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ABSTRACT 
Stigmergic coordination has received a growing attention in the 
past few years. In fact, by decoupling interacting agents via the 
mediation of an active environment, stigmergy promotes the 
definition of robust and adaptive multiagent systems. However, 
beside a large amount of scientific studies, the problem of 
defining usable and general-purpose tools to program stigmergy-
coordinated multiagent systems is still open. In this context, this 
paper shows how the TOTA middleware can be effectively 
exploited to support a variety of stigmergy-based coordination 
activities. The key idea in TOTA is to rely on a simple API for 
injecting tuple-based information in a network, have it propagate 
and/or evaporate accordingly to application-specific policies, and 
have it locally sensed by application agents. Application 
examples are presented to show that TOTA can promote a simple 
programming of a variety of different types of stigmergic 
interactions, in a variety of operational environments. 

Categories and Subject Descriptors  
I.2.11 [Artificial Intelligence]: Multiagent Systems; C.2.4 
[Computer-Communication Systems]: Distributed Systems;  

General Terms 
Algorithms, Design 
 

1. INTRODUCTION 
Stigmergy is being more and more recognized as a powerful 
approach to coordinate activities in complex multiagent systems 
[18]. Getting inspiration from nature, stigmergy has proved useful 
to enforce robust and self-adaptive situated behaviors in a variety 
of scenarios, ranging from P2P systems [2], robot swarms [14, 17] 
and sensor networks [8].  
In general, stigmergy refers to all those kinds of indirect 
interactions occurring among situated agents that, by affecting and 
sensing the properties of a shared environment, reciprocally affect 
each others’ behavior [9]. Such indirection makes stigmergic 
approaches intrinsically suited to large-scale and open multiagent 
systems, promoting self-organization. Also, by considering the 
possibility for an active environment to host internal processes 

affecting its own properties, stigmergy may support powerful 
forms of context-aware coordination, suitable to tackle the 
dynamics of modern scenarios and promoting self-adaptation. So 
far, the most widely used stigmergic mechanisms in multiagent 
systems include pheromone-based (getting inspiration from ant 
foraging, and relying on agents depositing markers that the 
environment can diffuse and evaporate) [18] and field-based ones 
(getting inspiration from physical force fields and relying on 
agents’ being associated to a sort of “aura” that propagates in the 
environment) [12].  
Despite the large number of applications, practical and usable 
tools for programming and supporting stigmergy coordinated 
applications are still missing. Besides scientific simulation studies, 
where such an issue is not of key relevance, those systems and 
applications deployed so far that exploit some forms of stigmergic 
coordination have always adopted specific ad-hoc programming 
and infrastructural solutions, without attempting at generalizing. 
However, as the interest in developing and deploying stigmergy 
coordinated applications increases, the need for general purpose 
and usable tools will soon become compulsory [22, 23].     
The contribution of this paper is to show how the TOTA (“Tuples 
On The Air”) middleware [10] can represent an effective answer to 
the above issue. The key ideas in TOTA are to: 
• provide basic support for storing, propagation, and 

maintenance of distributed tuple-based data structures in 
dynamic networked environments;  

• enable a simple application-level definition of tuples, of their 
propagation rules, and of their maintenance rules (e.g., 
evaporation rules); 

• make available to agents a simple API for injecting tuples in 
a network (which then propagate and/or “evaporate” 
accordingly to the defined policies), and have them locally 
sensed by agents. 

In this way – as shown via several application examples – TOTA 
enables developers and programmers to easily configure any 
specific type of stigmergic coordination – whether pheromone-
based or field-based – and to have their deployment and execution 
properly supported.  
This following of this paper is organized as follows. Section 2 
discussed related work in the area. Section 3 introduces the TOTA 
middleware. Section 4 goes into details about the TOTA API and 
its programming model. Section 5 sketches two application 
examples. Section 6 concludes and discusses open issues. 

2. RELATED WORK 

In the past few years, a growing amount of research activities have 
been devoted to the study of stigmergic approaches – whether 
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pheromone-based [3] or field-based [12, 15] – for the coordination 
of complex multiagent systems.  
Beside studies of a more scientific nature exploiting either 
analytical or simulation approaches [2, 3], several examples of 
deployed systems – in a variety of different scenarios and serving 
different applications – have been reported, e.g.: navigation in P2P 
networks [21], motion coordination in robot swarms [14, 17, 20], 
data gathering in sensor networks [8]; context-aware coordination 
in pervasive computing environments [12], just to mention a few 
examples. However, despite the recognition of the fact that 
stigmergic coordination may have wide applicability for a variety 
of distributed computing scenarios, no proposals so far explicitly 
focus on the identification and definition of proper general-
purpose infrastructures and programming approaches.  
The Amorphous Computing project [1], though, focuses on the 
somewhat close issue of identifying suitable models for 
programming applications over amorphous networks of 
“computing particles”. To this end, a simple biologically-inspired 
programming language based on the propagation and local sensing 
of simple field-based data structures has been proposed [15]. The 
project so far has focused on very simple immobile particles, 
modeled as finite-state machines with a limited number of states – 
not much different from cellular automata cells. Thus, the 
effectiveness of the associated programming language to deal with 
systems of more complex, mobile, and situated particles (as agents 
in a situated MAS will be) is limited, calling for notable 
extensions [16]. Also, the focus is on field-based data structures, 
disregarding issues of e.g., pheromone evaporation.  
Shifting to a totally different research area, recent researches on 
middleware infrastructures for pervasive and mobile computing 
are proposing a variety of novel coordination abstractions that get 
somewhat closer to stigmergic coordination than traditional 
message-passing and event-based middleware do.  
In the Smart Messages systems [4], communications between 
agents/processes occur via sorts of “active” messages that can 
include code to be executed at each hop in the network path, so to 
dynamically modify the content of the message itself and/or its 
routing strategy. In other words, communication between agents 
involves the active mediation of an active environment, whose 
activities (encoded in active messages) can be properly configured. 
Although, it is potentially possible to program active messages to 
make them fully assimilated to pheromones and fields, this task 
requires notable programming efforts.  
The L2imbo middleware [7] exploits distributed tuple spaces 
augmented with internal processes (Bridging Agents) that can 
move tuples around in the network form one space to another, and 
can also dynamically change their content. Also in this case, 
interactions are mediated by an active environment and, by 
properly defining tuples and bridging agents, one could think at 
reproducing forms of stigmergic coordination. However, also in 
this case, the required programming efforts would be notable.   
Similar considerations apply to a variety of recently proposed 
coordination middleware relying on active/reactive components 
for dynamic data update and propagation, e.g. MARS [5], 
XMIDDLE [13], and LIME [19].  
The TOTA middleware, described in the following, is explicitly 
conceived to meet the needs of stigmergic approaches to 
coordination, thus making it simple to define, program, and access 
both pheromones and fields, while preserving at the same time 
generality.  

3. THE “TUPLES ON THE AIR” 
APPROACH 

The TOTA middleware gathers concepts from both tuple space 
coordination architectures [5, 19] and event-based ones [6], but 
extends them so as to define a simple and flexible coordination 
mechanisms for general-purpose stigmergic coordination. 

3.1 General Overview 

In TOTA, we propose relying on distributed tuples for both 
representing contextual information and enabling stigmergic 
interactions among distributed agents.  
Unlike traditional shared data space models for distributed 
computing, TOTA tuples are not associated to a specific node (or 
to a specific data space) of the network. Instead, tuples are 
“injected” in the network and can autonomously propagate, 
diffuse, and evolve in the network accordingly to specified 
patterns. Thus, TOTA tuples form a sort of spatially distributed 
data structure able to express properties of the network 
environment that can be used to acquire contextual information 
about the environment itself, and to support the mechanisms via 
which stigmergic interactions can take place.  
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Figure 1: The TOTA scenario: a peer-to-peer network of 
nodes, each locally hosting the TOTA middleware and 
providing for tuple storing and propagation across the 
network. At the application level, agents perceive living in an 
environment in which they can indirectly interact by 
propagating and locally sensing tuples.  

To support this idea, TOTA consider the presence of a peer-to-
peer network of nodes, each node running a local version of the 
TOTA middleware (Figure 1). Each of these TOTA nodes holds 
references to a limited set of neighbor nodes. The structure of the 
network, as determined by the neighborhood relations, may be 
highly dynamic (due to node mobility, ephemeral nodes, or faults 
in nodes). TOTA assumes networking capability for recognizing 
connection and disconnection events.  
The specific nature of the network scenario determines how each 
node can found its neighbors, and the overall logical structure of 
the TOTA network. In MANETs, sensor networks, and robot 
swarms scenarios, TOTA neighbor nodes are identified within the 
range of their wireless connection. In wired networks, TOTA 
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neighbors can be determined by some logical structure of the 
network or by some sort of overlay or social structure. More in 
general, independently of the network scenario, whenever the 
nodes of a network can be geographically localized, the structure 
of the TOTA network can also be based on such spatial 
information (for the sake of space limitations, we only mention the 
fact that TOTA can be itself used to enforce geographical self-
localization of nodes in a network, and that tuples relying on such 
information are indeed available). 
Upon the distributed space identified by the dynamic network of 
TOTA nodes, which can be considered as the environment in 
which agents situate, agents can execute on these nodes and 
exploit the API provided by TOTA to indirectly interact with each 
other, mostly disregarding network details, and simply injecting 
tuples from their local position in space and locally sensing 
propagated tuples.  

3.2 TOTA Tuples  

Unlike traditional “tuples” which simply have data content, a 
TOTA tuple is defined in terms of content, a propagation rule, and 
a maintenance rule:  

T=(C,P,M)  
The content C is an ordered set of typed fields representing the 
information carried on by the tuple. C can range from a simple 
integer value up to any structured data. In this way, TOTA tuples 
can embed not only simple pheromones and fields, but 
semantically richer properties of the environment. 
The propagation rule P determines how the tuple should be 
distributed and propagated across the network. This includes 
determining the “scope” of the tuple (i.e. the distance at which 
such tuple should be propagated and possibly the spatial direction 
of propagation, if not isomorphic) and how such propagation can 
be affected by the presence or the absence of other tuples in the 
system. In addition, the propagation rules can determine how a 
tuple content should change while it is propagated. In fact, tuples 
are not necessarily distributed replicas, but can be effectively used 
to build a distributed overlay data structure expressing some kind 
of distributed properties of the network environment, e.g., 
pheromones and fields. For instance, to propagate a field 
expressing the network distance form the source, a propagation 
rule can simply propagate the tuples across all the network by 
increasing a numerical value at each network hop (Figure 2). 
The maintenance rule M determines how a tuple’s distributed 
structure should react to events occurring in the environment. 
These types of event can be simple time alarms, which are 
nevertheless of fundamental importance in pheromone-based 
coordination to enforce evaporation. Or they can be events 
associated to changes in the network structure, which is of 
fundamental importance to preserve a coherent structure of the 
environmental properties represented by fields. To this end, the 
TOTA middleware supports tuples propagation actively and 
adaptively: by constantly monitoring local events, the network 
local topology and the income of new tuples, the middleware 
automatically re-shape tuples and their distributed structure 
whenever appropriate w.r.t. the maintenance rule. For instance, 
when new nodes get in touch with a network, TOTA automatically 
checks the propagation rules of the already stored tuples and 
eventually propagates the tuples to the new nodes. With reference 
to the “field” tuple example (Figure 2), the maintenance rule may 
require that the “field” continuously reflect the actual position of 

the source agent, whenever it moves. With regard to pheromones, 
the maintenance rule may require that a tuple is periodically 
locally updated, to enforce evaporation, and that it is periodically 
propagated, to enforce slow chemical diffusion. 
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Figure 2: (a) An agent inject a “field” tuple increasing an 
integer value in its content as it propagates. Other agents can 
locally perceive the tuples and discover the distance from the 
source agent. (b) If the source agent (or its node) moves, the 
maintenance rule can specify to automatically update the 
distributed tuple structure to account for the new situation. 
 

Generic Field  Tuple 
C = (field_type_identifier, distance) 
P = (propagate everywhere, by incrementing distance by one at 

each network hop) 
M = (update structure upon network topology changes) 
 
Generic Pheromone Tuple 
C = (pheromone_type_identified, strenght) 
P = (propagate in neighborhood) 
M = (evaporate by diminishing strength periodically) 
 

Figure 3: Description of generic “field” and “pheromone” 
tuples, as to be realized in TOTA. 
 
From the agents’ viewpoint, executing and interacting basically 
reduces to inject tuples, perceive local tuples (as well as “tuple 
gradients”, by accessing tuples in neighbor nodes) and local 
events, and act accordingly to some application-specific policy. 
Developers, by their side, are charged with the duty of identifying 
proper content, propagation, and maintenance rules for their 
application tuples (as, e.g., in Figure 3), and of properly coding 
them in tuple classes, as described in Section 4.  
It is worth mentioning that TOTA, while conceived for stigmergic 
coordination, also subsumes more traditional forms of indirect 
interactions. Tuples with a null propagation rule, T=(C, null, M) 
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are simply local, as in reactive tuple space models [5]. Tuples with 
also a null maintenance rule T=(C, null, null), promote traditional, 
non-reactive, tuple-based coordination models. 

3.3 Implementation 

From an implementation point of view, TOTA is fully developed 
in Java, thus it is highly portable. TOTA can actually run on any 
JVM-equipped computer device, and can run both in wired and 
wireless mode. Basically, the implementation includes a tuple 
space engine, to be locally accessed by agents via an API 
interface, an event-based engine to catch system-level and 
network-level events, and a reactive engine to execute the code for 
tuples propagation and maintenance when appropriate events 
occur. 
We extensively experienced the described implementation of 
TOTA by using Compaq IPAQs, with Linux Familiar and 802.11b 
in ad-hoc mode, creating the skeleton of an ad-hoc TOTA 
network.  
In addition to the actual implementation of TOTA, we have also 
implemented a simulator to analyze TOTA behavior in very large 
systems. The simulator enables examining TOTA behavior in any 
network scenarios. In addition, the simulator can execute in 
simulated nodes the same TOTA code of real devices, and enable 
“mapping” in a simulated scenario real network devices. This 
allow to test applications on a few real devices, while having them 
behave as if they were immersed in very large networks. See [10] 
for more details. 

4 TOTA PROGRAMMING 

Developing applications using the TOTA middleware basically 
implies knowing: (i) what are the primitive operations available in 
the API to interact with the environment; (ii) how to specify 
tuples, their propagation rules, and their maintenance rules; (iii) 
how to properly exploit the above in agents. This latter point will 
be the core of section 5. 

4.1 TOTA Primitives  

TOTA is provided with a simple set of primitive operations to 
interact with the middleware (see Figure 4). inject is used to inject 
the tuple passed as an argument in the TOTA network. Once 
injected the tuple starts propagating accordingly to its propagation 
rule (embedded in the tuple definition), and will be stored in each 
of the propagation nodes in accord to its maintenance rules. The 
read primitive accesses the local TOTA tuple space and returns a 
collection of the tuples locally present in the tuple space and 
matching the template tuple passed as parameter. The 
readOneHop primitive returns a collection of the tuples present in 
the tuple spaces of the node’s one-hop neighborhood and matching 
the template tuple. In stigmergic coordination, such an operation is 
necessary to estimate “gradients” or either pheromones and fields. 
To make such an estimation more efficient, the keyrd and 
keyrdOneHop are also provided to access tuples based on their 
unique id. The delete primitive extracts from the local middleware 
all the tuples matching the template and returns them to the 
invoking agent. In addition, subscribe and unsubscribe primitives 
are defined to handle events. These primitives rely on the fact that 
any event occurring in TOTA (including: arrivals of new tuples, 
connections and disconnections of peers, system-level events) can 
be represented as a tuple. Thus: the subscribe primitive associates 

the execution of a reaction method in the agent in response to the 
occurrence of events matching the template tuple passed as first 
parameter. Specifically, when a matching event happens, the 
middleware invokes on the agent a special react method passing as 
parameters, the reaction string and the matching event. The 
unsubscribe primitive removes matching subscriptions. 
The simple toy agent in Figure 5 clarifies the possible use of the 
TOTA primitives.  
 
public void inject (TotaTuple tuple); 

public Vector read (Tuple template); 

public Vector readOneHop (Tuple template); 

public Tuple keyrd (Tuple template); 

public Vector keyrdOneHop(Tuple template); 

public Vector delete (Tuple template); 

public void subscribe (Tuple template, 
ReactiveComponent comp, String rct); 

public void unsubscribe (Tuple template, 

                     ReactiveComponent comp); 

Figure 4: The TOTA API. 

public class ToyAgent implements AgentInterface { 
 private TotaMiddleware tota;  
 // agent body  
 public void start()  
 {  
  // create a tuple and inject it 
  FooTuple foo = new FooTuple(“Hello World!”); 
  tota.inject(foo); 
  
 // define a template tuple 
  FooTemplTuple t = new FooTempTuple(); 
 
  // read local tuples matching the template 
  Vector v = tota.read(t); 
 
  // subscribe to changes in tuples matching t 
  tota.subscribe(t,this,””); 
 } 
 // code of the reaction to the subscrption 
 public void react(String reaction, String event)            
 {  
   System.out.pritnln(event); } 
} 

Figure 5: A ToyAgent exploiting the TOTA API. 

4.2 Specifying Tuples 

Being implemented in Java, TOTA tuples are actually objects: the 
object state models the tuple content, while the tuples’ propagation 
and maintenance rules has been encoded by means of specific 
propagate and react methods, respectively. 
When a tuple is injected in the network, it receives a reference to 
the local instance of the TOTA middleware, then its code is 
actually executed (the middleware invokes the tuple’s propagate 
method) and if during execution it invokes a middleware “move” 
method, the tuple is actually sent to all the one-hop neighbors, 
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where it will be executed recursively. During migration, the object 
state (i.e. tuple content) is properly serialized to be preserved and 
rebuilt upon the arrival in the new host. The abstract class 
TotaTuple provides the basic class on which to rely to define – via 
inheritance – tuples to serve specific types of stigmergic 
coordination (Figure 6). 
 
abstract class TotaTuple { 
protected TotaInterface tota; 
 
// the instance variables are the tuple content 
… 
/* this method inits the tuple, by giving a 
reference to the current TOTA middleware */ 
public void init(TotaInterface tota)  
{ this.tota = tota; } 
 
// this method codes the propagation rule 
public abstract void propagate(); 
 
/* this method enables the tuple to react to 
specific events, to perform maintenance */ 
public void react(String reaction, String event) 
 {} 
} 

Figure 6: The structure of the TotaTuple class. 

It is worth noting that a tuple is not thread by its own, it is actually 
executed by the middleware, that runs the tuple’s init, propagate, 
and react methods when necessary. The point to understand is that 
when the middleware has finished the execution of the tuple’s 
methods, the tuple (on that node) becomes a passive data structure 
stored in the middleware local tuple space.  A tuple is re-activated 
whenever events for maintenance occur. It is up to tuples 
themselves to subscribe to interesting events. 
While the proposed tuple models provides for the maximum 
flexibility, coding a specific tuple class from scratch starting from 
the class TotaTuple may be complex. For this reason, TOTA 
already provides a library of class hierarchies from which the 
programmer can inherit to create specific tuples without worrying 
about most of the low-level intricacies of dealing with tuple 
propagation and maintenance [11]. Of particular relevance is the 
StuctureTuple class. StructureTuple structures the propagate 
method of TotaTuple into four simple and well-defined sub-
methods. Thus, subclassing from StrucutreTuple makes the writing 
of specific policies simpler, and amounting at overloading some of 
these simple sub-methods. 
StructureTuple implements the propagate method accordingly to 
the schema depicted in Figure 7. The decideEnter methods is 
executed to assess whether the tuple can enter a specific node. The 
makeSubscriptions method allows the tuple to subscribe to 
relevant events to perform maintenance operations. The 
changeTupleContent method allows to change the tuple content to 
create not-dull data-structures. The decidePropagate method is 
executed to asses whether the tuple has to be further propagated to 
neighbor nodes or not. Further details on this schema in [11].  
To make an example, Figure 8 shows the code of a HopTuple class 
(provided in the TOTA library) that implements a simple field 
expressing the network distance from the source (as in Figure 2).  
The changeTupleContent and decidePropagate methods  are very 
simple. The decideEnter enforce a breadth first propagation, to 

avoid multiple propagations of the same tuple. The maintenance 
rule to re-shape the distributed field structure upon network 
topology changes is expressed in the react method, supported by 
the makeSubscription method ensuring that the maintenance rule is 
applied whenever appropriate. As exemplified in the following 
section, directly inheriting from HopTuple makes the writing of 
diverse types of fields extremely simple.  

 

 
Figure 7: Standard template to create tuples by overloading 
decideEnter, makeSubscriptions, changeTupleContent and 
decidePropagate methods. 

5 APPLICATION EXAMPLES 

Let us not put the above tools at work in two exemplary case study 
applications.  

5.1 Flocking with Fields 

OVERVIEW: The goal of this application is to let a group of 
agents coordinate their movements to maintain a specific distance 
from each other while moving. To achieve this coordinated 
behavior, we take inspiration from a well-known example in 
swarm-intelligence [3]. Flocks of birds stay together, coordinate 
turns, and avoid each other, by following a very simple swarm 
algorithm [18]. Their coordinated behavior can be explained by 
assuming that each bird tries to maintain a specified separation 
from the nearest birds and to match their speeds velocity, so as to 
exploit (the same as cyclists do) useful aerodynamics effects. 
To implement such behavior with TOTA, each agent can generate 
a tuple FlockingTuple, as a field whose value assumes its minimal 
value at the desired distance from the source, expressing the 
intended spatial separation between agents (these are network 
distances, measured in terms of network hops). The final shape of 
this field approaches the function depicted in Figure 9-a. 
FlockingTuples are always updated to reflect peers’ movements. 
To coordinate movements, peers have simply to locally perceive 
the generated tuples and follow them downhill. The result is a 
globally coordinated movement, in which peers maintain an 
almost regular grid formation see Figure 9-b. 
TUPLES: To code a FlockingTuple (Figure 10), one has to inherit 
from HopTuple and simply overload the method 
changeTupleContent so as to shape the counter propagation 
accordingly to Figure 9-a. Doing this is dramatically simple, and 

tota.inject()

A new tuple is injected or 
arrives at the node

The tuple is stored in the 
node and there executes 

if(decideEnter()) 

The tuple is sent to 
neighbor nodes

if(decidePropagate()) 

changeTupleContent()

makeSubscriptions()
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preserves in FlockingTuple the proper maintenance rules to deal 
with dynamics.  
AGENTS: Flocking agents are really simple. They inject flocking 
tuples then they follow flocking tuples downhill (Figure 11). 
 
 public class HopTuple extends StructureTuple 
{ public int hop = 0; // initialize counter 
 
protected void changeTupleContent() { 
  hop++; // counter increased at each hop  
 } 
 
protected boolean decidePropagate() { 
  return true; // propagates everywhere  
} 
// breadth first propagation 
// enter a node only if not already there 
 protected boolean decideEnter() { 
  HopTuple prev = (HopTuple)tota.keyrd(this); 
  return ((prev==null)||(prev.hop>(hop+1))); 
 } 
 
/* the tuple subscribes to any change in  
the local structure of peers and to the  
removal of instances of itself */   
 protected void makeSubscriptions() { 
  super.makeSubscriptions(); 
  PresenceTuple pres = new 

     PresenceTuple("<peer=*>"); 
  TsTuple inPres =  new      
      TsTuple("<op=IN><”+pres.serialize()+">"); 
   
  tota.subscribe(inPres, this,"PC"); 
   
   TsTuple tOut = new  
     TsTuple("<op=OUT><"+this.serialize()+">"); 
    
   tota.subscribe(tOut, this,"OUT"); 
 } 
 
 // react method to handle tuple maintenance  
 public void react(String react, String event) 
 { 
  super.react(reaction,event); 
  if(reaction.equalsIgnoreCase("PC")) 
  {/* a tuple is in a “safe-state” if it is the 
   one originally injected by the agent or if 
   it has a neighbor tuple with a lower hop */  
    if(safeState() && decidePropagate()) 
         tota.move(this);   } 
    else if(reaction.equalsIgnoreCase("OUT")) 
         { if(!safeState()) 
              tota.delete(this); 
           else  
              tota.move(this); } 
 } 
}   

Figure 8: The code of the HopTuple class.  

a) b)  

Figure 9: Flocking overview. (a) Ideal shape of the flocking 
tuple. (b) When agents follow other agents' tuples, they self-
organize in a regular grid formation. 

 
public class FlockingTuple extends HopTuple { 
 private int RANGE = 3; 
  
public FlockingTuple(int RANGE) { 
  this.RANGE = RANGE; 
 } 
 
 public int value = RANGE; 
 protected void changeTupleContent() { 
  super.changeTupleContent(); 
  if(hop <= RANGE) 
     value --; 
  else 
     value ++; 
  } 
} 

Figure 10: The FlockingTuple class. 

 
public class FlockingAgent extends Thread 
implements AgentInterface { 
 
private TotaMiddleware tota; 
 
public void run() { 
 
/* create and inject the flocking tuple to 
participate the flock */ 
FlockingTuple ft = new FockingTuple (); 
ft.setContent(peer.toString()); 
tota.inject(ft); 
 
while(true) { 
  // read other agents’ flocking tuples 
  FlockingTuple query = new FlockingTuple(); 
  Vector v = tota.read(query); 
  // select the peer where gradient goes downhill 
  GenPoint destination = getDestination(v); 
  // move downhill following the meeting tuple 
  this.move(destination);} 
 } 
} 

Figure 11: Agent example: FlockingAgent. 
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5.2 Routing with Pheromones 

OVERVIEW: The goal of this application is to realize a routing 
mechanism for agents in ad-hoc networks based on pheromones. 
Agents move in an ad-hoc network spreading pheromone trails 
during their movements. Such pheromone trails can be used to 
route messages to agents. Visually, we can think the pheromone 
trail an agent spread as a long tail. Messages can be routed to the 
agent by following its tail. More in detail, other than the tuples to 
create pheromones, we have defined tuples that, once injected, can 
follow pheromones up to their source. An agent X wiling to send a 
message to agent Y can wrap the message into one of this follow-
pheromone tuples and then inject the tuple. 
TUPLES: This application requires two kinds of tuples: 
Pheromone tuples and FollowPheromone tuples. 
To code a Pheromone tuple (Figure 12), one has to inherit from 
StrucutreTuple and realize a maintenance mechanism to let the 
tuple evaporate after some time. In stark contrast with the field-
inspired tuples (HopTuple and FlockingTuple) these are local 
tuples. They spread just one-hop away form the source and they 
have to remain in that place, before evaporating, even after the 
agent has moved away. Pheromone tuples has been inserted into 
the TOTA library to be possibly further customized – via 
inheritance – to create other pheromone-like tuples suited for other 
specific applications. 
To code a FollowPheromone tuple, one has to inherit from 
StructureTuple and customize the decideEnter method so as the 
tuple enters only in the nodes having a increasing value of the 
pheromone (see Figure 13). 
 
public class Pheromone extends StructureTuple 
{ public int value, VAL, DEC, EVAP;  
 
public Pheromone(int VAL, int DEC, int EVAP) { 
 this.VAL = VAL; 
 this.value = VAL; 
 this.DEC = DEC; // space decay 
 this.EVAP = EVAP; // evaporation }   
 
public void makeSubscriptions() { 
 SensorTuple st = new 
 SensorTuple("<sensor=clock><value=*>"); 
 tota.subscribe(st, this,"TIME"); } 
 
public boolean decidePropagate() { 
  return (value == VALUE); } 
 
public void changeTupleContent() { 
 value = value - DEC; } 
 
public void react(String reaction, String event) {       
  if(reaction.equalsIgnoreCase("TIME")) { 
      value = value -EVAP; 
      if(value <= 0) { 
         tota.delete(this); 
         return;} 
  } 
} 

Figure 12: Code of the Pheromone tuple class. 

AGENTS: These kinds of agents are rather simple (Figure 14). 
They wander spreading a pheromone with an ever increasing 
value, and have a method to send messages to other agents. 
 
public class FollowPheromone extends 
StructureTuple { 
 public int oldVal = 9999; 
 Pheromone trail; 
 
 public Pheromone (String msg, String to) { 
  content = msg; 
  trail = new Pheromone (); 
  trail.setContent(to); 
 } 
  
public boolean decideEnter() { 
  super.decideEnter(); 
  int val = getPheromoneValue(); 
  if(val > oldVal) { 
   oldVal = val; 
   return true; 
  }  else 
   return false; 
 }  
} 

Figure 13: Code of the FollowPheromone tuple class 

public class PheromoneAgent extends Thread 
implements AgentInterface { 
 private TotaMiddleware tota; 
 
 public void run() { 
  int val = 10; 
  while(true) { 
   // move randomly 
   peer.move(Math.random()); 
   // while spread pheromone 
   Pheromone p = new Pheromone(val, 5, 1); 
   p.setContent(peer.toString()); 
   peer.inject(p);}  
  } 
 
 public void send(String msg, String to) { 
  FollowPheromone fp = new 

FollowPheromone(msg,to); 
  tota.inject(fp);  
 }  
} 

Figure 14: Agent example: the agent moves randomly 
spreading pheromones. Moreover, it has a method to send a 
message, wrapped in a FollowPheromone tuple, to another 
agent. 

6 CONCLUSIONS AND FUTURE WORK 

Stigmergy is getting more and more recognized as a relevant 
approach for supporting the definition of robust and self-adaptive 
multiagent systems. Still, little has been done so far to leverage the 
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practical exploitation and deployment of stigmergy-coordination 
multiagent systems. The TOTA middleware, by making available 
a simple API with which to program, in an effective way, a 
number of diverse stigmergic coordination patterns, proposes itself 
as a general-purpose approach for programming complex 
multiagent systems. 
Despite the potentials of TOTA, several issues still need to be 
faced to increase its usability. First, security issues, disregarded in 
most researches in stigmergic coordination, can no longer be 
ignored for systems which are to be deployed in open and possibly 
hostile environments. However, what stigmergy implies in terms 
of security and privacy is to be fully explored. Second, the lack of 
an underlying general methodology, enabling engineers to map a 
specific coordination pattern into the corresponding definition of 
tuples and of their propagation/maintenance rules, is to be 
identified. Nevertheless, this is a general drawback of researches 
on complex MAS, rather than a specific drawback of our 
approach.  
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