
Personalisation for User Agents

J.J. Cole, M.J. Gray, J.W. Lloyd, and K.S. Ng
Computer Sciences Laboratory

Research School of Information Sciences and Engineering
The Australian National University

{Joshua.Cole, Matt.Gray, John.Lloyd, Kee.Ng}@anu.edu.au

ABSTRACT
This paper is concerned with personalisation of user agents by sym-
bolic, on-line machine learning techniques. The application of
these ideas to an infotainment agent is discussed in detail. Also
experimental results, which indicate that a high level of personali-
sation can be achieved by this approach, are presented.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—induction, knowledge ac-
quisition; I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents

General Terms
Algorithms, Human Factors, Design

Keywords
User agents, symbolic learning, personalisation

1. INTRODUCTION
The goal of the research described in this paper is to apply ma-

chine learning techniques to building user agents that facilitate in-
teraction between a user and the Internet. This paper concentrates
on the topic of personalisation in which the agent adapts its be-
haviour according to the interests and preferences of the user. There
are many practical applications of personalisation that could exploit
the technology presented here.

The research is set in the context of an infotainment agent, which
is a multi-agent system that contains a number of agents with func-
tionalities for recommending movies, TV programs, music and the
like, as well as information agents with functionalities for searching
for information on the Internet. This paper concentrates on the TV
recommender as a typical such agent and shows how a high degree
of personalisation can be achieved by symbolic, on-line machine
learning techniques. The techniques can be ported comparatively
easily to other agents of the system, thus providing a fully person-
alised infotainment system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

There is an extensive literature on recommender systems; typi-
cal recent work is in [1]. Differently to that work and other work
on recommender systems that we are aware of is the emphasis here
on symbolicmachine learning techniques to discover the user’s in-
terests and preferences. Instead of more typical machine learning
techniques such as naive Bayes classifiers that are used in recom-
mender systems, here we employ a decision-list learner that pro-
ducescomprehensiblehypotheses. This has two advantages: the
agent can explain to the user why it has made a recommendation
and users can use the hypothesis language to give explicit rules
about what they want to be recommended. This approach comes
from the field of inductive logic programming ([5], [8]) in which
(first-order) logic is used as a knowledge representation language
and in which there is a strong emphasis on learning comprehensible
hypotheses. Apparently the only area of learning in agents where
symbolic techniques have been employed so far is in relational re-
inforcement learning [3], [4]; thus this paper serves to introduce
symbolic learning techniques to another problem of interest, that
of personalisation of user agents.

Section 2 gives an outline of the infotainment agent, concentrat-
ing on its TV recommender. Section 3 briefly describes the ap-
proach to adaptation taken here. Section 4 describes how the TV
recommender is personalised to the user. Section 5 presents results
of experiments that show the level of personalisation achieved. Sec-
tion 6 contains some conclusions and future directions for research.

2. AN INFOTAINMENT AGENT
In this section, we describe the infotainment agent being devel-

oped, concentrating on the TV recommender.
The infotainment agent is a multi-agent system that combines

a number of related functionalities concerning information search
and entertainment. The agents that comprise the system and that
are at least partly implemented include a TV recommender, a movie
recommender, a music recommender, a news agent, a search agent,
and a diary agent. In addition, there is a coordinator agent that has
the responsibility of handling interactions between the user and the
various agents in the system. The TV recommender has potential
as a personalisation component in a system such as TIVO, for ex-
ample, which supports sophisticated search functions to find TV
programs of interest to a user but never has any actual knowledge
of the interests or preferences of the user. Also the music recom-
mender has potential as a personalisation component forITUNES

and similar software.
A detailed description of the architecture of the TV recommender

is now given. The architecture of the other agents in the infotain-
ment agent is similar. What functionality do we want the TV rec-
ommender to have? When the user first begins to use the TV recom-
mender it clearly has no knowledge of the interests or preferences

603

of the user. The aim is to design an adaptive architecture for the TV
recommender so that within a comparatively short time, perhaps
several weeks, it is able to make helpful recommendations to the
user. Furthermore, it should improve its performance over longer
periods and accurately track changing user interests and prefer-
ences. To get started, the agent presents a short questionnaire to the
user the first time it is used. The purpose of the questionnaire is to
acquire, with as little effort as possible on the part of the user, some
initial idea of the user’s interests and preferences. After that, the
agent collects training examples by observing the user’s activities.
Over time, the agent is expected to be able to make recommenda-
tions for programs in specified time periods (say, ‘next week’ or
‘tonight’) that the user finds helpful.

A detailed description of the most pertinent aspects of the design
of the TV recommender is now given. The approach to knowledge
representation taken here follows that in [2] and [7], to which the
reader is referred for the details. We will need several standard
types:Ω (the type of the booleans),Nat (the type of natural num-
bers),Int (the type of integers), andString (the type of strings).
The intended meaning of the constant> of typeΩ is true and that
of ⊥ is false. AlsoList denotes the (unary) list type constructor.
Thus, ifα is a type, thenList α is the type of lists whose elements
have typeα.

Three domain-specific types,Channel , Genre, and
Classification, will also be needed. Here are the data construc-
tors for these types.

ABC ,Adventure 1 ,Animal Planet ,Arena,

Biography ,BBC World ,Cartoon Network ,

...

Sky News,TCM ,Tech TV ,Travel ,

TV1 ,UK TV ,W ,World Movies : Channel

Action,ActionAdventureGroup,Adult ,Animals,

Animated ,Art ,ArtsMusicLiving ,Auto,

...

Volleyball ,War ,Watersports,Weather ,

Western,WesternGroup,Wrestling : Genre

Y7 ,Y ,G,MA,M14 ,M ,NA : Classification.

There are 49 channels, 115 genres and 7 classifications.
We introduce the following type synonyms.

Date = Day ×Month ×Year

Time = Hour ×Minute

Title = String

Subtitle = String

Duration = Minute

Synopsis = String

Program = Title × Subtitle ×Duration ×
(List Genre)× Classification × Synopsis

Year = Nat

Month = Nat

Day = Nat

Hour = Nat

Minute = Nat

Text = List String .

The agent has access via the Internet to a TV guide (for the next
week or so) for all channels. This database is represented by a
functiontv guide having signature

tv guide : Date × Time × Channel → Program.

Here the date, time and channel information uniquely identifies the
program and the value of the function is (information about) the
program itself. The TV guide consists of (thousands of) facts like
the following one.

((tv guide ((20, 7, 2004), (20, 30),ABC)) =

(“The Bill”, “”, 50, [Drama],M ,

“Sun Hill continues to work at breaking the

people smuggling operation”)).

This fact states that the program on 20 July 2004 at 8.30pm on
channel ABC has title “The Bill”, no subtitle, a duration of 50 min-
utes, genre drama, a classification for mature audiences, and syn-
opsis “Sun Hill continues to work at breaking the people smuggling
operation”.

3. ADAPTATION
The adaptation approach of this paper uses on-line learning,

which works as follows. Suppose we want to learn a classifica-
tion functionf . For this, several ingredients are needed. First, we
need an initial definition off to get started. Second, we need an
hypothesis language which is the space of all possible definitions
thatf could have. Finding a suitable hypothesis language is one of
the key design decisions that has to be made. Finally, we need a
sequence of training examples that the learning algorithm can use
to move from one definition off to another. (See Figure 1.) The
intuitive idea is that the learning algorithm chooses the definition
that most closely agrees with the current set of training examples.
For many agent applications, certainly the ones considered in this
paper, it is important that the hypotheses be comprehensible to the
user of the agent. This is achieved here by the use of logic as the
language in which the hypotheses are expressed. Comprehensibil-
ity ensures that the initial function can be written directly and that
the definition can be inspected at any later stage to help understand
(and perhaps modify) the behaviour of the agent.

A training example is simply a pair consisting of a particular in-
dividual and the class for that individual. Hypothesis languages
are expressed by predicate rewrite systems as discussed in [7]. Es-
sentially, a predicate rewrite system is a grammar for constructing
predicates from more basic ingredients. A predicate rewrite system
for the TV recommender is given below.

The learning system we use is called ALKEMY ([2], [7]) and is
a decision-list learner [9] that works as follows. (See Figure 2.)
Starting from a set of training examples, the learner looks for a
predicate such that the subset of examples whose individuals sat-
isfy that predicate all have the same class (that is, the subset of ex-
amples is pure). The learner constructs a left child containing those
examples. It then continues at the right child with the new set of
examples obtained by removing the examples in the left child from
the original set. The learner terminates when it reaches a right child
with a pure set of examples. (It will also terminate if it is unable
to find a predicate that splits off a pure, non-empty left node.) Leaf
nodes in the list are labelled by the (majority) class of the examples
at that node. However, when classifying new individuals, those that
reach the last node (that is, the bottom right-hand leaf node) are not
given a classification because we do not have enough confidence in

604

t
t

t
t

�
�

�
��

�
�

�
��

�
���*

space of hypotheses

initial

definition of

f : σ → τ

current

definition off@
@

@R

‘movement’ of definition governed

by set of training examples

Figure 1: Adaptation in the space of hypotheses

the prediction. This means that the coverage of the learner is not
100%. If several predicates all produce a pure left node, the learner
selects a predicate that produces the largest number of examples in
that node. As shown in [9], this algorithm behaves well when there
is little noise in the data.

In its on-line version (in contrast to the batch version), a decision-
list learner receives a sequence of training examples over time and
at any time may be asked to predict the class of some unseen indi-
vidual based on its current decision list. Thus it is preferable that
the learner be able to build decision lists incrementally, that is, it
should be able to slightly modify the current decision list based
on the next training example rather than have to rebuild the deci-
sion list from scratch each time. In its deployment in the infotain-
ment agent, it is the on-line version of ALKEMY that we use. Fur-
thermore, since a user’s interests and preferences may change over
time, it is likely that there are times when the current set of training
examples is inconsistent, in the sense that the same individual may
have two or more distinct classes in the training examples. This
means that considerable care needs to be taken in deciding what
should be the current set of training examples. For example, it is
common to insist on some maximum size for the training set and
to drop the oldest training examples as new ones are received to
keep to this limit. We prefer the approach of returning the training
set to consistency, even to the point of asking the user to resolve
conflicts, if necessary. In this approach a training example could
stay in the training set for a very long time and would only drop
out if it contradicted another training example that was somehow
confidently known to be correct. The current implementation uses
a simple algorithm to check for consistency. More sophisticated
schemes are being investigated.

As for all learning tasks, the main problem we face here is to de-
cide which predicates should appear in decision lists, that is, what
should be the hypothesis language. This problem is discussed for
the TV recommender below.

4. PERSONALISATION OF THE TV REC-
OMMENDER

Now we turn to the personalisation aspects of the TV recom-

function Learn(E , �) returns a decision list;

inputs: E , a set of examples;
�, a predicate rewrite system;

L := single node with examplesE ;

S := the set of predicates defined by�;

move to root node ofL;

while set of examplesF at node is not puredo

foreachp ∈ S do

F+ := {(t, v) ∈ F | (p t)};
F− := F \ F+;

if F+ is pure and non-emptythen

create left child with examplesF+;
create right child with examplesF−;
move to right child;

break;

if no split was foundthen break;

label each leaf node ofL by the (majority) class of its examples;

return L;

Figure 2: Decision-list learning algorithm

mender. The key function that needs to be learned is the function
user likes tv program which takes a TV program as input and
returns true if the agent considers the program to be worth recom-
mending to the user; otherwise, it returns false. Thus the belief base
of the TV agent contains the functionuser likes tv program that
has signature

user likes tv program : Program → Ω

and a definition that is a decision list of the form

(user likes tv program x) =

if (p1 x) then >
else if (p2 x) then ⊥

...

else if (pn x) then >
else ⊥,

wherep1, . . . , pn are predicates on programs.
We now discuss the hypothesis language used by ALKEMY that

contains these predicatesp1, . . . , pn and is used to learn the defini-
tion of user likes tv program. The approach to constructing hy-
pothesis languages is by means of predicate rewrite systems. The
basic idea is to construct predicates by composing more basic in-
gredients. Thus we need the composition function

◦ : (a → b) → (b → c) → (a → c)

defined by

((f ◦ g) x) = (g (f x)).

The basic ingredients that are composed are made out of transfor-
mations [7]. The collection of transformations used in the applica-
tion is now presented.

605

We begin with two transformations whose definitions come from
user interests and preferences, and so provide a way of personalis-
ing the hypothesis language used to learn the definition of
user likes tv program. One of these is the functiongenre. To
define this, we introduce the type synonym

Preference = Int ,

where it is understood that only numbers in{−2,−1, 0, 1, 2} are
to be used as constants of typePreference. Then

genre : Genre → Preference

is the function that maps each genre into an integer in the range−2
to 2, depending on how strong a preference the user has for that
particular genre. Here is a typical definition ofgenre.

(genre x) =

if ((= Animals) x) then 1

else if ((= Animated) x) then − 2

...

else if ((= Wrestling) x) then − 2

else 0.

This definition states that the user has a modest liking for animal
programs, a strong dislike of animation programs, and so on. The
information in this definition is obtained by an initial questionnaire
completed by the user and by belief update, if the user later changes
his/her preferences. (Here ‘belief update’ is to be understood in the
sense of updating a logical theory, not in the sense of the term as
used in statistical machine learning.) Our experiments showed that
the learner was able to make good use of the information given by
the functiongenre.

Another transformation obtained from the user is

classification : Classification → Preference

that gives information about the user’s liking for programs having
a certain classification. A typical definition ofclassification could
be as follows.

(classification x) =

if ((= Y7) x) then − 2

else if ((= Y) x) then − 2

else 0.

The information in this definition is also obtained by an initial ques-
tionnaire.

The remaining transformations that follow are generic ones which
essentially come from the types employed in the application [7].

For each typeα, there is a transformationtop : α → Ω defined
by top x = >. The predicatetop is the weakest predicate on
individuals (of typeα).

For each component of the typeProgram, there is an associated
projection function. For example,

projTitle : Program → Title

is defined by

(projTitle (t, t′, d, g, c, s)) = t.

Similarly, there are projectionsprojSubtitle, projGenre,
projClassification, andprojSynopsis.

For each constantC of typeGenre, there is a transformation

(= C) : Genre → Ω

defined by

((= C) x) = x = C.

Similarly, for each stringS, there is transformation(= S) that
returns true iff its argument is identical toS.

For each integerN , there is a transformation

(< N) : Int → Ω

defined by

((< N) m) = m < N.

In a similar way, one can define the transformations(> N),
(≥ N), and(≤ N).

The transformation

StringToText : String → Text

takes a string as input and returns the list of words in the order that
they occur in the string (discarding white space between words).
Furthermore, words in the output text are stemmed. Thus

(StringToText “High Technology”) = [“high”, “technolog”].

The transformation

listExists1 : (String → Ω) → Text → Ω

is defined by

listExists1 p t = ∃x.((p x) ∧ (member x t)).

The predicate(listExists1 p) checks whether some text (that is, a
list of strings) contains a string that satisfiesp.

The predicate rewrite system for the function
user likes tv program is given in Figure 3. The actual strings
S used in rewrites of the form

top � (= S)

are the titles and subtitles of all the programs in the (current) set of
training examples. In rewrites of the form

top � (listExists1 (= S)),

the stringsS appearing are computed as follows. First, the set of
all stemmed words appearing in titles, subtitles or synopses of pro-
grams in the (current) set of training examples that are not stop-
words is formed. Then for each word in this set we compute the
ratio of the number of positive training examples (plus one) in
which it appears divided by the number of negative training ex-
amples (plus one) in which it appears. The set of words is decreas-
ingly ordered by this ratio and the top 100 are used in the rewrites.
The intuition is that these 100 words are good for discriminating
between positive and negative examples. Note that the predicate
rewrite system is constantly changing as new training examples ar-
rive.

A typical learned decision list for the function
user likes tv program is given in Figure 4. Such decision lists
usually contain over a hundred decision nodes.

Users also have some level of direct control over the function
user likes tv program since it is possible to add user-defined rules
to the learned definition of the function. For example, a user can
add a rule such as:

If the title is “Rugby Union” and the word “Australia”
is in the synopsis, then true.

606

(This rule assumes the predicate rewrite system is enriched by also
allowing conjunctions of conditions.) In general, the predicate in
a rule can be any one that is obtainable from the predicate rewrite
system. Since the user-defined rules are checked before the learned
part of the definition, TV programs that satisfy these conditions are
guaranteed to be classified in the way the user desires.

Figure 5 gives screen shots from the TV recommender in action.
They show extracts from the TV guide. Program titles highlighted
in green are recommended to the user. Titles of programs for which
the TV recommender requires further training before it can make
a prediction are presented in amber. (There are none of these in
Figure 5.) The tick and cross buttons next to a program description
are used to generate a positive or negative training example for that
program. Pressing the query button displays a short explanation of
why a recommendation was made. The figure shows recommenda-
tions for two different users for the same time slot. Note that the
recommendations are quite different.

5. EXPERIMENTS AND RESULTS
Here we present the results of a number of experiments mea-

suring the performance of the TV recommender. The four authors
used the system over a two-week period, training it to personalise
to their individual viewing preferences. One author trained the sys-
tem twice, in different ways. All experiments were carried out on a
10-channel subset of the full TV guide, chosen by each user.

5.1 Experiment 1 – learning under favourable
conditions

The first set of experiments was designed to test whether the TV
recommender could personalise to different users when good train-
ing data was made available. Two users used the system in a rigid
way, collecting training examples for two hours from the TV guide
each day for two weeks. They provided feedback indicating their
preference for every program in those two hours.

Charts (a) and (b) in Figure 6 are learning curves showing the
performance of the system as more training examples were sup-
plied. 10-fold cross-validation experiments were performed after
every 10 examples up to 50, and every 25 examples thereafter.
Cover, recall, precision and accuracy were calculated in the usual
way. The last three values were calculated on the covered exam-
ples only. A Bezier curve of best fit was plotted on the resulting
data points. The charts show a rapid rise in performance up to ap-
proximately 100 examples and a gradual improvement as further
examples were added. The performance on all measures is near
90% after 500 examples, for both users.

5.2 Experiment 2 – learning under real condi-
tions

The second set of experiments tested personalisation to differ-
ent users under more realistic conditions. Three users used the
system on two weeks of TV programming. They requested rec-
ommendations from any time slot and provided training examples
to improve the correspondence between these recommendations
and their viewing preferences. Users generally supplied corrective
training examples for incorrect recommendations or programs for
which the TV recommender indicated it was unsure. Reinforcing
training examples could also be supplied.

Charts (d)–(f) in Figure 6 are learning curves plotted for each
user as in the previous set of experiments. They show a steep rise in
performance after early training and a more gradual improvement
towards the end of the training period. The number of examples
is generally smaller for each user than in the previous experiment.

The final performance is generally lower than in the previous ex-
periment, although still broadly improving at this point.

5.3 Experiment 3 – comparison of learning al-
gorithms

This set of experiments evaluates the decision-list algorithm
against more sophisticated learning algorithms.

The table in Figure 7 records the final number of examples (Ex)
collected for each user as well as their positive (Ex+) and negative
(Ex−) breakdowns. Also shown are decision-list 10-fold cross-
validation results for cover (DL Cov), recall (DL Rec), precision
(DL Prec) and accuracy (DL Acc) on the final datasets.

To compare these results, the learning algorithm
AdaBoost [6] was adopted. AdaBoost is arguably the best off-the-
shelf algorithm available, and its performance gives a good indi-
cation of the kind of accuracy attainable by other state-of-the-art
algorithms.

We used single predicates defined by the predicate rewrite sys-
tem given in Figure 3 as base classifiers. The number of iterations
was set at 400 after some experimentation.

10-fold cross-validation results on the final data sets generated
by each user are reported in the table in Figure 7 alongside the cor-
responding results achieved by the decision-list algorithm. In gen-
eral terms, the numbers suggest that AdaBoost performs slightly
better, but the decision-list algorithm is not far behind. (However
this comparison is unfair to AdaBoost which makes a prediction on
every example.)

This confirms that, in this particular application, the use of a
symbolic learning algorithm does not incur a significant cost in
terms of accuracy.

5.4 Discussion
In all the experiments the performance of the system was eval-

uated using 10-fold cross-validations. One could also use an inde-
pendent test set to collect performance statistics. This was in fact
done for each user and the results closely correspond. As an exam-
ple we have included the test-set results for user 2 in Chart (c).

The first set of experiments suggest that it is possible for the TV
recommender to personalise well to different users, given sufficient
training data. This is due in part to the nature of the problem. Tele-
vision programming tends to be rather repetitive. Programs with
the same title are scheduled cyclically at daily, weekly and some-
times hourly periods. In these circumstances instance-based learn-
ing is expected to work well. This form of learning is captured
implicitly by the use of predicates that test for equality of program
titles in the decision lists. This works well in combination with
more conventional rule-based learning that exploits more general
conditions in the hypothesis language.

The second set of experiments suggest that real-world learning
is more problematic. Collecting sufficient training data is difficult.
Users in general prefer to give minimal feedback, mostly correcting
mistakes as they occur. They also expect the TV recommender to
make useful predictions on times of the day not previously trained
on.

The results for user 3 show that even after a moderately large
period of training the TV recommender can fail to perform as well
as in the first set of experiments. This user chose two specialist
movie channels from the TV guide and noted that the system per-
formed poorly on movies compared with the more day-to-day TV
programming of other channels. One reason for this is that there
is in general an insufficient overlap between a person’s preference
for movies and TV programs for it to be possible to learn a theory
that models both simultaneously. This suggests the need for a sep-

607

arate movie recommender with a more appropriate representation
of movie individuals. We also note that the meta-data for movies in
the TV guide was not very rich. For example, the genre for many
movies was often simply designated as ‘movie’.

Users 4 and 5 reported that subjectively the system performed
well enough, and that further training to improve performance
seemed unnecessary.

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper, we described the application of symbolic, on-line
learning to personalisation of an infotainment agent, concentrating
particularly on a TV recommender. With the qualification that more
experiments are needed particularly in realistic deployments of the
agent with typical users, the results suggest that a high level of
personalisation can be achieved.

In on-going work, we are applying the same techniques to per-
sonalising other agents, especially the music recommender which
is more challenging than the TV recommender. We also plan to
make the movie recommender available to the TV recommender.

One promising technique for improving the performance of the
agent is that of active learning. The idea of this is that the agent
should proactively seek training examples for the predictions it is
most unsure about as measured by some confidence factor. In prac-
tice, this would mean that the TV recommender would occasionally
directly ask the user about some particular program. This approach
would relieve the user of some of the responsibility of giving good
training examples to the agent.

7. ACKNOWLEDGMENT
This research was supported by the Smart Internet Technology

Cooperative Research Centre.

8. REFERENCES
[1] L. Ardissono and M. Maybury, editors. Special Issue on User

Modelling and Personalization for Television. User Modelling
and User-adapted Interaction,14(1), 2004.

[2] A. Bowers, C. Giraud-Carrier, and J. Lloyd. Classification of
individuals with complex structure. In P. Langley, editor,
Machine Learning: Proceedings of the Seventeenth
International Conference (ICML2000), pages 81–88. Morgan
Kaufmann, 2000.

[3] S. Džeroski, L. De Raedt, and H. Blockeel. Relational
reinforcement learning. InProceedings of the 15th
International Conference on Machine Learning, ICML’98,
pages 136–143. Morgan Kaufmann, 1998.

[4] S. Džeroski, L. De Raedt, and K. Driessens. Relational
reinforcement learning.Machine Learning, 43:7–52, 2001.

[5] S. Džeroski and N. Lavrǎc, editors.Relational Data Mining.
Springer, 2001.

[6] Y. Freund and R. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting.Journal of
Computer and System Sciences, 55(1):119–139, 1997.

[7] J. Lloyd.Logic for Learning. Cognitive Technologies.
Springer, 2003.

[8] S. Muggleton and L. De Raedt. Inductive logic programming:
Theory and methods.Journal of Logic Programming,
19/20:629–679, 1994.

[9] R. Rivest. Learning decision lists.Machine Learning,
2(3):229–246, 1987.

top � projTitle ◦ top

top � projTitle ◦StringToText ◦ top

top � projSubtitle ◦ top

top � projSubtitle ◦StringToText ◦ top

top � projGenre ◦ (listExists1 top)

top � projGenre ◦ (listExists1 genre ◦ top)

top � projClassification ◦ top

top � projClassification ◦ classification ◦ top

top � projSynopsis ◦StringToText ◦ top

top � (= “The Bill”)

top � (= “South Park”)

...

top � (= “Seinfeld”)

top � (= “The Cosby Show”)

top � (listExists1 (= “adventur”))

top � (listExists1 (= “coverag”))

...

top � (listExists1 (= “technolog”))

top � (listExists1 (= “war”))

top � (= −2)

...

top � (= 2)

top � (= Action)

...

top � (= Wrestling)

top � (= Y7)

...

top � (= NA)

Figure 3: The predicate rewrite system for the TV recom-
mender

608

APPENDIX

(user likes tv program x) =

if (projTitle ◦ (= “NFL Football”) x) then >
else if (projTitle ◦ (= “English Premier League”) x) then >
else if (projGenre ◦ (listExists1 genre ◦ (< 0)) x) then ⊥
else if (projGenre ◦ (listExists1 (= Drama)) x) then ⊥
else if (projGenre ◦ (listExists1 (= Comedy)) x) then ⊥
else if (projTitle ◦ (= “Sky RaceNight”) x) then ⊥
else if (projTitle ◦StringToText ◦ (listExists1 (= “sport”)) x) then >
else if (projSynopsis ◦StringToText ◦ (listExists1 (= “war”)) x) then >
else if (projGenre ◦ (listExists1 (= Current Affairs)) x) then ⊥

...

else ⊥.

Figure 4: A typical definition for user likes tv program

Figure 5: Recommendations presented to two different users for the same time slot.

609

0

20

40

60

80

100

 0 100 200 300 400 500

%

Examples

(a) User 1 10-fold cross-validation learning curves

Cover
Recall

Precision
Accuracy

0

20

40

60

80

100

 0 100 200 300 400 500

%

Examples

(d) User 3 10-fold cross-validation learning curves

Cover
Recall

Precision
Accuracy

0

20

40

60

80

100

 0 100 200 300 400 500

%

Examples

(b) User 2 10-fold cross-validation learning curves

Cover
Recall

Precision
Accuracy

0

20

40

60

80

100

 0 100 200 300 400 500

%

Examples

(e) User 4 10-fold cross-validation learning curves

Cover
Recall

Precision
Accuracy

0

20

40

60

80

100

 0 100 200 300 400 500

%

Examples

(c) User 2 performance on unseen test set

Cover
Recall

Precision
Accuracy

0

20

40

60

80

100

 0 100 200 300 400 500

%

Examples

(f) User 5 10-fold cross-validation learning curves

Cover
Recall

Precision
Accuracy

Figure 6: Charts of results

User Ex Ex+ Ex− DL Cov DL Rec Boost Rec DL Prec Boost Prec DL Acc Boost Acc

User 1 540 283 257 88.67 90.57 80.24 89.69 91.16 89.13 90.12
User 2 520 232 288 98.46 97.15 92.67 97.02 94.64 97.27 94.23
User 3 377 146 231 77.43 71.37 54.98 71.44 79.09 77.40 74.79
User 4 220 68 152 81.75 71.21 63.48 77.05 81.97 80.79 84.55
User 5 248 126 122 92.60 75.63 82.50 83.52 84.63 78.85 83.03

Figure 7: Table of results

610

