

Programming Stigmergic Coordination
with the TOTA Middleware

Marco Mamei, Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria
 Università di Modena e Reggio Emilia
Via Allegri 13 – Reggio Emilia– ITALY

mamei.marco@unimore.it, franco.zambonelli@unimore.it

ABSTRACT
Stigmergic coordination has received a growing attention in the
past few years. In fact, by decoupling interacting agents via the
mediation of an active environment, stigmergy promotes the
definition of robust and adaptive multiagent systems. However,
beside a large amount of scientific studies, the problem of
defining usable and general-purpose tools to program stigmergy-
coordinated multiagent systems is still open. In this context, this
paper shows how the TOTA middleware can be effectively
exploited to support a variety of stigmergy-based coordination
activities. The key idea in TOTA is to rely on a simple API for
injecting tuple-based information in a network, have it propagate
and/or evaporate accordingly to application-specific policies, and
have it locally sensed by application agents. Application
examples are presented to show that TOTA can promote a simple
programming of a variety of different types of stigmergic
interactions, in a variety of operational environments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent Systems; C.2.4
[Computer-Communication Systems]: Distributed Systems;

General Terms
Algorithms, Design

1. INTRODUCTION
Stigmergy is being more and more recognized as a powerful
approach to coordinate activities in complex multiagent systems
[18]. Getting inspiration from nature, stigmergy has proved useful
to enforce robust and self-adaptive situated behaviors in a variety
of scenarios, ranging from P2P systems [2], robot swarms [14, 17]
and sensor networks [8].
In general, stigmergy refers to all those kinds of indirect
interactions occurring among situated agents that, by affecting and
sensing the properties of a shared environment, reciprocally affect
each others’ behavior [9]. Such indirection makes stigmergic
approaches intrinsically suited to large-scale and open multiagent
systems, promoting self-organization. Also, by considering the
possibility for an active environment to host internal processes

affecting its own properties, stigmergy may support powerful
forms of context-aware coordination, suitable to tackle the
dynamics of modern scenarios and promoting self-adaptation. So
far, the most widely used stigmergic mechanisms in multiagent
systems include pheromone-based (getting inspiration from ant
foraging, and relying on agents depositing markers that the
environment can diffuse and evaporate) [18] and field-based ones
(getting inspiration from physical force fields and relying on
agents’ being associated to a sort of “aura” that propagates in the
environment) [12].
Despite the large number of applications, practical and usable
tools for programming and supporting stigmergy coordinated
applications are still missing. Besides scientific simulation studies,
where such an issue is not of key relevance, those systems and
applications deployed so far that exploit some forms of stigmergic
coordination have always adopted specific ad-hoc programming
and infrastructural solutions, without attempting at generalizing.
However, as the interest in developing and deploying stigmergy
coordinated applications increases, the need for general purpose
and usable tools will soon become compulsory [22, 23].
The contribution of this paper is to show how the TOTA (“Tuples
On The Air”) middleware [10] can represent an effective answer to
the above issue. The key ideas in TOTA are to:
• provide basic support for storing, propagation, and

maintenance of distributed tuple-based data structures in
dynamic networked environments;

• enable a simple application-level definition of tuples, of their
propagation rules, and of their maintenance rules (e.g.,
evaporation rules);

• make available to agents a simple API for injecting tuples in
a network (which then propagate and/or “evaporate”
accordingly to the defined policies), and have them locally
sensed by agents.

In this way – as shown via several application examples – TOTA
enables developers and programmers to easily configure any
specific type of stigmergic coordination – whether pheromone-
based or field-based – and to have their deployment and execution
properly supported.
This following of this paper is organized as follows. Section 2
discussed related work in the area. Section 3 introduces the TOTA
middleware. Section 4 goes into details about the TOTA API and
its programming model. Section 5 sketches two application
examples. Section 6 concludes and discusses open issues.

2. RELATED WORK

In the past few years, a growing amount of research activities have
been devoted to the study of stigmergic approaches – whether

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS'05, July 2529, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

415

pheromone-based [3] or field-based [12, 15] – for the coordination
of complex multiagent systems.
Beside studies of a more scientific nature exploiting either
analytical or simulation approaches [2, 3], several examples of
deployed systems – in a variety of different scenarios and serving
different applications – have been reported, e.g.: navigation in P2P
networks [21], motion coordination in robot swarms [14, 17, 20],
data gathering in sensor networks [8]; context-aware coordination
in pervasive computing environments [12], just to mention a few
examples. However, despite the recognition of the fact that
stigmergic coordination may have wide applicability for a variety
of distributed computing scenarios, no proposals so far explicitly
focus on the identification and definition of proper general-
purpose infrastructures and programming approaches.
The Amorphous Computing project [1], though, focuses on the
somewhat close issue of identifying suitable models for
programming applications over amorphous networks of
“computing particles”. To this end, a simple biologically-inspired
programming language based on the propagation and local sensing
of simple field-based data structures has been proposed [15]. The
project so far has focused on very simple immobile particles,
modeled as finite-state machines with a limited number of states –
not much different from cellular automata cells. Thus, the
effectiveness of the associated programming language to deal with
systems of more complex, mobile, and situated particles (as agents
in a situated MAS will be) is limited, calling for notable
extensions [16]. Also, the focus is on field-based data structures,
disregarding issues of e.g., pheromone evaporation.
Shifting to a totally different research area, recent researches on
middleware infrastructures for pervasive and mobile computing
are proposing a variety of novel coordination abstractions that get
somewhat closer to stigmergic coordination than traditional
message-passing and event-based middleware do.
In the Smart Messages systems [4], communications between
agents/processes occur via sorts of “active” messages that can
include code to be executed at each hop in the network path, so to
dynamically modify the content of the message itself and/or its
routing strategy. In other words, communication between agents
involves the active mediation of an active environment, whose
activities (encoded in active messages) can be properly configured.
Although, it is potentially possible to program active messages to
make them fully assimilated to pheromones and fields, this task
requires notable programming efforts.
The L2imbo middleware [7] exploits distributed tuple spaces
augmented with internal processes (Bridging Agents) that can
move tuples around in the network form one space to another, and
can also dynamically change their content. Also in this case,
interactions are mediated by an active environment and, by
properly defining tuples and bridging agents, one could think at
reproducing forms of stigmergic coordination. However, also in
this case, the required programming efforts would be notable.
Similar considerations apply to a variety of recently proposed
coordination middleware relying on active/reactive components
for dynamic data update and propagation, e.g. MARS [5],
XMIDDLE [13], and LIME [19].
The TOTA middleware, described in the following, is explicitly
conceived to meet the needs of stigmergic approaches to
coordination, thus making it simple to define, program, and access
both pheromones and fields, while preserving at the same time
generality.

3. THE “TUPLES ON THE AIR”
APPROACH

The TOTA middleware gathers concepts from both tuple space
coordination architectures [5, 19] and event-based ones [6], but
extends them so as to define a simple and flexible coordination
mechanisms for general-purpose stigmergic coordination.

3.1 General Overview

In TOTA, we propose relying on distributed tuples for both
representing contextual information and enabling stigmergic
interactions among distributed agents.
Unlike traditional shared data space models for distributed
computing, TOTA tuples are not associated to a specific node (or
to a specific data space) of the network. Instead, tuples are
“injected” in the network and can autonomously propagate,
diffuse, and evolve in the network accordingly to specified
patterns. Thus, TOTA tuples form a sort of spatially distributed
data structure able to express properties of the network
environment that can be used to acquire contextual information
about the environment itself, and to support the mechanisms via
which stigmergic interactions can take place.

TOTA Network

TX

TX

TX
TX TX

TX
TX

TX

TX

TOTA Nodes

TX
Propagated
Tuple

TOTA Environment

Injected Tuple

Tuple Propagation

Agents

Figure 1: The TOTA scenario: a peer-to-peer network of
nodes, each locally hosting the TOTA middleware and
providing for tuple storing and propagation across the
network. At the application level, agents perceive living in an
environment in which they can indirectly interact by
propagating and locally sensing tuples.

To support this idea, TOTA consider the presence of a peer-to-
peer network of nodes, each node running a local version of the
TOTA middleware (Figure 1). Each of these TOTA nodes holds
references to a limited set of neighbor nodes. The structure of the
network, as determined by the neighborhood relations, may be
highly dynamic (due to node mobility, ephemeral nodes, or faults
in nodes). TOTA assumes networking capability for recognizing
connection and disconnection events.
The specific nature of the network scenario determines how each
node can found its neighbors, and the overall logical structure of
the TOTA network. In MANETs, sensor networks, and robot
swarms scenarios, TOTA neighbor nodes are identified within the
range of their wireless connection. In wired networks, TOTA

416

neighbors can be determined by some logical structure of the
network or by some sort of overlay or social structure. More in
general, independently of the network scenario, whenever the
nodes of a network can be geographically localized, the structure
of the TOTA network can also be based on such spatial
information (for the sake of space limitations, we only mention the
fact that TOTA can be itself used to enforce geographical self-
localization of nodes in a network, and that tuples relying on such
information are indeed available).
Upon the distributed space identified by the dynamic network of
TOTA nodes, which can be considered as the environment in
which agents situate, agents can execute on these nodes and
exploit the API provided by TOTA to indirectly interact with each
other, mostly disregarding network details, and simply injecting
tuples from their local position in space and locally sensing
propagated tuples.

3.2 TOTA Tuples

Unlike traditional “tuples” which simply have data content, a
TOTA tuple is defined in terms of content, a propagation rule, and
a maintenance rule:

T=(C,P,M)
The content C is an ordered set of typed fields representing the
information carried on by the tuple. C can range from a simple
integer value up to any structured data. In this way, TOTA tuples
can embed not only simple pheromones and fields, but
semantically richer properties of the environment.
The propagation rule P determines how the tuple should be
distributed and propagated across the network. This includes
determining the “scope” of the tuple (i.e. the distance at which
such tuple should be propagated and possibly the spatial direction
of propagation, if not isomorphic) and how such propagation can
be affected by the presence or the absence of other tuples in the
system. In addition, the propagation rules can determine how a
tuple content should change while it is propagated. In fact, tuples
are not necessarily distributed replicas, but can be effectively used
to build a distributed overlay data structure expressing some kind
of distributed properties of the network environment, e.g.,
pheromones and fields. For instance, to propagate a field
expressing the network distance form the source, a propagation
rule can simply propagate the tuples across all the network by
increasing a numerical value at each network hop (Figure 2).
The maintenance rule M determines how a tuple’s distributed
structure should react to events occurring in the environment.
These types of event can be simple time alarms, which are
nevertheless of fundamental importance in pheromone-based
coordination to enforce evaporation. Or they can be events
associated to changes in the network structure, which is of
fundamental importance to preserve a coherent structure of the
environmental properties represented by fields. To this end, the
TOTA middleware supports tuples propagation actively and
adaptively: by constantly monitoring local events, the network
local topology and the income of new tuples, the middleware
automatically re-shape tuples and their distributed structure
whenever appropriate w.r.t. the maintenance rule. For instance,
when new nodes get in touch with a network, TOTA automatically
checks the propagation rules of the already stored tuples and
eventually propagates the tuples to the new nodes. With reference
to the “field” tuple example (Figure 2), the maintenance rule may
require that the “field” continuously reflect the actual position of

the source agent, whenever it moves. With regard to pheromones,
the maintenance rule may require that a tuple is periodically
locally updated, to enforce evaporation, and that it is periodically
propagated, to enforce slow chemical diffusion.

a)

T O T A N e tw o r k

0

1

1

1

2

3

2

3

2

2

3

3

2

4

2

2

b)

T O T A N e tw o r k

0

1

2

3

4

4

3

4

4

1

2

2

2

3

1

3

Figure 2: (a) An agent inject a “field” tuple increasing an
integer value in its content as it propagates. Other agents can
locally perceive the tuples and discover the distance from the
source agent. (b) If the source agent (or its node) moves, the
maintenance rule can specify to automatically update the
distributed tuple structure to account for the new situation.

Generic Field Tuple
C = (field_type_identifier, distance)
P = (propagate everywhere, by incrementing distance by one at

each network hop)
M = (update structure upon network topology changes)

Generic Pheromone Tuple
C = (pheromone_type_identified, strenght)
P = (propagate in neighborhood)
M = (evaporate by diminishing strength periodically)

Figure 3: Description of generic “field” and “pheromone”
tuples, as to be realized in TOTA.

From the agents’ viewpoint, executing and interacting basically
reduces to inject tuples, perceive local tuples (as well as “tuple
gradients”, by accessing tuples in neighbor nodes) and local
events, and act accordingly to some application-specific policy.
Developers, by their side, are charged with the duty of identifying
proper content, propagation, and maintenance rules for their
application tuples (as, e.g., in Figure 3), and of properly coding
them in tuple classes, as described in Section 4.
It is worth mentioning that TOTA, while conceived for stigmergic
coordination, also subsumes more traditional forms of indirect
interactions. Tuples with a null propagation rule, T=(C, null, M)

417

are simply local, as in reactive tuple space models [5]. Tuples with
also a null maintenance rule T=(C, null, null), promote traditional,
non-reactive, tuple-based coordination models.

3.3 Implementation

From an implementation point of view, TOTA is fully developed
in Java, thus it is highly portable. TOTA can actually run on any
JVM-equipped computer device, and can run both in wired and
wireless mode. Basically, the implementation includes a tuple
space engine, to be locally accessed by agents via an API
interface, an event-based engine to catch system-level and
network-level events, and a reactive engine to execute the code for
tuples propagation and maintenance when appropriate events
occur.
We extensively experienced the described implementation of
TOTA by using Compaq IPAQs, with Linux Familiar and 802.11b
in ad-hoc mode, creating the skeleton of an ad-hoc TOTA
network.
In addition to the actual implementation of TOTA, we have also
implemented a simulator to analyze TOTA behavior in very large
systems. The simulator enables examining TOTA behavior in any
network scenarios. In addition, the simulator can execute in
simulated nodes the same TOTA code of real devices, and enable
“mapping” in a simulated scenario real network devices. This
allow to test applications on a few real devices, while having them
behave as if they were immersed in very large networks. See [10]
for more details.

4 TOTA PROGRAMMING

Developing applications using the TOTA middleware basically
implies knowing: (i) what are the primitive operations available in
the API to interact with the environment; (ii) how to specify
tuples, their propagation rules, and their maintenance rules; (iii)
how to properly exploit the above in agents. This latter point will
be the core of section 5.

4.1 TOTA Primitives

TOTA is provided with a simple set of primitive operations to
interact with the middleware (see Figure 4). inject is used to inject
the tuple passed as an argument in the TOTA network. Once
injected the tuple starts propagating accordingly to its propagation
rule (embedded in the tuple definition), and will be stored in each
of the propagation nodes in accord to its maintenance rules. The
read primitive accesses the local TOTA tuple space and returns a
collection of the tuples locally present in the tuple space and
matching the template tuple passed as parameter. The
readOneHop primitive returns a collection of the tuples present in
the tuple spaces of the node’s one-hop neighborhood and matching
the template tuple. In stigmergic coordination, such an operation is
necessary to estimate “gradients” or either pheromones and fields.
To make such an estimation more efficient, the keyrd and
keyrdOneHop are also provided to access tuples based on their
unique id. The delete primitive extracts from the local middleware
all the tuples matching the template and returns them to the
invoking agent. In addition, subscribe and unsubscribe primitives
are defined to handle events. These primitives rely on the fact that
any event occurring in TOTA (including: arrivals of new tuples,
connections and disconnections of peers, system-level events) can
be represented as a tuple. Thus: the subscribe primitive associates

the execution of a reaction method in the agent in response to the
occurrence of events matching the template tuple passed as first
parameter. Specifically, when a matching event happens, the
middleware invokes on the agent a special react method passing as
parameters, the reaction string and the matching event. The
unsubscribe primitive removes matching subscriptions.
The simple toy agent in Figure 5 clarifies the possible use of the
TOTA primitives.

public void inject (TotaTuple tuple);

public Vector read (Tuple template);

public Vector readOneHop (Tuple template);

public Tuple keyrd (Tuple template);

public Vector keyrdOneHop(Tuple template);

public Vector delete (Tuple template);

public void subscribe (Tuple template,
ReactiveComponent comp, String rct);

public void unsubscribe (Tuple template,

 ReactiveComponent comp);

Figure 4: The TOTA API.

public class ToyAgent implements AgentInterface {
 private TotaMiddleware tota;
 // agent body
 public void start()
 {
 // create a tuple and inject it
 FooTuple foo = new FooTuple(“Hello World!”);
 tota.inject(foo);

 // define a template tuple
 FooTemplTuple t = new FooTempTuple();

 // read local tuples matching the template
 Vector v = tota.read(t);

 // subscribe to changes in tuples matching t
 tota.subscribe(t,this,””);
 }
 // code of the reaction to the subscrption
 public void react(String reaction, String event)
 {
 System.out.pritnln(event); }
}

Figure 5: A ToyAgent exploiting the TOTA API.

4.2 Specifying Tuples

Being implemented in Java, TOTA tuples are actually objects: the
object state models the tuple content, while the tuples’ propagation
and maintenance rules has been encoded by means of specific
propagate and react methods, respectively.
When a tuple is injected in the network, it receives a reference to
the local instance of the TOTA middleware, then its code is
actually executed (the middleware invokes the tuple’s propagate
method) and if during execution it invokes a middleware “move”
method, the tuple is actually sent to all the one-hop neighbors,

418

where it will be executed recursively. During migration, the object
state (i.e. tuple content) is properly serialized to be preserved and
rebuilt upon the arrival in the new host. The abstract class
TotaTuple provides the basic class on which to rely to define – via
inheritance – tuples to serve specific types of stigmergic
coordination (Figure 6).

abstract class TotaTuple {
protected TotaInterface tota;

// the instance variables are the tuple content
…
/* this method inits the tuple, by giving a
reference to the current TOTA middleware */
public void init(TotaInterface tota)
{ this.tota = tota; }

// this method codes the propagation rule
public abstract void propagate();

/* this method enables the tuple to react to
specific events, to perform maintenance */
public void react(String reaction, String event)
 {}
}

Figure 6: The structure of the TotaTuple class.

It is worth noting that a tuple is not thread by its own, it is actually
executed by the middleware, that runs the tuple’s init, propagate,
and react methods when necessary. The point to understand is that
when the middleware has finished the execution of the tuple’s
methods, the tuple (on that node) becomes a passive data structure
stored in the middleware local tuple space. A tuple is re-activated
whenever events for maintenance occur. It is up to tuples
themselves to subscribe to interesting events.
While the proposed tuple models provides for the maximum
flexibility, coding a specific tuple class from scratch starting from
the class TotaTuple may be complex. For this reason, TOTA
already provides a library of class hierarchies from which the
programmer can inherit to create specific tuples without worrying
about most of the low-level intricacies of dealing with tuple
propagation and maintenance [11]. Of particular relevance is the
StuctureTuple class. StructureTuple structures the propagate
method of TotaTuple into four simple and well-defined sub-
methods. Thus, subclassing from StrucutreTuple makes the writing
of specific policies simpler, and amounting at overloading some of
these simple sub-methods.
StructureTuple implements the propagate method accordingly to
the schema depicted in Figure 7. The decideEnter methods is
executed to assess whether the tuple can enter a specific node. The
makeSubscriptions method allows the tuple to subscribe to
relevant events to perform maintenance operations. The
changeTupleContent method allows to change the tuple content to
create not-dull data-structures. The decidePropagate method is
executed to asses whether the tuple has to be further propagated to
neighbor nodes or not. Further details on this schema in [11].
To make an example, Figure 8 shows the code of a HopTuple class
(provided in the TOTA library) that implements a simple field
expressing the network distance from the source (as in Figure 2).
The changeTupleContent and decidePropagate methods are very
simple. The decideEnter enforce a breadth first propagation, to

avoid multiple propagations of the same tuple. The maintenance
rule to re-shape the distributed field structure upon network
topology changes is expressed in the react method, supported by
the makeSubscription method ensuring that the maintenance rule is
applied whenever appropriate. As exemplified in the following
section, directly inheriting from HopTuple makes the writing of
diverse types of fields extremely simple.

Figure 7: Standard template to create tuples by overloading
decideEnter, makeSubscriptions, changeTupleContent and
decidePropagate methods.

5 APPLICATION EXAMPLES

Let us not put the above tools at work in two exemplary case study
applications.

5.1 Flocking with Fields

OVERVIEW: The goal of this application is to let a group of
agents coordinate their movements to maintain a specific distance
from each other while moving. To achieve this coordinated
behavior, we take inspiration from a well-known example in
swarm-intelligence [3]. Flocks of birds stay together, coordinate
turns, and avoid each other, by following a very simple swarm
algorithm [18]. Their coordinated behavior can be explained by
assuming that each bird tries to maintain a specified separation
from the nearest birds and to match their speeds velocity, so as to
exploit (the same as cyclists do) useful aerodynamics effects.
To implement such behavior with TOTA, each agent can generate
a tuple FlockingTuple, as a field whose value assumes its minimal
value at the desired distance from the source, expressing the
intended spatial separation between agents (these are network
distances, measured in terms of network hops). The final shape of
this field approaches the function depicted in Figure 9-a.
FlockingTuples are always updated to reflect peers’ movements.
To coordinate movements, peers have simply to locally perceive
the generated tuples and follow them downhill. The result is a
globally coordinated movement, in which peers maintain an
almost regular grid formation see Figure 9-b.
TUPLES: To code a FlockingTuple (Figure 10), one has to inherit
from HopTuple and simply overload the method
changeTupleContent so as to shape the counter propagation
accordingly to Figure 9-a. Doing this is dramatically simple, and

tota.inject()

A new tuple is injected or
arrives at the node

The tuple is stored in the
node and there executes

if(decideEnter())

The tuple is sent to
neighbor nodes

if(decidePropagate())

changeTupleContent()

makeSubscriptions()

419

preserves in FlockingTuple the proper maintenance rules to deal
with dynamics.
AGENTS: Flocking agents are really simple. They inject flocking
tuples then they follow flocking tuples downhill (Figure 11).

 public class HopTuple extends StructureTuple
{ public int hop = 0; // initialize counter

protected void changeTupleContent() {
 hop++; // counter increased at each hop
 }

protected boolean decidePropagate() {
 return true; // propagates everywhere
}
// breadth first propagation
// enter a node only if not already there
 protected boolean decideEnter() {
 HopTuple prev = (HopTuple)tota.keyrd(this);
 return ((prev==null)||(prev.hop>(hop+1)));
 }

/* the tuple subscribes to any change in
the local structure of peers and to the
removal of instances of itself */
 protected void makeSubscriptions() {
 super.makeSubscriptions();
 PresenceTuple pres = new

 PresenceTuple("<peer=*>");
 TsTuple inPres = new
 TsTuple("<op=IN><”+pres.serialize()+">");

 tota.subscribe(inPres, this,"PC");

 TsTuple tOut = new
 TsTuple("<op=OUT><"+this.serialize()+">");

 tota.subscribe(tOut, this,"OUT");
 }

 // react method to handle tuple maintenance
 public void react(String react, String event)
 {
 super.react(reaction,event);
 if(reaction.equalsIgnoreCase("PC"))
 {/* a tuple is in a “safe-state” if it is the
 one originally injected by the agent or if
 it has a neighbor tuple with a lower hop */
 if(safeState() && decidePropagate())
 tota.move(this); }
 else if(reaction.equalsIgnoreCase("OUT"))
 { if(!safeState())
 tota.delete(this);
 else
 tota.move(this); }
 }
}

Figure 8: The code of the HopTuple class.

a) b)

Figure 9: Flocking overview. (a) Ideal shape of the flocking
tuple. (b) When agents follow other agents' tuples, they self-
organize in a regular grid formation.

public class FlockingTuple extends HopTuple {
 private int RANGE = 3;

public FlockingTuple(int RANGE) {
 this.RANGE = RANGE;
 }

 public int value = RANGE;
 protected void changeTupleContent() {
 super.changeTupleContent();
 if(hop <= RANGE)
 value --;
 else
 value ++;
 }
}

Figure 10: The FlockingTuple class.

public class FlockingAgent extends Thread
implements AgentInterface {

private TotaMiddleware tota;

public void run() {

/* create and inject the flocking tuple to
participate the flock */
FlockingTuple ft = new FockingTuple ();
ft.setContent(peer.toString());
tota.inject(ft);

while(true) {
 // read other agents’ flocking tuples
 FlockingTuple query = new FlockingTuple();
 Vector v = tota.read(query);
 // select the peer where gradient goes downhill
 GenPoint destination = getDestination(v);
 // move downhill following the meeting tuple
 this.move(destination);}
 }
}

Figure 11: Agent example: FlockingAgent.

420

5.2 Routing with Pheromones

OVERVIEW: The goal of this application is to realize a routing
mechanism for agents in ad-hoc networks based on pheromones.
Agents move in an ad-hoc network spreading pheromone trails
during their movements. Such pheromone trails can be used to
route messages to agents. Visually, we can think the pheromone
trail an agent spread as a long tail. Messages can be routed to the
agent by following its tail. More in detail, other than the tuples to
create pheromones, we have defined tuples that, once injected, can
follow pheromones up to their source. An agent X wiling to send a
message to agent Y can wrap the message into one of this follow-
pheromone tuples and then inject the tuple.
TUPLES: This application requires two kinds of tuples:
Pheromone tuples and FollowPheromone tuples.
To code a Pheromone tuple (Figure 12), one has to inherit from
StrucutreTuple and realize a maintenance mechanism to let the
tuple evaporate after some time. In stark contrast with the field-
inspired tuples (HopTuple and FlockingTuple) these are local
tuples. They spread just one-hop away form the source and they
have to remain in that place, before evaporating, even after the
agent has moved away. Pheromone tuples has been inserted into
the TOTA library to be possibly further customized – via
inheritance – to create other pheromone-like tuples suited for other
specific applications.
To code a FollowPheromone tuple, one has to inherit from
StructureTuple and customize the decideEnter method so as the
tuple enters only in the nodes having a increasing value of the
pheromone (see Figure 13).

public class Pheromone extends StructureTuple
{ public int value, VAL, DEC, EVAP;

public Pheromone(int VAL, int DEC, int EVAP) {
 this.VAL = VAL;
 this.value = VAL;
 this.DEC = DEC; // space decay
 this.EVAP = EVAP; // evaporation }

public void makeSubscriptions() {
 SensorTuple st = new
 SensorTuple("<sensor=clock><value=*>");
 tota.subscribe(st, this,"TIME"); }

public boolean decidePropagate() {
 return (value == VALUE); }

public void changeTupleContent() {
 value = value - DEC; }

public void react(String reaction, String event) {
 if(reaction.equalsIgnoreCase("TIME")) {
 value = value -EVAP;
 if(value <= 0) {
 tota.delete(this);
 return;}
 }
}

Figure 12: Code of the Pheromone tuple class.

AGENTS: These kinds of agents are rather simple (Figure 14).
They wander spreading a pheromone with an ever increasing
value, and have a method to send messages to other agents.

public class FollowPheromone extends
StructureTuple {
 public int oldVal = 9999;
 Pheromone trail;

 public Pheromone (String msg, String to) {
 content = msg;
 trail = new Pheromone ();
 trail.setContent(to);
 }

public boolean decideEnter() {
 super.decideEnter();
 int val = getPheromoneValue();
 if(val > oldVal) {
 oldVal = val;
 return true;
 } else
 return false;
 }
}

Figure 13: Code of the FollowPheromone tuple class

public class PheromoneAgent extends Thread
implements AgentInterface {
 private TotaMiddleware tota;

 public void run() {
 int val = 10;
 while(true) {
 // move randomly
 peer.move(Math.random());
 // while spread pheromone
 Pheromone p = new Pheromone(val, 5, 1);
 p.setContent(peer.toString());
 peer.inject(p);}
 }

 public void send(String msg, String to) {
 FollowPheromone fp = new

FollowPheromone(msg,to);
 tota.inject(fp);
 }
}

Figure 14: Agent example: the agent moves randomly
spreading pheromones. Moreover, it has a method to send a
message, wrapped in a FollowPheromone tuple, to another
agent.

6 CONCLUSIONS AND FUTURE WORK

Stigmergy is getting more and more recognized as a relevant
approach for supporting the definition of robust and self-adaptive
multiagent systems. Still, little has been done so far to leverage the

421

practical exploitation and deployment of stigmergy-coordination
multiagent systems. The TOTA middleware, by making available
a simple API with which to program, in an effective way, a
number of diverse stigmergic coordination patterns, proposes itself
as a general-purpose approach for programming complex
multiagent systems.
Despite the potentials of TOTA, several issues still need to be
faced to increase its usability. First, security issues, disregarded in
most researches in stigmergic coordination, can no longer be
ignored for systems which are to be deployed in open and possibly
hostile environments. However, what stigmergy implies in terms
of security and privacy is to be fully explored. Second, the lack of
an underlying general methodology, enabling engineers to map a
specific coordination pattern into the corresponding definition of
tuples and of their propagation/maintenance rules, is to be
identified. Nevertheless, this is a general drawback of researches
on complex MAS, rather than a specific drawback of our
approach.

Acknowledgements. Work supported by: the Italian MIUR and CNR in
the context of the project “IS-MANET: Infrastructures for Mobile ad-hoc
Networks”; and by the Regione Emilia Romagna in the context of the
project “LAICA: Laboratory of Ambient Intelligence for a Friendly City”.

7 REFERENCES

[1] H. Abelson, et al., “Amorphous Computing”,
Communications of the ACM, 43(5), May 2000.

[2] O. Babaoglu, H. Meling, A. Montresor, “Anthill: a
Framework for the Development of Agent-Based Peer-to-
Peer Systems”, Proceedings of the 22nd IEEE Conference
on Distributed Computing Systems, Vienna (A), May
2002.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm
Intelligence, Oxford University Press (Oxford, UK), 1999.

[4] C. Borcea, “Spatial Programming Using Smart Messages:
Design and Implementation”, 24th Int.l Conference on
Distributed Computing Systems, Tokio (J), May 2004.

[5] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli,
“Location-dependent Services for Mobile Users”, IEEE
Transactions on Systems, Man, and Cybernetics,
33(6):667-681, Nov. 2003

[6] A. Carzaniga, D. Rosenblum, A. Wolf, “Design and
Evaluation of a Wide-Area Event Notification Service”,
ACM Transaction on Computer System, 19(3):332-383,
2001.

[7] N. Davies, et al, “L2imbo: A distributed systems platform
for mobile computing”, ACM Mobile Networks and
Applications, 3(2):143-156, 2001.

[8] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting
the Physical World with Pervasive Networks”, IEEE
Pervasive Computing, 1(1):59-69, 2002.

[9] P.-P. Grassé, “La Reconstruction du Nid et les
Coordinations Inter-Individuelles chez Bellicositermes
Natalensis et Cubitermes sp. La théorie de la Stigmergie:
Essai d'Interprétation du Comportement des Termites
Constructeurs”, Insectes Sociaux, 6:41-84, 1959.

[10] M. Mamei, F. Zambonelli, “Programming Pervasive and
Mobile Computing Applications with the TOTA
Middleware”, 2nd IEEE Conference on Pervasive
Computing and Communication, Orlando (FL), March
2004.

[11] M. Mamei, F. Zambonelli, “Self-Maintained Distributed
Tuples for Field-based Coordination in Dynamic
Networks”, Concurrency and Computation: Practice and
Experience, 2005, to appear.

[12] M. Mamei, F. Zambonelli, L. Leonardi, “Co-Fields: A
Physically Inspired Approach to Distributed Motion
Coordination”, IEEE Pervasive Computing, 4(2):52-61,
2004.

[13] C. Mascolo, L. Capra, W. Emmerich, “An XML based
Middleware for Peer-to-Peer Computing”, IEEE Intl.
Conference of Peer-to-Peer Computing, 2001.

[14] J. McLurkin, J. Smith, "Distributed Algorithms for
Dispersion in Indoor Environments using a Swarm of
Autonomous Mobile Robots", Proceedings of the 7th
International Symposium on Distributed Autonomous
Robotic Systems, Toulouse (F), 2004.

[15] R. Nagpal, “Programmable Self-Assembly Using
Biologically-Inspired Multi-agent Control”, 1st Int.l
Conference on Autonomous Agents and Multi-agent
Systems, Bologna (I), July 2002.

[16] R. Nagpal, M. Mamei, “Engineering Amorphous
Computing Systems”, in Methodologies and Software
Engineering for Agent Systems: the Handbook of Agent-
Oriented Software Engineering, Kluwer Academic
Publishing (New York, NY), 2004.

[17] V. Parunak, S. Brueckner, J. Sauter, “Digital Pheromones
for Coordination of Unmanned Vehicles”, Workshop on
Environments for Multi-agent Systems (E4MAS), LNAI
3374, Springer Verlag, 2004.

[18] V. Parunak, “Go to the Ant: Engineering Principles from
Natural Agent Systems”, Annals of Operations Research,
75:69-101, 1997.

[19] G. P. Picco, A. L. Murphy, “Using Coordination
Middleware for Location-Aware Computing: A Lime Case
Study”, Proceedings of the 6th International Conference on
Coordination Models and Languages, LNCS No. 2949,
Feb. 2004.

[20] J. Svennebring, S. Koenig, "Building Terrain Covering
Ant Robots: a Feasibility Study", Autonomous
Robots,16(3):313-332, May 2004.

[21] R. Tolksdorf, R. Menezes, “Using Swarm Intelligence in
Linda Systems“, Proceedings of the 4th International
Workshop on Engineering Societies in the Agents’ World,
LNCS No. 3071, 2004.

[22] F. Zambonelli, M.P. Gleizes, M. Mamei, R. Tolksdorf,
“Spray Computers: Explorations in Self-organization”,
Journal of Pervasive and Mobile Computing, 1(1):1-20,
March 2005.

[23] F. Zambonelli, V. Parunak, “Towards a Paradigm Change
in Computer Science and Software Engineering”, The
Knowledge Engineering Review, 18(4), 2004.

422

