Bumping Strategies for the Multiagent Agreement Problem

Pragnesh Jay Modi a

nd Manuela Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

{pmodi,veloso}@cs.cmu.edu

ABSTRACT

We introduce the Multiagent Agreement Problem (MAP) to rep-
resent a class of multiagent scheduling problems. MAP igdas
on the Distributed Constraint Reasoning (DCR) paradigmrand
quires agents to choose values for variables to satisfynigttoeir
own constraints, but also equality constraints with othgends.

The goal is to represent problems in which agents must agree o

scheduling decisions, for example, to agree on the stag tifra
meeting. We investigate a challenging class of MAP — priviaite
cremental MAP (piMAP) in which agents do incremental scthedu
ing of activities and there exist privacy restrictions ofoirmation
exchange. We investigate a range of strategies for piMARRdta
“bumping” strategies. We empirically evaluate these styis in

the domain of calendar management where a personal assistan
agent must schedule meetings on behalf of its human user. Our

results show that bumping decisions based on schedulifigudtiy
models of other agents can significantly improve perforreaner
simpler bumping strategies.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords

Distributed Constraint Optimization

1. INTRODUCTION

Distributed Constraint Reasoning (DCR) [2, 11, 12, 18, 28§ h
been proposed as a theoretical foundation for problems iti-mu
agent systems, for example, distributed scheduling pnafleln
DCR, a set of variables are distributed among a set of agewts a
constraints among variables require agents to coordihatevalue
choices. This paper considers the DCR approach for problem

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007$5.00.

where an agent must schedule activities under the followinge
conditions:

e Schedules are inter-dependent with other agents. A sahedul
is valid if it satisfies both local constraints and external con-
straints with other agents. For example in meeting schedul-
ing, a person has local constraints such as “attend one meet-
ing at a time” and also has external constraints like “other
attendees must agree on the time of a meeting”.

Schedules are built incrementally. That is, new activities
must be incorporated into an existing valid schedule to pro-
duce a new valid schedule. A key feature of incremental
scheduling is that existing activities often need to be rdpve
or "bumped” and rescheduled, in order to successfully ac-
commodate the new activities.

Schedules contain private information and each agenneetai
ownership of its schedule. We assume this as an explicit
property of the application domain. This property elimasat

a solution approach in which all information is communi-
cated to a central scheduler that constructs a global stthedu
for all agents. Instead, each agent makes its own scheduling
decisions and communicates with others to ensure a valid
schedule. Importantly, the assumption of private infoforat
places limits on the information that is exchanged.

We argue that the above are key essential features of may rea
world distributed scheduling problems. Incremental safind is
clearly an important class of problem. Inter-dependenase-
fined by equality constraints arise whenever multiple agemist
schedule a joint activity that must be executed at the same, ti
e.g., scheduling a coordinated invasion in military misspian-
ning. Finally, privacy restrictions are ubiquitous whereats are
used to represent the interests of humans.

There is currently a mismatch between existing approaahes t
DCR and what is needed to solve scheduling problems with the
above features. First, existing DCR representations ssiEhstCSP

5[20] and DCOP [12], which make few assumptions about con-
straints, are overly general for some domains. Algorithesghed
for these representations fail to exploit additional agstions that
may be available. For example, if only equality constramuts
needed to encode the underlying problem, it makes sensmito li
the representation and design a more specialized (andtjzditen
more efficient) algorithm. Currently, such specializedresgnta-
tions are lacking.

Second, existing work in DCR has not explicitly considened i
cremental problem solving and rescheduling (bumping) asya k
algorithmic decision point. Instead, most existing apphas, with

390

the exception of the Open CSP approach of Faltings and Gonza-

lez[7], have focused on batch problem solving. A batch apgo
is potentially inefficient in an incremental setting beaaitdails to
take advantage of the existing solution.

Finally, previous research in classical scheduling haw/attbat
using heuristics can significantly aid in problem solving, [Aut
most existing methods in DCR, e.g., DBO[20], AWC[20], Add],
use uninformed search. Effective search heuristics for ha@®e
the potential to improve performance. For example, gerfecg-
level information about other agents, such as the numbeaif v
ables they own, could be incorporated as a heuristic. The mos
progress to date on this idea is the texture measures appodac
Sycara et. al. [19], discussed further in Section 5.

This paper presents a DCR approach to the multiagent schedul
ing problem and the issues described above. First, to agitiies
issue of lack of specialized representations and lack afsam
incremental problem solving, we introduce the privaterénten-
tal Multiagent Agreement Problem (piMAP) as a special clafss
DCR in which constraints between agents are limited to éyual
constraints. Agents assign values to variables in an inenésh
manner with restrictions on to whom certain information niney
communicated. Specifically, piMAP defines a set of participa
for each variable and explicitly prohibits the communicatof in-
formation about variables between agents who are not jptits
in the variable.

Second, in order to address the issue of lack of use of heuris-
tics in DCR, we investigate a range of heuristic strategiegtie
“bumping” problem in piMAP. The bumping problem is decid-
ing how to rearrange the existing schedule in order to sdbealu
new activity. We introduce a heuristic in which the main ide#o
represent and exploit general knowledge about other agehte
adhering to privacy constraints) and their “schedulindidifty”.
Our notion of scheduling difficulty is sufficiently general model
a wide range of contributing factors. The specific schedudlif-
ficulty model we investigate in this paper assumes an agesit ha
or can obtain knowledge of the average schedule densityhei ot
agents.

Finally, we use piMAP to model the multiagent meeting scledu
ing problem and investigate the performance of our bumpirages
gies in this domain. Multiagent meeting scheduling has been
vestigated before [9, 17, 8] but our work is distinctive ia fo-
cus on bumping techniques for rescheduling in an increrheata
ting. Existing work has not investigated this aspect of thdtim
agent meeting scheduling problem. We evaluate our apprivach
an experimental testbed for multiagent meeting scheduwiingre
personal assistant agents schedule meetings on behaHiohth
man users. We simulate a human organization where highleedan

people have very busy calendars and lower ranked people have

lower calendar density. Our results show a significant réoludn
scheduling failure rate with a bumping strategy that usesdain
of scheduling difficulty against other strategies that db no

2. PROBLEM DEFINITION: PIMAP

A Distributed Constraint Reasoning (DCR) problem is defined
by a set of agents, variables, values and constraints, wdaatie
variable is assigned to an agent who has control of its valaos-
straints which are local, i.e., among variables assignédecame
agent, are calleéhtra-agentconstraints, while constraints which
are external, i.e., among variables assigned to differgents, are
calledinter-agentconstraints. DCR can be viewed as a distributed
form of the well-known and very successful CSP represantati
from Al [4].

We use the general DCR framework to define theltiagent

391

agreement problenMAP). MAP is a special class of DisCSP as
proposed by Yokoo and others [20]. The key differences ae di
cussed after the following formal definition.

2.1 Formal Definitions

In MAP, a set of agents must map elements from one set, which
are modeled as the variables, to elements of a second seh aei
modeled as the values. Importantly, inter-agent consragquire
multiple agents to agree on the assignment of a value to @dhar
variable.

We define thenultiagent agreement problefilAP) as follows:

o A={A, Ay, ..., A} is a set ofagents

o V={W,V,,..V,}isaset ofvariables
D = {di,ds,...,ds} is a set ofvalues Each value can be
assigned to any variable.

participant{V;) C A is the set of agents assigned the vari-
ableV;. A variable assigned to an agent means it has (possi-
bly shared) responsibility for choosing its value.

vars(A;) C Vs the set of variables assigned to agdnt

For each agentl;, C; is anintra-agentconstraint that evalu-
ates to true or false. It must be defirmdy over the variables
in vars(A;).

For each variablé/;, aninter-agent‘agreement” constraint
is satisfied if and only if the same value frabnis assigned
to V; by all the agents iparticipantgV;).

We say an assignment of values to variablesi&l (sound)f it
satisfies both inter-agent and intra-agent constraintssaj/@n as-
signment icompletaf every variable inV is assigned some value.
The goal is to find a valid and complete assignment.

There are two key differences between MAP and DisCSP. First,
MAP allows a variable to be shared among a set of agents (par-
ticipants) while DisCSP assigns each variable to a uniqestag
However, MAP can be viewed as a DisCSP by giving a copy of
each shared MAP variable to each participant and adding-inte
agent equality constraints between the copies. Any DisGBP ¢
not be converted to a MAP because DisCSP admits general inter
agent constraints, but MAP inter-agent constraints aréduhto
the equality constraints on shared variables.

A motivation for introducing the MAP representation witraséd
variables is to conveniently and explicitly capture prosewhere
multiple agents are involved in a joint decision. This is atfee of
many distributed domains where each agent brings its owatgri
constraints to bear on the decision, but yet agents must toare
agreement. Another important motivation is to develop neme-
cialized DCR algorithms and approaches that are tailoretthito
particular problem rather than exclusive focus on usingnttost
general DCR representation and algorithms.

The second key difference from general DisCSP is that MAP
assumes a single set of valuBs i.e, all variables have the same
domain. But this is not a restriction. Given a set of variabigth
different domains, we can define a new universal domain as the
union of the individual domains and add unary constraingsaich
variable to eliminate infeasible values.

Private, Incremental MARpPIMAP) is an extension to MAP in
which agents must solve MAP in an incremental fashion winite |
iting the information they can exchange:

e Incremental: In incremental MAP, new variables and as-
sociated constraints are added to the problem over time and
must be integrated into an existing assignment. In meeting
scheduling for example, new meetings arise over time and
must be scheduled in the context of an existing schedule.
Given a MAP with agentsi and variabled’, an incremental
MAP also includes:

— Sinit = {(V1,d1), (Va,d2), ..., (Vin, d) } is an initial
assignment of values to variables)im

— V' = VU{Vimy1}is aset of variables to be assigned a
value.

Figure 1: Meeting Scheduling as the Multiagent Agreement

- . . Problem.
— participantgV;»+1) is a set of agents who are assigned

the variableV,,,+1.
o .~ : could also be used to represent time-of-day preferencgs {ao
A’ = AU participants Vin1) is a set of agents. meetings before 11am”) or more complex local constrainth si$
travel time between meetings or back-to-back preferericals [
Figure 1 illustrates the multiagent agreement problem ¥ixgn
agentsAq, Az, As,A4,As and three meetings/,,M»,Ms. Partici-
pants are defined @articipant§ M) = { A1, As}, participant M)
with initial value (V;, d;) € Sini wasbumpedf (Vi, d;) ¢ = {A1, A2}, participantg M3) = {Az2, A4, A5 }. Variables within
Stina. Thatis,V; is assigned a final value different from its ~ @n agent must have different values corresponding to diftestart
initial value or in the case of an incomplete solution, unas- times, while the variables corresponding to the same ngetinst
signed a final value. The total number of bumped variables D€ assigned the same value to satisfy the inter-agent agreeon-
measures the amount of schedule disruption that is neededStraint.
to schedule the new variable. All other things equal, an al-
gorithm that is able to obtain a solution with fewer bumpsis 3. SOLUTIONS FOR PIMAP
more desirable than one that requires greater bumps. We describe a protocol for piMAP that guarantees a valid as-
signment. The protocol does not guarantee a complete assign

The goal is find a valid and complete assignment for the vari-
ables in}’. This incremental aspect of the problem raises

the need for the bumping strategies described in this paper.
Given a final solutionSy;,.;, we say a variabld; € V

Privacy: The information that may be exchanged among

agents is limited due to a desire to maintain distributiod an
privacy. In particular, we assume the following condition.

— A; € participant{V;) does not communicate informa-
tion aboutV; to any agent who is not iparticipantg V)

For example, a variable’s current value or the participahts
a variable are not communicated to any agent who is not a
participant in the variable.

Finding a solution to MAP under this condition is challeng-

because additional complexity would be necessary. Insiééat
cusing on complexity of the protocol, our main purpose isge u
this protocol to support investigation of bumping stragsgi

3.1 lIterative Agreement Protocol

The Iterative Agreement Protocol (IAP) described in thigties
is used to obtain valid solutions to a piMAP problem. It is &&m
to the protocol outlined by Sen and Durfee [17]. Each vaeahl
has a unique participant who is the designatgtiator of V;. The
initiator proposes a single value and collects responges the
other participants in a sequencerofinds In each round, the ini-

ing in part because the indirect constraints that ariseutiivo
chains of constraints often cross privacy boundries and so
cannot be made easily visible to any single agent.

2.2 Meeting Scheduling as piMAP

Multiagent meeting scheduling requires a set of agehts=
{A1, As, ..., A} to pair aset of meetingdt = { M., Mo, ..., M, }
with a set of timeslot§¥” = {71, 1%, ..., T } according to a set of
constraints. For simplicity, we assume each meeting hasaime
durationd, and7 is a set of discrete non-overlapping timeslots of
lengthd. A valid solution must satisfy three constraints: a) each
meeting is assigned to exactly one timeslot, b) no attenslee-i
quired to attend more than one meeting at the same time, @il c)
the attendees of a given meeting agree on its assigned dimég
represent this problem using piMAP as follows.

We define a piMAP variablé/; for each meetingV/;, and an
piMAP valued; for each timeslof’;. Theparticipantsof variable
V; correspond to the attendees of meetivig. The piMAP inter-
agent agreement constraint ensures that meeting atteagiesson
the start time of the meeting. The piMAP intra-agent corstra
C; is satisfied if and only if no value fror is assigned to more
than one variable imars(A4;), i.e., no timeslot is double-booked in
an agents schedule. Although beyond the scope of this péper,

tiator sends a single proposdl;, d;) and each participant decides
whether to accept or reject the proposal. Each participalnws
these steps:

o If the proposed assignment does not violate the particgpant
intra-agent constrain€;, it accepts the proposal immedi-
ately.

e Else, the agent uses a bumping strategy to determine whether
to accept or reject the proposal. (We will discuss bumping
strategies in the remainder of this paper.)

o If the participant accepts the proposal, it tentativelyeress
d; for V; and will reject any future proposals that conflict
with this tentative assignment.

The initiator collects the responses from all participaint®ach
round and follows these steps:

e The initiator checks if all participants have accepted tine c
rent round’s proposal.

e If yes, the assignment is confirmed with all participants in
one additional round of messages and everyone releases all
other tentatively reserved values figrif any.

392

¢ If no, the protocol continues in rounds until the initiat@sh
no more values to propose, in which case the initiator de-
clares failure and all agents release their reserved values

3.2 Bumping Strategies

In the Iterative Agreement Protocol, when agehtreceives a
value assignment propos@;, d;), it must choose whether to ac-
cept or reject the valué;. A bumping strategy is a rule employed
by an agent to make this decision. The is a key algorithmigsaet
point that can have a large effect on amout of schedule disrup
and scheduling failure rate.

Possible strategies differ in the amount of knowledge thaisk
sumed. We introduce a set of strategies that range from etetypl
uninformed to increasing amounts of knowledge. In the imiedl
strategies, the idea is to use knowledge about agents tacpred
which variables will be difficult to reschedule and then aMmimp-
ing them.

3.2.1 Uninformed

These simple fixed strategies require no knowledge.

- Always Strategy: Always accept a proposal, and reschedule
bumped variables to resolve conflicts.

- Never Strategy: Never accept a proposal if the proposed assign-
ment results in a conflict.

3.2.2 Simple Informed

This strategy requires knowledge of the number of partitipa
of variables, but requires no further knowledge of the otgents.

- NumParticipants Strategy: If a proposal(V;, d;) conflicts with
current assignmer(f;, d;), accept the proposal only if the size
of participantgV;) is less than the size ghrticipantgV;).

The intuition is that variables with fewer participants agesier
to reschedule and so should be bumped in favor of variablgs wi
greater participants.

Failure rate over 500 runs

0.75

0.5

0.25

Pct of Failed Runs

Nvr NumPart SD

Bumping Strategy

Alwys

Figure 2: Comparison of bumping strategies in a four level or
ganization hierarchy of 32 agents.

later, each agent is operating on behalf of a human so theImode
could take into account the stubbornness of the other ageitg o
promptness of reply. To be computationally convenient, ege-
sent this model as a single number called a “scheduling wiifit
factor. In this paper, we will use average schedule densittha
scheduling difficulty factor.

Let Difficulty(V;) be a number denoting tleeheduling difficulty
of a variableV;, i.e., if Difficulty(V;) > Difficulty(V;), then find-
ing a consistent value fdr; is expected to be more “difficult” than
V;. Concretely, we calculate scheduling difficulty by cortielg it
with the probability that a proposed value is unassigned| ipaa-
ticipants current schedules. LBen; = | Vars(A;) | = | D | be
theschedule densityf an agentd;. If A1,As,...,Ax are the partici-
pants in variablé’;, and Den,Dens,....Den; are the participants
respective schedule densities, we calculate the schegdiifficulty
of V; as:

Difficulty(V;) = (1 — Deni1) x (1 — Denz) X ... X (1 — Deny)

For example, ifA; and A» are participants in variabl®;, with
schedule densities of .9 and .4 respectively, then the pfibpéhat
a given value is unassigned by both participants is caledlas

What is the maximum number of bumps possible when agents Difficulty(V;) = (1 — 0.9) x (1 — 0.4) = 0.06. This is an ap-

use this strategy to schedule a variablewith n participants? In
the worst case, the initiator proposes to the other1 participants
a value that conflicts with a unique variable in each’s lochkeslule
and each such variable has-1 participants. Sinca—1 < n, each
of then — 1 participants ofV; will bump, resulting inn — 1 bumps.
In turn, the rescheduling of the— 1 bumped variables could result
in bumps ofn — 2 variables each, for a total ¢h — 1)(n — 2)
bumps. Assuming: is the minimum number of participants for
any variable, the following formula gives the maximum numabie
bumps possible when scheduling a variable witbarticipants and
all agents use thlumParticipantdoumping strategy:

n—1—k 1

Bumpgn) = Y [[(n-1) -

i=0 j=0

@)

For example, ifn = 4 and every variable has at least 2 partic-
ipants ¢ = 2), then the maximum number of bumps possible is
3+ 3 x 2 = 9. An attractive feature of this strategy is that it
provides an upper bound on the amount of schedule disrutttain
may occur.

3.2.3 Scheduling Difficulty (SD)

proximation because it assumes thatand A, have independent
schedules, which may not be strictly true.
Finally, the bumping strategy is defined as follows.

- SD Strategy: If a proposal(V;, d;) conflicts with current assign-
ment(V;, d;), accept the proposal if and onlyDiifficulty(V;) >
Difficulty(V;).

The intuition is that variables with less constrained pgrtnts
are easier to reschedule and so should be bumped in favoriof va
ables with highly constrained participants.

4. EXPERIMENTAL RESULTS

An important component for development of DCR techniques is
evaluation in realistic testbeds or on realistic benchmarkiost
existing work has focused on the use of abstract problents asic
distributed graph coloring. We evaluate our techniquesiéncon-
text of theCMRadar Projec{13] whose goal is to develop person-
alized assistant agents that are able to make people maiewefi
by automating many routine tasks such as meeting scheduling

In this section, we first describe a simulator for generatimg-
tiagent meeting scheduling problems. Then, we use thelulittd

This strategy assumes that each agent is given or has built aCMRadar agents to execute the Iterative Agreement Protwiciol

model from experience of other agents’ ability or willingseto
accept proposals. For example in the CMRadar domain dieduss

393

different bumping strategies and present our experimeasalts in
this domain.

4.1 Experimental Testbed

We evaluate each strategy over a numbeuo& Each run con- Bump Strategy = Always Bump Strategy = Never
sists of two phases, a) a centralized problem generatiosepiiad 800 500
b) a distributed problem solving phase. We describe eackepina
turn.

400
300

400
300
200
100

200
100

Number of Runs
Number of Runs

Problem Generation The problem generation phase has three steps.
In step one, we generate a set of CMRadar agents with empty
calendars but each with a desired schedule density as spec-
ified by an input parameter. Each agent’s calendar has 50
timeslots to simulate a 5 day, 10-hr/day work week. In step
two, we repeatedly generate a meeting between a random
subset of the agents, choose a random mutually free timeslot
and insert the meeting into the calendars. We continue until
all calendars are filled to their desired density. The number 200
of attendees for each meeting is chosen according to a-distri a0 |
bution in which meetings of more people are less likely than
meetings with fewer people, and every meeting has at least 10 ' I I li. | 10 I I bin..
two attendees. In step three, we generate one additional new %0 2 4 6 8 10 12 14516 0 2 4 6 8 10 12 14516
meetingM,,+1 that must be scheduled in Phase 2. The at- Number of Bumps Number of Bumps
tendees of meetind/,,+1 are chosen to be a random subset
of the agents, with the size of the meeting as an input param-
eter. One of them is randomly chosen to be the initiator.

nlw 0
0 2 4 6 8 10 12 14~16 0 2 4 6 8 10 12 14>16
Number of Bumps Number of Bumps

o

Bump Strategy = NumPart Bump Strategy = SD
500 500 [~ T

400

400
300
200

Number of Runs
Number of Runs

Figure 3: Measuring schedule disruption for four bumping
strategies.
Problem Solving The problem solving phase is completely dis-

tributed. The CMRadar agents live in a simulated distridute

environment and are able to pass simulated email messages

. . X . Failure rate with varying organization size
between them. Their goal is to find a timeslot for the new

1 q T
meeting{ M,,+1 } while successfully rescheduling any bumped 2 & o
meetings. That is, the goal is to find a valid and complete g 082 HumAd
assignment of timeslots to meetings. We measure the num- 2 o6l]
ber of failed runsdefined as a run in which this goal is not :_._E /YA‘ ,/’\.
achieved after a given amount of time. Failures occur either 2 047 M |
becagse the initiator gives up on scheduling the meeting or a g 0.2 A,
max time elapses. o R

0 i e V77

4.2 Experiments in a Hierarchical Agent Or- 0 10 20 30 40 50 60 70
ganization Number of agents in organization

Human organizations typically have hierarchies in whidahler
ranked people have denser calendars than lower ranked Wrees.
experiment with an organization with four levels with 8 atgeim
each level, for a total of 32 agents. The four levels haveainit
schedule densities of 90,70,50,30 percent respectivelyagénts
use the same strategy. The size of the new meeting was fixed to
four agents. The empirical results over 500 runs for eactiegy
are shown in Figure 2.

The Always strategy fails to schedule all the meetings intmos
cases. Closer inspection reveals that every failure isathetexpi-
ration of the max time limit. We see the Always strategy isesid
able (at least when all agents employ it simultaneously)eamire
discretionary strategy is needed. The Never strategy diaglg
better, but still fails in roughly half the cases. The sligmore in-
formed strategWumParticipantsioes still better with a failure rate
of 0.28. Finally, the failure rate is reduced to 0.02 using $tD
strategy. We conclude that th#D strategy significantly reduces
the number of scheduling failures in our experiments. These
sults demonstrate how agents are able to use additionall&dge
of other agents (their schedule densities) to make moretafée
local scheduling decisions.

Next, we examine the disruption caused by each bumping strat
egy. Figure 3 shows histograms depicting the numbéuaipsfor
each strategy. Each histogram has on its y-axis the numbrensf 4.3 V.arymg Organlzatlon Size and Meetmg
out of 500 which had the given number of bumps shown on the x- Size
axis. Figure 3 (a) shows that the Always strategy resultssigif- Figure 4 contrasts the strategies as we increase the site of t

Figure 4: Comparison of bumping strategies with varying or-
ganization size.

icant number of bumps; over 350 runs had greater than 16 bumps
Figure 3 (b) shows that the Never strategy has zero bumpdifor a
500 runs, as should be expected for this strategy. Figurg angt

(d) show the schedule disruption for tNeimParticipantsstrategy

and S D strategy, respectively. Both strategies perform compara-
bly, although theSD strategy has a slightly higher average. We
notice that theNum Participants strategy is often significantly
less than 9 as computed by Equation 1 in this case where the new
meeting has 4 participants.

Finally, Table 1 shows for each strategy the average number o
rounds, messages and number of timeouts out of the 500 rus. A
shown in the third column, the Always strategy results inamc
trolled bumping until a max time limit is reached. Note albatt
the NumParticipantsand SD strategy require similar amounts of
rounds and messages. This is significant because it shownthéha
reduction in failure rate shown in Figure 2 is obtained witha
decrease in efficiency.

394

Table 1: Number of rounds, msgs, and timeouts for four bumpirg strategies.

Strategy Avg Rounds| Avg Msgs | NumTimeouts/NumRung
Always 300 2843 384/500
Never 13 80 0/500
NumParticipants 9.57 38 0/500
SD 10.41 49 0/500
Failure rate with varying meeting size centralized scheduler with a global view of all calendalthoaigh
user preferences are distributed and may be kept private.
[%2]
3 5.2 Distributed Scheduling
% Previous research in distributed scheduling has focusadsari-
5 ety of domains including job-shop scheduling [19], airpsmttedul-
g ing [3] [14] and medical scheduling [10] [5]. One of the more i
g fluential ideas from previous research in distributed salied has
& pe . . % been the communication of high-level information callextuee
2 3 4 5 6 7 8 9 10 measures [19]. In this approach, agents coordinate theédsding
Size of meeting decisions by communicating high-level information abdnit lo-
cal scheduling problem, such as their demand for a rescsndbat
Figure 5: Comparison of bumping strategies with varying sie agents can ensure resources are allocated to the mostatoedtr
of new meeting. agents. The scheduling difficulty models introduced in Bec3.2

can be viewed as an instantiation of this heuristic approach

organization. Each datapoint represents the average ofur0 5.3 Distributed Constraint Reasoning

We see scale up to organization sizes of up to 64 agents. e qu There exists some work in DCR dealing explicitly with priyac
itative results from the previous section in which the Skxtstyy most notably the work of Yokoo et al. [21] and Silaghi et al8][1
outperforms, continue to be seen. These approaches have focused on the use of strong crypitdgra
Figure 5 contrasts the strategies as we increase the nurhber otechniques such as using homomorphic encryption functmas-
attendees in the new meeting to be scheduled. Each datappint code communicated information. Yokoo et al. present a Secur
resents the average over 100 runs. We see that meetings@lOpt DisCSP algorithm that provides privacy guarantees and¢tieal
agents are able to be scheduled with a high likelihood ofesgc guarantees on algorithm completeness.
(failure rate = 20%).

6. CONCLUSION

5. RELATED WORK We have modeled an important class of scheduling problems as
There has been significant research on meeting schedulimg, b a form of DCR in which multiple agents must assign a set of val-

only a subset of this research has considered the problenhes i ues to a set of variables according to local intra-agenttcainss

ently decentralized. Of this subset, very few works havei$ed and external inter-agent equality constraints. We preskone of

explicitly on its incremental aspect and the consequentpign the first informed heuristic approaches to DCR in which agest

problem. Indeed, effective strategies for deciding whereszhed- given scheduling difficulty models of other agents in ordedeé-

ule meetings is lacking in previous distributed meetingesiching cide when to modify existing assignments. We show that this a

research. proach reduces the scheduling failure rate and controlartieint
We classify related research into three categories, ngaitibmeet- of schedule disruption. In future work, we are interestedewel-

ing scheduling, distributed scheduling in other domaimsl dis- oping theoretically complete techniques for piMAP and dswis-

tributed constraint reasoning. ing in how useful heuristic information about other ager#ts be

5.1 Multiagent Meeting Scheduling leamed through experience.

Sen and Durfee have done extensive work in multiagent meet- Acknowledgements
ing scheduling [16, 17]. They formalize the multiagent nreget
scheduling problem and identify a family of negotiation tpewls
aimed at searching for feasible solutions in a distributadmer[17].
They also describe a contract-net approach for multiageetimg
scheduling [16] in which rescheduling and cancellationxi$ting
meetings is briefly discussed. However, rescheduling ctiex
meetings or modeling of other agents to improve performduace
not been a major focus.

Freuder, Minca and Wallace [8] have previously investidateet- 7. REFERENCES

This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
NBCHDO030010. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of thems)}

and do not necessarily reflect the views of the DARPA or the De-
partment of Interior-National Business Center (DOI-NBC).

ing scheduling within the Distributed Constraint Reasgrfiame- [1] J.C. Beck, A.J. Davenport, E.M. Sitarski, and M.S. Fox.
work. Their work is notable for empirically demonstratingia- Texture-based heuristics for scheduling revisited. In
vacy/efficiency tradeoff in multiagent meeting scheduliighrati Proceedings of AAAI-97

and collegeaues have taken an economic approach to saigettuli [2] C. Bessire, A. Maestre, and P. Meseguer. Distributed
which agents express preferences for meeting times usingna m dynamic backtracking. IlRICAI Workshop on Distributed
etary “points” system [6]. Their approach assumes exigt@ia Constraint Reasoning

395

[3] M.H. Chia, D.E. Neiman, and V.R. Lesser. Coordinating
Asynchronous Agent Activities in a Distributed Scheduling
System. InProceedings of International Conference on
Multi-Agent Systemsanuary 1998.

[4] R. DechterConstraint ProcessingVlorgan Kaufmann, 2003.

[5] K. Decker and J. Li. Coordinated hospital patient schiedu

In Proceedings of International Conference on Multi-Agent

Systemsl1998.

Eithan Ephrati, Gilad Zlotkin, and Jeffrey S. RosensnhA

non—-manipulable meeting scheduling system. In

Proceedings of the 13th International Workshop on

Distributed Artificial Intelligence Seatle, WA, 1994.

[7] B. Faltings and S. Macho-Gonzalez. Open constraint
satisfaction. IrPrinciples and Practice of Constraint
Programming - CP 2002bages 356-370, 2002.

[8] E. C. Freuder, M. Minca, and R. J. Wallace.
Privacy/efficiency tradeoffs in distributed meeting sakied)
by constraint-based agents.|ICAI-2001 Workshop on
Distributed Constraint Reasoning001.

[9] L. Garrido and K. Sycara. Multi-agent meeting scheduytlin
Preliminary experimental results. Rroceedings of the First
International Conference on Multi-Agent Systems
(ICMAS’95) The MIT Press: Cambridge, MA, USA.

[10] M. Hannebauer and S. Mller. Distributed constraint
optimization for medical appointment scheduling. In
Proceedings of the Fifth International Conference on
Autonomous Agent2001.

[11] R. Mailler and V. Lesser. A mediation based protocol for
distributed constraint satisfaction. Tine Fourth
International Workshop on Distributed Constraint
Reasoning2003.

[12] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guaranteedtrtificial Intelligence 2004.

[13] P.J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A
personal assistant agent for calendar managemeAgdnt
Oriented Information Systems, (AQI3D04.

[14] D. Neiman, D. Hildum, V. Lesser, and T. Sandholm.
Exploiting Meta-Level Information in a Distributed
Scheduling System. IAAAI, 1994.

[15] J. Oh and S.F. Smith. Learning user preferences for
distributed calendar scheduling. Rmoc. 5th International
Conference on Practice and Theory of Automated
Timetabling (PATAT,)Pittsburgh, PA, 2004.

[16] Sandip Sen and Edmund Durfee. A Contracting Model for
Flexible Distributed Schedulinginnals of Operations
Research65:195-222, 1996.

[17] Sandip Sen and Edmund H. Durfee. A formal study of
distributed meeting scheduling. @Group Decision and
Negotiation volume 7, pages 265-289, 1998.

[18] M.C. Silaghi and D. Mitra. Distributed constraint sdtiction
and optimization with privacy enforcement.3md IC on
Intelligence Agent Technologg004.

[19] K. Sycara, S. Roth, N. Sadeh, and M. S. Fox. Distributed
constrained heuristic seardEEE Transactions on Systems,
Man, and Cybernetic21:1446-1461, 1991.

[20] M. Yokoo. Distributed Constraint Satisfaction:Foundation of
Cooperation in Multi-agent SystenfSpringer, 2001.

[21] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distrillite
csp: Reaching agreement without revealing private
information. InConstraint Programming2002.

[6

—

396

