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ABSTRACT
Several approaches tackle the problem of reducing traffic
jams. A class of these approaches deals with coordination
of traffic lights in order to allow vehicles traveling in a given
direction to pass an arterial without stopping at junctions.
In short, classical approaches, which are mostly based on
offline and centralized determination of the prioritized di-
rection, are quite inflexible since they cannot cope with
dynamic changes in the traffic volume. More flexible ap-
proaches have been proposed based on implicit coordination
and implicit communication (e.g. derived from game the-
ory and swarm intelligence). These have advantages as well
as shortcomings. The present paper presents an approach
based on cooperative mediation which is a compromise be-
tween totally autonomous coordination with implicit com-
munication and the classical centralized solution. We use a
distributed constraint optimization algorithm in a dynamic
scenario, showing that the mediation is able to reduce the
frequency of miscoordination.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems,Coherence and coordination

General Terms
Algorithms

Keywords
Coordination, Traffic Control, Constraint Optimization Prob-
lems

1. INTRODUCTION
Approaches to reduce traffic jams have been proposed in

several disciplines like traffic engineering, physics, and ar-
tificial intelligence, among others. A classical one is to co-
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ordinate or synchronize traffic lights so that vehicles can
traverse an arterial in one traffic direction, with a specific
speed, without stopping as in [4, 8]. Thus, coordination here
means that if appropriate signal plans are selected to run at
the adjacent traffic lights, a “green wave” is built so that
drivers do not have to stop at junctions.

Operationally, the parameters of the coordination can be
computed offline as well as online. Example of the former
is Transyt[8]. There are also adaptive systems like SCOOT
[4], which focuses on coordination of traffic lights along a fix
path. These approaches work well in traffic networks with
defined traffic volume patterns like for instance morning and
afternoon peaks. However, in cities where these patterns
are not clear, this approach may not be effective. This is
clearly the case in big cities where the business centers are
no longer located exclusively downtown, in which case the
existing approaches are not flexible enough.

One reason why approaches from traffic engineering rely
predominately on linear programming (Transyt) or local
adjustment of the parameters of the traffic signal plan
(SCOOT), is that totally decentralized approaches could
impose communication bottlenecks (for the negotiation)
and/or would have to end up with a traffic expert mediating
the conflicts which could arise. Thus, flexible and robust ap-
proaches based on multiagent systems (MAS) are not only
attractive, but necessary. In Section 2 we review some of
the classical approaches as well as those based on MAS and
swarm intelligence.

In the present paper, we formulate the traffic lights coor-
dination problem in a way which is a compromise between
totally autonomous coordination with implicit communica-
tion, and the classical centralized solution, namely as an
on-line optimization problem in order to use cooperative me-
diation based on the Optimal Asynchronous Partial Overlay
(OptAPO) algorithm [6].

The goal of this paper is then twofold: to test the Op-
tAPO algorithm – which was not specifically designed for
dynamic environments – and to propose a new approach for
synchronization of traffic lights which reduces the need for
traffic expert intervention.

In the next section we briefly review some approaches
to coordination of traffic lights, as well as the OptAPO
algorithm. Section 3 presents the problem of traffic light
coordination as one of distributed constraint optimization
(DCOP). Section 4 discusses the simulations and the results
obtained, as well as the qualitative comparison with the ap-
proaches based on implicit coordination and communication.
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We give the conclusions and outline future directions in Sec-
tion 5.

2. RELATED WORK

2.1 Traffic Light Coordination
The goal of coordinated or synchronized systems is to syn-

chronize the traffic signals in adjacent intersections in order
to allow vehicles, traveling at a given speed, to cross those
without stopping at red lights. We use the terms intersec-
tions, crossing, junction, and traffic light interchangeably
since in each intersections, only one signal-timing plan runs
in a set of traffic lights (despite the fact that one sees two or
three of these) so that the set of traffic lights must be seen
as a single entity.

Signalized intersections are controlled by signal-timing plans
which are implemented at traffic lights. A signal-timing plan
(we use signal plan for short) is a unique set of timing pa-
rameters comprising the cycle length L (the length of time
for the complete sequence of the phase changes), and the
split (the division of the cycle length among the various
movements or phases).

The criteria for obtaining the optimum signal timing at
a single intersection is that it should lead to the minimum
overall delay at the intersection. Several plans are normally
required for an intersection (or set of intersections in the
case of a synchronized system) to deal with changes in traffic
volume. Well-designed signal plans can achieve acceptable
results if they are synchronized.

In general, the more neighbors that are synchronized, the
shorter the queues. Synchronization in two opposing direc-
tions of an arterial can be achieved depending on the ge-
ometry of the arterial: in a Manhattan-like grid where the
spacing among intersections is the same, synchronization in
opposite directions is possible. Synchronization in four traf-
fic directions is not possible in practice. Therefore, an agent
at a junction must select a signal plan to give priority to a
particular traffic direction.

In order to explain our approach, we will use a Manhattan-
like grid, thus allowing synchronization in either north-south
and south-north or east-west and west-east directions. No
extension in the approach proposed here is necessary in
case this constraint is dropped. However, more signal plans
would have to be designed.

Traffic responsive approaches for arterial appeared in the
1980s and, although they have been operating successfully
in Europe, they have had limited use in the U.S. One rea-
son is that these systems are complex to operate and pose
high costs, both in terms of hardware and communication
costs. In any case, traffic responsive systems are designed to
consider only a main path (arterial or similar). Besides, a
priori determination of the appropriate signal plans for the
different times of a day is a complex task that requires a
lot of expert knowledge about dynamic traffic flow. A more
flexible system which would for instance change the direc-
tion of coordination and the design of the coordination (who
is coordinating with who in which direction), is not reported
in the traffic engineering literature.

Therefore, as said before, more robust and flexible ap-
proaches for online, adaptive traffic signal coordination are
being developed based on multi-agent, swarm intelligence
and self-organization.

In [1, 2] a MAS based approach is described in which each

traffic light is modeled as an agent, each having a set of pre-
defined signal plans to coordinate with neighbors. Different
signal plans can be selected in order to coordinate in a given
traffic direction or during a pre-defined period of the day.
This approach uses techniques of evolutionary game theory:
self-interested agents receive a reward or a penalty given
by the environment. Moreover, each agent possesses only
information about their local traffic states.

The benefits of this approach are threefold: it is not nec-
essary to have a central agent to determine the direction of
the coordination; agents can dynamically build subgroups
of traffic light coordination which meet their current needs
in terms of allowing vehicles to pass in one given direction;
it avoids communication between agents when they have to
decide in which direction to coordinate, i.e. there is no ex-
plicit communication or negotiation.

However, payoff matrices (or at least the utilities and pref-
erences of the agents) are required, i.e these figures have to
be explicitly formalized by the designer of the system. This
makes the approach time-consuming when many different
options of coordination are possible (for example all four
directions: south, north, east, and west) and/or the traffic
network is complex (for instance, not only a main arterial
has to be considered but also many transversal and parallel
streets).

In [7] an approach based on swarm intelligence is pro-
posed aiming at relaxing the need of payoff matrices. In
this approach, each traffic light behaves like a social in-
sect. The signal plans are seen as tasks to be performed
by the insect without any centralized control or task allo-
cation mechanism. The stimulus depends on the number of
vehicles waiting or passing the traffic lights, among other
things.

Finally, approaches based on self-organization of traffic
lights via thresholds1 or reservation-based systems [3] have
still to solve low-level abstraction issues in order to be adopted
by traffic engineers and have a chance to be deployed.

2.2 Distributed Constraint Optimization Prob-
lem and Cooperative Mediation

A distributed constraint optimization problem (DCOP) is
a kind of DisCSP [9], but relates to optimization and not to
satisfaction. In a DCOP, each agent is assigned to one ore
more variables and these have interdependencies. A DCOP
is formally defined by m variables taking their values d from
m domains, and a set of constraints and their values. A
constraint is associated with a functional relationship Ci,
which in turn has a cost function fi(di1, . . . , dij) where each
fi is defined as a Cartesian product Di1 × . . . × Dij . The
problem is to find an assignment A� = {d1, . . . , dm | di ∈
Di} such that the global cost F is minimized. The global
cost2 is the sum of the cost functions f .

The optimal asynchronous partial overlay (OptAPO) is
a cooperative mediation based DCOP protocol. The algo-
rithm, presented and detailled in [6], allows the agents to
extend the context they use for local decision-making to a
relationship graph. An agent is in each node and the links
are the problem constraints.

1published on line at
http://www.nature.com/news/2004/041129/full/
041129-12.html
2We follow the nomenclature given in [6] where Fi is the
global cost for the particular agent i
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Each constraint or functional relationship has an associ-
ated cost; this cost will be zero if there is no conflict between
the agents in this relationship. Within its graph, one of the
agents has to act as a mediator, computing a solution for this
extended context and recommending values for the variables
associated with the agents involved in the mediation session.
This is possible because agents construct a good list – which
holds the names of agents that have direct or indirect re-
lationship to the list owner – and an agent view to hold
the names, values, domains, and functional relationships of
related agents.

During the problem solving process, each agent tries to
improve the value of its subproblem (the one it can solve
within its relationship graph). The priority to take the me-
diation role will be given to the agent with more information
about the problem.

The algorithm has three stages: initialization, checking
the agent view, and mediation. Details of these stages can
be found in [6]; we give here a brief description and an exam-
ple from the traffic light scenario (Section 3.2). During the
initialization, the agent sets its variables: current value (di),
variable’s name (xi), priority (pi), domain (Di), functional
relationships (Ci), good list and agent view.

The agents’ goal it to improve the solution of its subprob-
lem (represented by Fi). Thus, during the second stage, the
agent view is used to calculate the current cost Fi within
the relationship subgraph given by i’s good list. If Fi > F �

i

(F �

i being the optimal value of the subsystem), then agent
i conducts either a passive or an active mediation session,
after what the value of F �

i is recomputed.
Agent i will set a passive mediation if its priority to me-

diate is lower then other agent in the subsystem, otherwise

it will set a temporary mediation flag (m
′

i) as active. If an
active mediation flag is on, the agent can actually mediate
only if there is no other agent with a higher priority to me-
diate and with an active mediation flag. The agent tests if
a change in its local value would cause a local cost to reach
the optimal cost. If it does, then the agent changes its value
and does not start the mediation process. If the agent is
with a passive mediation flag, it starts a passive mediation
process.

In the mediation stage, agents receiving a mediation re-
quest either evaluate or send a wait message. Evaluation
means looking at each of the domain elements, labeling them
with the names of the agents which share functional relation-
ships with cost fi > f�

i , and returning these in a message.
The mediator conducts a branch-and-bound search to min-
imize the cost of the subproblem in its good list (primary
criteria), as well as the costs for agents outside the mediation
session.

In [6] OptAPO was used in the graph-coloring problem
with an static assignment for different number of variables.
As said, one of the goals of this paper is to use the OptAPO
in a dynamic environment. In the next section we formulate
the coordination of traffic lights as a DCOP.

3. DISTRIBUTED COORDINATION OF
TRAFFIC LIGHTS USING COOPERA-
TIVE MEDIATION

3.1 Description
As in [6], we also consider only the case where each agent

is assigned to a single variable. Therefore, in this scenario,
the variables of the DCOP are the coordination direction
for each traffic light. Thus, the domain for all variables is
given by two possible values of coordination: D={NS/SN,
EW/WE}.

The constraints in this problem arise from the fact that,
in each node of the graph, a traffic light cannot coordinate
with neighbors located in a different direction at the same
time. For our purposes here, this means that if a traffic light
coordinates with its north and south neighbors, the traffic
flow coming from these directions receives more green time;
it is impossible to coordinate also with the east and west
neighbors. A conflict occurs when two neighbors want to
give priority to different directions.

As a measure of effectiveness of coordinated systems (no
matter if online or offline), one generally seeks to optimize
a weighted combination of stops and delays or any other
measure related to the occupancy of the roads (number of
vehicles) in the network. In this paper we use the latter: we
define a cost function which is based both on the number
of incoming vehicles (in a junction) and on whether two
adjacent agents are coordinating or not.

Algorithm 1 Calculates the global cost Fi

if (IncomingV ehicles(NS) ≥ (IncomingV ehicles(WE)
then

for all j in the North/South direction ∈ good list of
agent i do

Fi ← Fi + f(xi, xj)
end for

else
for all j in the East/West direction ∈ good list of agent
i do

Fi ← Fi + f(xi, xj)
end for

end if

Algorithm 2 Calculates a relation cost f(xi, xj)

if (di is the direction with higher number of incoming
vehicles) then

if (di == dj) then
f(xi, xj)← 0;

else
f(xi, xj)←

IncomingV ehiclesFrom(xj)

TotalIncomingV ehicles()
;

end if
else

f(xi, xj)← 2 ∗
IncomingV ehiclesFrom(xj)

TotalIncomingV ehicles()
;

end if

The global cost function for each agent i, calculated as
in Algorithm 1, depends on the direction with the highest
number of incoming vehicles. If there are more vehicles com-
ing from north and south, then the agent will calculate its
global cost (Fi) taking into account the sum of the costs
it has, i.e. regarding the functional relationships with the
neighbors in these traffic directions. A relationship here is
associated with two neighbors, and maps the signal plans
both are running to a cost.

The cost of each relationship between two agents (f(xi, xj))
is computed as in Algorithm 2, based on the direction with
the highest number of incoming vehicles (for each crossing)
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and the current state (given by the coordination direction
of the two agents). This cost is calculated as follows:

Situation I if both agents in the relationship are running
coordinated plans (di = dj) and this plan prioritizes
the direction with the highest number of vehicles, then
this relationship has cost zero (f(xi, xj) = 0);

Situation II if agent i is prioritizing the direction with
highest number of incoming vehicles but the agent
j is not synchronizing in this direction, then the re-
lationship has a cost given by the number of vehi-
cles approaching node xi from node xj (given by the
IncomingV ehiclesFrom(xj) function), divided by the
sum of the incoming vehicles from all neighbors that
agent xj has in its good list (return value from func-
tion TotalIncomingV ehicles());

Situation III if the direction prioritized by the agent xi

is not the direction with higher number of incoming
vehicles, the cost will by twice the cost of the previous
situation, because the agent is not running the best
plan for the current traffic situation.

The goal of the optimization problem is to coordinate traf-
fic lights to minimize the global cost (sum of all relationship
costs). The interaction cost (f) is always between 0 and 2
as shown above.

We have implemented the traffic scenario and the Op-
tAPO algorithm using a simulation tool called SeSAm (Shell
for Simulated Agent Systems), that provides a generic envi-
ronment for modeling and experimenting with agent–based
simulations [5]. In this tool, the agent behavior is modeled
as a Finite State Machine (FSM) with four states: Initial-
ize, Check Agent View, Mediate and Choose Solution.

Initially, the agents are assigned one of the two possible
coordination values (directions). The priority of each agent
to mediate is given by the number of the incoming vehicles in
the intersection the agent controls. During the initialization,
the agent includes itself and all its neighbors in its good list,
because it is directly connect to all of them.

After the initialization all agents go to the check agent
view state, where they compute new mediate intentions (ac-
tive or passive) and decides whether to conduct an active
or passive mediation. The agent with active mediation flag
and higher priority go to the mediate state and start a me-
diation process. The mediator goes to the choose solution
state, after it evaluates all agents in its good list and have
filled its preferences list.

At the choose solution state the agent performs a branch-
and-bound search in order to minimize the cost for all agents
in its good-list. After choosing the best solution and set-
ting the new values for the agents in the mediation session
(agents in its good list and not involved in other mediation)
it returns to the Check Agent View state.

3.2 Example
As an example, consider the graph in Figure 1 (left) that

represents a traffic network, with 25 nodes (intersections)
and 40 associated edges (functional relationships). Dotted
circles represent the agents running a plan giving priority
to the NS/SN directions, and full line circles agents with
EW/WE plans. Figure 1 (right) depicts a portion of that
network in a particular configuration of states. Outgoing
edges are not shown for sake of clarity.

B1 B2 B5B4B3

C1 C2 C5C4C3

D1 D2

E1 E2 E5E4E3

A1 A2 A5A4A3

D3 D4 D5

A4

B5B3

C4

20

3030

20

B4

Figure 1: Left: a Network of 25 Intersections
(dotted and full-line circles show intersection with
SN/NS and EW/WE signal plans respectively).
Right: a Particular Configuration for B4 Subsystem

Following the OptAPO algorithm, for node B4 in Figure 1
(right), the priority value is the total number of vehicles
coming from the nodes A4, B3, B5, and C4, i.e. pB4 =
100 because its inputs are: 20 vehicles from A4, 20 from
C4, 30 from B5, and 30 from B3. After the initialization,
parameters for agent B4 have the following values:

• pi = 100;

• di = NS/SN (north-south direction);

• mi = active (due to the initialization);

• mediate = none;

• good list = {A4, B3, B4, B5, C4};

• agent view = {A4, B3, B5, C4}.

Using the Algorithm 1, B4 compares the sum of incom-
ing vehicles from north and south with the sum of incoming
vehicles from other directions. There are 40 vehicles from
north and south and 60 from west and east, indicating a
higher traffic volume in direction EW/WE. Thus the rela-
tionships to be considered by B4 are with B3 and B5. The
relationships with B3 and B5 fit “Situation III” (B4 is not
giving priority to the direction with the highest traffic vol-
ume). Thus, from Algorithm 2:

f(B4, B5) = f(B4, B3) = 2 ∗
30

100

The B4 global value is then:

Fi = 2 ∗
30

100
+ 2 ∗

30

100
= 1.2

Since B4 has a global cost higher than the optimal value
of the subsystem (F �

i = 0) it conducts either an active or
a passive mediation session. As B4 is the highest priority
agent in its list, it begins an active session with the agents
A4, B3, B5, and C4. Thus, at this point, m′

i for B4 is set to
active.

For simplicity, let us consider that all agents not in Fig-
ure 1 (right) are with the NS/SN priority and all have 30
vehicles coming from EW/WE and 10 vehicles coming from
NS/SN direction. The first attempt to solve the problem is
to make a local change in the subsystem, with B4 chang-
ing to plan EW/WE. This would yield a non-zero cost:
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Table 1: Preferences Table
Node Priority Options Conflict Cost
A4 NS/SN A3 0.86

A5 0.86
EW/WE A3 0.43

A5 0.43
B3 NS/SN B2 0.75

B4 0.75
EW/WE B2 0.375

B4 0.375
B5 NS/SN B4 1.2

EW/WE B4 0.6
C4 NS/SN C3 0.75

C5 0.75
EW/WE C3 0.375

C5 0.375

f(B4, B5) = 0.3 because B5 would continue with the NS/SN
plan and thus the f(B4, B5) cost would fit “Situation II”.

Since the local change does not lead to an optimal state,
B4 sends “evaluate?” messages to A4, B3, B5, and C4 and
constructs a table with the information returned by agents
in the session (Table 1). In this table the values come from
those agents returning information about each conflict gen-
erated by setting its di tentatively to the two values of coor-
dination. For instance, if A4 would change to NS/SN plan,
this would lead to a conflict with agents A3 and A5, with
both f(A4, A5) and f(A4, A3) fitting “Situation III” with a
0.86 cost (f(A4, A5) == f(A4, A5) = 2∗ 30

70
). This informa-

tion is used by the mediator agent to minimize the cost of
the conflicts with agents out of the session.

At the next step, the mediator agent (B4) performs a
branch-and-bound search and finds F �

i = 0 for its good list.
Using this solution, B4 changes its own direction, as well as
B5 and C4, to EW/WE, yielding f(B4, B5) = f(B4, C5) =
0 (“Situation I”). A pre-existing conflicting situation regard-
ing C4 with C3 and C5 remains since C3 and C5 are not in
B4 agent view list. However, this situation has now a lower
cost (originally it was 0.75 and it is now 0.375, as we can
see in Table 1). Note in the Table 1 that the conflicts of
C4 are with agents outside the mediation, so B4 can only
change the C5 value. These conflicts with agents external
to the mediation process causes B4 to add C3 and C5 to its
agent view and good list.

In a similar way, B4 is included into C3 and C5 agent view
and good list because B4 has neighborhood relationship with
C4. These additions create new “artificial” interactions be-
tween the agents and only happens if the mediator agent is
conducting an active mediation and has the highest prior-
ity. After the B4 mediation, the OptApo process continues
until each of the agents have justified their costs and found
a global solution with less violation of constraints.

4. SCENARIO AND EXPERIMENTS

4.1 Scenario
We use the scenario depicted in Figure 1, representing a

traffic network which is a 5x5 Manhattan-like grid, with a
traffic light (agent) in each junction. There are 25 nodes and
40 edges or sections (i.e. 40 functional interactions between

the variables). Each of these sections has a capacity of 30
vehicles per simulation cycle (in each traffic direction). The
actual number of vehicles inserted in the sources, located in
each border node, is given by a Gaussian distribution with
mean µ and standard deviation σ.

Vehicles do not change direction during the simulation
and upon arriving at the borders of the network they are
removed from it. For instance, a vehicle inserted at the
node A1 with the the South direction, will be removed at
the node E1.

Traffic lights normally have a set of signal plans (for dif-
ferent traffic conditions and/or time of the day). We con-
sider here only two plans, each allowing more green time
to a given direction. These signal plans have two phases,
one allowing green time to direction north-south(NS)/south-
north(SN) and other to east-west(EW)/west-east(WE). All
signal plans have cycle time of 90 seconds and phases of
60 and 30 seconds. Therefore, the smallest unit of time we
consider in the simulation is one-third of the cycle time (30
seconds). The graphs shown in this section all depict this
unit as one time step. Speed and topology constraints are
so that 10 vehicles can pass the junction in 30 seconds.

At the beginning of the simulation, agents A1, A3, A5,
B2, B4, C1, C3, C5, D2, D4, E1, E3, and E5 have d =
NS/SN while others have d =EW/WE (Figure 1). This
initial configuration makes all agents start with neighbors
with different plans, thus there is no coordination at all.
Unless stated, at the beginning of all simulation cases, the
values of the variables are as these.

We have simulated four cases:

Case I the pattern of traffic volume is generated once and
does not change;

Case II a change in the traffic volume is artificially inserted
by us at the time step 400 to test the restart of the
mediations;

Case III two traffic changes are inserted;

Case IV situation with fixed coordination (no mediation).

4.2 Results
In the case I, there are no changes in the traffic volume

during the whole simulation time, i.e. the sources generate
vehicles according to a unique Gaussian distribution (µ = 8
and σ = 2). In this simulation, we expect agents to start the
mediation and eventually reach a configuration of minimum
cost.

In Figure 2 we plot the global cost (sum of the costs f

of each edge or relationship) and the number of mediations
(inset plot). The simulation starts with a high cost (25)
and during the first 120 time steps the mediation goes on
and the cost gets lower and lower, except for some peaks.
These peaks happen because vehicles stop at red lights, thus
increasing the queues (and hence costs). At green light, the
queue decreases (but not necessarily empties). This pattern
occurs due to the cycle time of the signal plan.

The mediation sets variables values (plans) for each agent
so that the cost stabilizes around 12. Remember that this
is a sum over all nodes and that zero cost is not possible
because each node cannot simultaneously coordinate with
all neighbors. After the stabilization, only minor changes
occur but these oscillations are due to the Gaussian and
do not cause new mediation processes to start because the
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Figure 2: Scenario with constant traffic volume.
Cost along time steps. Inset plot: number of me-
diations.

traffic volume does not change in a way that would require
a change in plans (see Algorithm 1).

After the mediation, we notice blocks of coordination, as
shown in Figure 3. This situation is much different from the
starting one depicted in Figure 1: nodes B1, C1, D1; A3, B3,
C3, D3; and A5, B5, C5 all have plans coordinating NS/SN,
while nodes A1, A2; and E1, E2, E3, E4 are coordinating in
direction EW/WE.

B1 B2 B5B4B3

C1 C2 C5C4C3

D1 D2

E1 E2 E5E4E3

A1 A2 A5A4A3

D3 D4 D5

Figure 3: Groups formed after the mediation pro-
cess.

The inset plot in Figure 2 shows that few agents con-
duct active mediations. This is important because the num-
ber of steps necessary to reach an stable state depends on
how many agents need to mediate and if the mediators have
enough information about the system (the more information
gathering is necessary the longer the mediation).

In the case II, we artificially insert a change in traffic
volume at time 400. As shown in Figure 5 (left), the changes
are at the sources located in nodes A3, A4, E3, and E4,
inserting more vehicles in the NS/SN direction. The new
gaussian distribution in all these nodes is µ = 25 and σ = 1.
The other sources (other borders) are set to µ = 3 and
σ = 1. Given this, it is expected that something similar to
case I happen in the beginning of the simulation (when the
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Figure 4: Situation with one change in the traffic
volume (at time step 400).

B1 B2 B5B4B3

C1 C2 C5C4C3

D1 D2

E1 E2 E5E4E3

A1 A2 A5A4A3

D3 D4 D5

B1 B2 B5B4B3

C1 C2 C5C4C3

D1 D2

E1 E2 E5E4E3

A1 A2 A5A4A3

D3 D4 D5

Figure 5: Change in Sources for Case II (left) and
Case III (right).

distribution is the same as in case I). After step 400, with
the change, we expect that costs increase again and a new
mediation starts in order to reduce costs.

Figure 4 shows that the agents have indeed found a so-
lution for the initial traffic pattern (stabilizing cost around
F = 18). After the volume changes at time step 400, the
cost increases, causing the agents to restart the mediation.
At time 500 a new solution is found, yielding a global cost
of around 12. The new solution sets the variables for agents
A3, B3, . . ., E3 and A4, B4, . . ., E4 to the value NS/SN as
expected since the traffic volume has increased in nodes A3,
A4, E3, and E4. This shows that the mediation has worked
and that agents are coordinating in a better form.

In the case III, two changes in the traffic volume occur: at
step 400 and 700. The former occurs the same way as in the
previous scenario. The second is depicted in Figure 5 (right):
sources at nodes B1, C1, B5 and C5 now have µ = 25 and
σ = 1. In both cases all other sources are set to µ = 3 and
σ = 1. Here we expect coordination to built up among the
second and third row of agents.

Figure 6 shows the effect of these two changes in traffic
volume. Before step 400 we note the same stabilization pat-
tern as in previous cases. After both changes, the mediation
sessions restart and we can see that the agents reach a so-
lution which sets costs to levels lower than the one in the
initial configuration (complete miscoordination). After step
800 the coordination indeed involves agents in B1 to B5 and
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Figure 6: Situation with two changes in the traffic
volume (at time steps 400 and 700).
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Figure 7: Case with fixed coordination: change in
sources for Case 1 (left) and Case 2 (right).

C1 to C5.
Finally, in case IV we have performed a simulation with-

out any mediation, which is shown in Figure 8. During the
first 400 time steps the cost is high due to the starting situ-
ation (same as all previous cases, but here no agent mediate
so that individual costs remain high).

Let us assume that the traffic lights are pre-programmed
to run a fixed coordination involving agents B1 to B5 and C1
to C5 (Figure 7 (left)). However the traffic volume increases
in an unexpected way at nodes A3, A4, E3, and E4 (µ =
25 and σ = 1). Note that the costs increase even more
because the fixed coordination in direction EW/WE is not
appropriate for this particular situation.

Fixed coordinations perform well only in the case they fit
the traffic volume. This is also shown in the same figure,
after step 700. Now, the volume of traffic is high in nodes
B1, C1, B5, and C5 and are in accordance with the fixed
coordination (Figure 7 (right)), thus reducing the costs. To
show that this reduction is worse than all cases with medi-
ation, Figure 8 depicts two cases: case IV (no mediation,
fixed coordination) and case III (mediation, adaptive coor-
dination). We can see that even with a fixed coordination
in the streets with higher traffic flow, this situation is not
as good as the coordination reached by the agents using our
approach: the cost when there is a mediation is always lower
than the cost when the coordination is fixed.
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Figure 8: Case with fixed coordination.

5. CONCLUSIONS
Centralized approaches to traffic signal control cannot

cope with the increasing complexity of urban traffic net-
works. A trend towards decentralized control was already
pointed out by traffic experts in the 1980’s and traffic re-
sponsive systems for coordination of traffic lights have been
implemented. However, these are not flexible enough since
they do not allow changes in the topological design of the
coordination. For instance, it is not possible to break a coor-
dinated group so that one intersection can start coordinating
in another direction with other neighbors.

The present work is a step in the long term effort of test-
ing different approaches inspired by multiagent systems for
coordination of traffic lights. Techniques based on evolu-
tionary game-theory proved successful to the extent that
it was possible to maintain the coordination of traffic sig-
nals in a decentralized fashion and to permit the emergence
of cooperation among individually-motivated agents in dy-
namic environment under communication constraints. This
approach assumes that the expectations of agents concern-
ing their local intentions converge to a given pattern upon
receiving a feedback from the environment, this being one
possible shortcoming when this feedback is only partially or
not available. Thus, as future direction in [1] it was pro-
posed that this could be replace by an efficient form of com-
munication, in which the intentions are somehow included
in the negotiation. Therefore the mediation based solution
proposed in [6] is tried in the present paper.

Using the OptAPO algorithm, a cooperative mediation is
performed by the agent with more information about the
subsystem (determined by a relationship graph). Within
this subsystem, the mediator proposes changes which min-
imize the costs. An important issue is that even if the
good list increases, the mediators sub-problem is not likely
to hold the complete network. Also, the number of mes-
sages will not increase exponentially because, to calculate
the costs, agents with different plans are not always in a
conflicting situation.

Up to now the OptAPO algorithm was tested in a static
environment (graph coloring) so that once a solution is found
the process ends. In the traffic scenario, the mediation not
only reduces the cost but also can deal with the changing
traffic pattern as shown in the experiments. The mediation
takes some time especially in the beginning when the agents
views are not enlarged. However, already during the me-
diation, the costs go on decreasing so that the adaptation
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occurs concurrently with the traffic changes.
As pointed out in [6], in OptAPO there are mechanisms

to preserve the identity and/or private values of the agents
(increasing the autonomy of them). However, in these cases,
the mediator will not gain as much information as it would
be desired, affecting the optimality of the algorithm. Auton-
omy is indeed a central issue in the traffic scenario. When
cooperation cannot be taken for granted (after all, agents
may have high incentives not to disclose their actual traf-
fic states) it remains to be investigated how this affects the
optimality. However, this also motivates us to propose new
forms of mediation like for instance giving the most con-
straint or interested agent the priority to mediate, eventu-
ally including costs for the mediation itself.

Other important issues are to study the balance between
mediation cost in terms of communication versus time nec-
essary for agents to reach the coordination in the game-
theoretic approach (which normally takes some time because
agents have to learn via reinforcement learning).
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