenarios that are amenable to matchmaking seem sparse.
Typically, multi-party scenarios, where they do exist, have a client,
several providers, and a central service which does the matchmak-
ing itself—one common example is a travel agent service which
arranges the various flight, car-hire, hotel bookings etc, without
consulting a general purpose matchmaker. This paucity may be
due to the emergence only recently of formalisms that can express
such interactions easily, or it may reflect a deeper problem with
conceiving problems as distributed sense as we adopted here. A
standard library of such interactions would be helpful to research
in the field.

Currently, only assignments of agents to roles are recorded. The
utility of recording other events in the execution of the protocol
will be investigated. For instance, ‘partially satisfactory’ protocol

616

executions could be interrogated to discover which agents are per-
forming well, and which are proving to be a bottle-neck. Providing
richer feedback from the client on its satisfaction with the outcome
would be useful in itself. This could be extended to treating match-
making as an interactive process: an agent requesting a service to
satisfy a task might have various information that, unbeknownst to
it, could aid the matchmaking in ascertaining the best protocol and
collaborators to use. We also ignore issues of ontological compat-
ibility and alignment. More sophisticated techniques for inferring
compatibility will be examined, including those such as [14].

Previous work on LCC has examined the possibility of back-
tracking in protocols, in this case, allowing the broker to re-choose
providers if an interaction failed. This would be easy for interac-
tions, such as information gathering, where no commitments are
made, but would require careful consideration of actions and state
in, for example, a purchasing environment.

We think the intra-agent dependencies discussed here will be fre-
quently encountered, but we have thus far only results for simulated
systems. Current work is examining the applicability of the tech-
nique in the bioinformatics domain, using the same web services
used by practising bioinformaticians.

The handling of older incidences is problematic: weighting more
recent ones is not straight-forward in the incidence calculus. Issues
of stability of solution, and settling on poor local maximums, re-
main unresolved. Although the incidence calculus provides a con-
venient framework for this model, it may not provide us with an
optimal computational process, and the use of machine learning
techniques may resolve some of these problems.

7. ACKNOWLEDGEMENTS
This research was sponsored by the Advanced Knowledge Tech-

nologies project, a six-year collaboration between groups at the
universities of Aberdeen, Edinburgh, Sheffield, Southampton and
the Open University. AKT is funded by the United Kingdom’s En-
gineering and Physical Sciences Research Council.

8. REFERENCES
[1] Decker, K., Sycara, K., Williamson, M.: Middle-Agents for

the Internet. In: Proceedings of the 15th International Joint
Conference on Artificial Intelligence, Nagoya, Japan (1997)

[2] R. G. Smith: The contract net protocol: high-level
communication and control in a distributed problem solver.
(1988) 357–366

[3] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott,
D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B.,
Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S 1.1
(2004)

[4] Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web
Services Choreography Description Language Version 1.0
(2004) W3C Working Draft 12 October 2004.

[5] Robertson, D.: A lightweight method for coordination of
agent oriented web services. In: Proceedings of the 2004
AAAI Spring Symposium on Semantic Web Services,
California, USA (2004)

[6] Blythe, J., Deelman, E., Gil, Y.: Planning for workflow
construction and maintenance on the Grid. In: ICAPS03
workshop. (2003)

[7] Klusch, M., Sycara, K.: Brokering and matchmaking for
coordination of agent societies: a survey. In: Coordination of
Internet agents: models, technologies, and applications.
Springer-Verlag (2001) 197–224

[8] Zhang, Z., Zhang, C.: An improvement to matchmaking
algorithms for middle agents. In: Proceedings of the first
international joint conference on Autonomous agents and
multiagent systems, ACM Press (2002) 1340–1347

[9] Esteva, M., Rodriguez, J., Arcos, J., Sierra, C., Garcia, P.:
Formalising Agent Mediated Electronic Institutions (2000)

[10] Milner, R.: Communication and Concurrency. Prentice Hall
(1989)

[11] Bundy, A.: Incidence calculus: A mechanism for
probabilistic reasoning. Journal of Automated Reasoning 1
(1985) 263–284

[12] Walton, C.: Model Checking Multi-Agent Web Services. In:
Proceedings of the 2004 AAAI Spring Symposium on
Semantic Web Services. (2004)

[13] Wong, H., Sycara, K.: A Taxonomy of Middle-agents for the
Internet. (2000)

[14] Paulucci, M., Kawamura, T., Payne, T.R., Sycara, K.:
Semantic Matching of Web Services Capabilities. In: The
Semantic Web — ISWC 2002: Proceedings. (2002)

[15] Liangzhao Zeng and Boualem Benatallah and Marlon Dumas
and Jayant Kalagnanam and Quan Z. Sheng: Quality driven
web services composition. In: WWW ’03: Proceedings of
the twelfth international conference on World Wide Web,
New York, NY, USA, ACM Press (2003) 411–421

617

