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ABSTRACT
Collaboration plays a critical role when a team is striving
for goals that are difficult to achieve by an individual. In
previous work, we defined the ETAPP (Environment-Task-
Agents-Policy-Protocol) framework, which describes the col-
laboration of a team of agents. According to this frame-
work, team members propose agents to perform a task, and
the team applies a voting policy to choose an agent for the
task. In this paper, we expand on three parameters of this
framework. We model team members that have variable
proposal making attitudes, and team members whose perfor-
mance exhibits different levels of stability. We then consider
two new voting policies for group decision-making, and use
a simulation-based evaluation to investigate the interaction
between the different types of team members and the vot-
ing policies. Our results show that our previous optimistic
voting policy, which chooses the agent that seems to have
the best performance, yields an unstable task performance
for teams where even a few agents do not make the best
possible proposal. In contrast, our new voting policies yield
a stable task performance.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelli-
gence—Multiagent systems

General Terms
Performance, Design, Reliability

Keywords
Voting Policies, Agent Collaboration, Unreliable Team
Members, Variable Performance

1. INTRODUCTION
In many multi-agent collaboration scenarios, the agents

involved have different opinions about how to perform a task
and who should perform it. Voting policies are methods that
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elicit the opinions of individuals in order to make group de-
cisions. However, agents may not always be reliable when
they propose agents for a task, thus compromising the per-
formance of the group. Making reliable proposals means
that agents make proposals to optimize utility according to
the criteria of a task (rather than an agent’s own criteria).
Two examples of task criteria are to improve the quality and
to reduce the time spent to achieve a task.

The goal of our research is to provide insights into how
unreliable agents influence team performance, and propose
group decision procedures that cope with unreliable agents
in the context of a collaborative activity – the allocation
of agents to tasks. We investigate these aspects under the
ETAPP framework. This framework expresses the collabo-
ration of a team of agents in terms of five operating param-
eters: Environment, Task, Agents, Policy and Protocol [5].
In our framework, agents do not accurately know the capa-
bilities of team members, and combine their knowledge and
coordinate their activities by means of a group decision pro-
cedure. Specifically, agents decide which agent should per-
form a task by applying an optimistic voting policy, which
chooses the proposed agent with the most promising perfor-
mance compared to all the other proposed agents. This pol-
icy was applied under the simplistic assumption that agents
always make proposals in a reliable manner with the best
intention for the group. However, decisions made under this
assumption could lead to bad team performance when some
agents exhibit unreliable proposal-making behaviour.

To investigate the impact of such behaviour, we extend
the ETAPP framework by considering the following types
of unreliable agents, which can make proposals that are not
beneficial for a team.

• Selfish. If the agent considers a task to be onerous,
it proposes other, perhaps less qualified, agents for the
task; or alternatively, if a task is of benefit to the agent,
it may propose itself, while disregarding more qualified
candidates.

• Lazy. The agent knowingly uses less information than
is available when it proposes agents for a task.

• Corrupt. The agent attempts to undermine the collab-
oration when it proposes agents for a task.

• Conservative. The agent does not use the most recent
information to update its opinion of team members, thus
proposing agents on the basis of old information.
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We propose to cope with unreliable team members by ap-
plying different voting policies that enable a team to perform
in a stable manner. In this paper, we consider majority vot-
ing, where the agent preferred by most team members is
chosen, and weighted-observation voting, where a proposal
for an agent who has been previously seen performing a task
is weighed higher than a proposal for an agent that was not
observed in action before.

Some researchers assume a trusted third party that is de-
termined by reputation mechanisms [6]. This would be an
agent that is deemed to make proposals in a more reliable
manner than other agents in a team. However, in our frame-
work, there is no reason to assume that any agent will make
more reliable decisions than other agents. This means that
agents do not know if team members are unreliable or reli-
able, and therefore the team is not able to exclude unreliable
team members from the decision making process.

An additional extension considered in this research con-
sists of building models of agents that exhibit a non-
deterministic performance. That is, each time an agent
performs a task, its level of performance may change due
to the influence of factors that are not explicit. This ex-
tension requires a probabilistic representation of an agent’s
task-related capabilities, such as mean level of performance
and stability; a procedure for building agent models from
a sequence of observations; and a representation of an ob-
server’s observation capacity (which is similar to attention
span), i.e., how many observations can the observer remem-
ber.

We assess the influence of these factors on task perfor-
mance by means of a simulation where we vary the stabil-
ity of agents and their observation capacity, and the type
and quality of the proposals made by agents (by considering
teams composed of reliable agents and selfish, lazy, corrupt
or conservative agents), and apply different policies for se-
lecting agents for a task.

Our approach can be applied to a number of examples,
such as the routing problem in peer-to-peer networks, where
a group of peers (also called nodes) is selected based on their
bandwidth to establish a transmission routing between two
remote peers. Each node that is part of a routing provide
bandwidth and consume battery power in order to establish
a transmission. Single peers have incomplete knowledge of
the bandwidth of peers in the network, and may ask other
peers for their opinion about which routing is optimal. This
process of collecting and assessing other peers’ opinion re-
sembles a voting process. Each peer in such a network is
concerned to preserve its own bandwidth and battery power,
and thus a peer may only propose other peers for the rout-
ing (rather than itself). The voting policies proposed in this
paper are designed to cope with the problem of unreliable
peers.

Section 2 outlines the ETAPP framework and dis-
cusses the extensions where we model agents with a non-
deterministic performance and unreliable agents, and con-
sider new voting policies. Our evaluation is described in
Section 3. In Section 4, we consider related research, fol-
lowed by our conclusions.

2. THE ETAPP FRAMEWORK
The ETAPP [5] framework is designed for a decentral-

ized setting, where agents in a group act autonomously to
collaborate with their teammates. Our framework provides
an explicit representation of five operating parameters of a
collaboration: Environment, Task, Agents, Policy and Pro-
tocol. The Task given to the group is to be performed in the
Environment, and the Policy and Protocol are procedures
agreed upon by all the agents in the group, but performed
autonomously (this is similar to abiding by certain rules in
order to belong to a society). Central to the ETAPP frame-
work is the idea that the real capabilities of the agents in
a team are not known to the team members. Hence, indi-
vidual agents employ models of collaborators’ capabilities in
order to estimate the value of contributions of team mem-
bers to a task. The Agents component stores these models
and the mechanisms to reason about them.

The elements of the ETAPP framework are outlined below
(for more details see [5], but note that the Agents component
has been substantially modified since that publication). Our
extensions are described later in this section.

An Environment E is a state space described by pred-
icates which represent properties of objects and relations
between objects. A state in the environment describes the
values of these predicates at a particular step in a collabo-
ration.

A Task T is represented by a tuple with three elements
< ECT , EFT , MST >.

• ECT specifies the Evaluation Criteria relevant to task T ,
e.g., speed, quality or profit. The value for each criterion
ranges between 0 and 1, where 0 corresponds to the worst
possible performance and 1 corresponds to the optimal
performance.

• EFT denotes the Evaluation Function for the task,
which specifies the weights assigned to the Evaluation
Criteria (i.e., their relative importance to the task),
and the way in which the values for these criteria
are combined. For instance, the Evaluation Function
EFT = max

∑n
i=1 eciwi specifies that the task should

maximize a linear combination of n Evaluation Crite-
ria, where wi for i = 1, . . . , n are the weights assigned
to these criteria. These weights range between 0 and 1,
where 0 indicates no impact of a criterion on task per-
formance, and 1 indicates a maximum impact.

• MST denotes a set of MileStones for the task:
MST = {ms0, . . . , msm}, where ms0 represents the ini-
tial state of the task (and is satisfied by default) and msm

represents the goal state. Each milestone is reached by
performing an action.

A team of Agents A comprises agents {A1, . . . , Am},
where m is the number of agents in A. Individual agents
and groups of agents have Internal Resources (IR), which
represent the task-related capabilities of an agent or group.
Individual agents also have Modeling Resources (MR), which
represent the ability of an agent to model agents and reason
about them.

The IR of an agent or group of agents represents how
well they can perform an action in terms of the Evaluation
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Criteria of the task. The values for IR range between 0 and
1, with 0 indicating the worst performance and 1 the best.
For instance, if the Evaluation Criteria of a task are time
and quality, and one of the actions in the environment is
drive, then IRAi(drive) represents the driving performance
of agent Ai in terms of time and quality, i.e., IRAi(drive)=

{Perf time
Ai

(drive),Perf qual
Ai

(drive)}. These capabilities are
not directly observable (only the resultant behaviour can be
observed). Hence, they cannot be used to propose agents for
tasks (but they are necessary to simulate agent performance,
Section 3).

The MR of an agent comprise its Models (M) of the Inter-
nal Resources of agents and groups of agents, the Resource
Limits (RL) of the agent in question, and its Reasoning Ap-
paratus (RA).

• MAi are the models maintained by agent Ai to estimate
IRAj for j = 1, . . . , m, and IRÃk

, where Ãk is a subset of
k agents in A for k ∈ {2, ..., |A|} (agent Ai can model the
performance of different subsets of agents). Ai’s estima-
tion of the capabilities of agents in the team (including
its own capabilities) may differ from their actual per-
formance, in particular if agent Ai has never observed
the team in action. This estimation may be updated as
agent Ai observes the real performance of the agents in
the team.

• The RL of an agent pertain to the amount of mem-
ory available to store models of agents and groups, the
agent’s ability to update these models and generate pro-
posals, and its ability to send and receive proposals (an
agent that has become disconnected cannot send propos-
als, even if it can generate them).

• The RA consists of the processes required by proto-
col P, which enable an agent to act in an environment
and interact with collaborators. These processes are:
(1) proposing agents for an action (selecting agents from
a list of candidates); (2) communicating this proposal to
other agents; (3) applying a policy PA to select a pro-
posal from the communicated proposals; and (4) updat-
ing M based on the observed performance of the selected
agent(s).

A Policy PA is a joint policy (adopted by all the agents in
the team) for making group decisions about assigning agents
to activities. Each agent proposes one or more agents for
an action (according to its models M and its RA). Upon
receiving all the proposals, each agent uses PA for selecting
one proposal.

A Protocol P is a process that is followed by all the agents
in the group to coordinate their interaction. According to
this protocol, all agents generate a proposal and communi-
cate it to the other agents. Next, each agent applies PA to
select a proposal, observes the performance of the selected
agent(s), and updates its models accordingly. It is worth
noting that even though all agents follow the same proto-
col, the manner in which individual steps are performed is
determined by the agents’ RA.

2.1 Extension of ETAPP
In this paper, we extend the ETAPP framework along

three agent-modeling dimensions – Internal Resources, Re-
source Limits and Reasoning Apparatus, with particular em-
phasis on the proposal-generation procedure of unreliable
agents, and the voting policies that deal with the proposals
made by these agents.

Internal Resources. In the original framework we as-
sumed that agents’ performance is deterministic and invari-
ant. Thus, IRAi(action) is a single number between 0 and 1.
However, in realistic settings, agents exhibit variable perfor-
mance (e.g., they could be having a bad day). We represent
such a performance by means of a truncated normal distri-
bution, where the mean represents the ability of an agent,
and the standard deviation represents its stability (trunca-
tion is required so that we don’t exceed the [0,1] thresholds).
As stated above, these values are not observable, but they
are the basis from which the observed performance of an
agent is obtained during simulations.

Resource Limits. Originally, due to the deterministic
performance of agents, a single observation of an agent’s
performance yielded an accurate model of its ability. How-
ever, this is clearly not the case if the performance is non-
deterministic. In order to cope with this situation, we in-
clude Observation Capacity (OC) in our model of the Re-
source Limits of agents. This parameter, which is similar
to attention span [11], specifies how many observations of
the performance of each agent or group can be stored by
an agent in its memory. When this limit is exceeded, the
observer agent retains a window of the last K observations
(forgetting the initial ones).

Reasoning Apparatus. The variable performance
of agents demands the implementation of a new model-
updating procedure. As for Resource Limits, our previous
single-update method is unlikely to yield accurate results.
We therefore propose a simple procedure whereby an agent
re-calculates the mean and standard deviation of the ob-
served performance of an agent or group every time they per-
form an action. Notice, however, that the results obtained
by this procedure are moderated by the observation capacity
of the observing agent. That is, if the observing agent can
remember only the last K observations of an agent’s perfor-
mance, then the mean and standard deviation are calculated
from these observations.

The attitude of an agent influences its proposal-making
procedure and its model-updating procedure. An agent’s
attitude is a feature that is not known to other agents. We
define four types of unreliable agents in the context of these
RA processes as follows.

• A selfish agent proposes itself with a high performance
when it expects a positive reward for a task.1

• A lazy agent does not maintain models of team mem-
bers, thus it randomly selects an agent when making a
proposal, and attributes to it a random performance.

• A corrupt agent proposes a random agent, attributing
to it a high level of performance, in order to undermine
the collaboration.

1In future research, we will consider agents that propose
other agents when they expect a negative reward for a task.
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• A conservative agent does not observe the behaviour
of the team members, and hence does not update its
models, using only the initial models of collaborators
when it makes proposals.

Policy. In previous work, we implemented an optimistic
voting policy, where the agent with the most promising per-
formance was chosen for a task. This policy is adequate
when the agents that make proposals are reliable. However,
since unreliable agents can now make proposals, we consider
two additional policies: majority and weighted-observation.
According to the majority policy, the agent that receives the
most votes is chosen. In contrast, the weighted-observation
policy gives more weight to proposals for agents that have
some “credibility”. That is, a proposal for an agent who has
been previously seen performing a task is weighed higher
than a proposal for an agent that was not observed in ac-
tion before. This weight is proportional to the number of
times the observed agent has been seen in action. For ex-
ample, if agent A1 has just performed a task, while A2 has
never performed a task, the votes of the agents that prefer
A1 are weighed higher (×2) than the votes of the agents that
prefer A2.

2.2 Example – Surf Rescue Scenario
In this section, we present an example that illustrates the

ETAPP framework in the context of the Surf Rescue (SR)
scenario used in our simulation-based evaluation (Section 3).
In this scenario, the environment E consists of the beach and
the ocean, and the task is to rescue a distressed person (DP)
in the shortest time possible. This means that the set of
evaluation criteria is ECT = {ectime}, and the evaluation
function is EFT = max{ectime} (recall that a short time
has a high score). The milestones in this scenario are

MST = {ms0, ms1}, where

· ms0 = at(loc(A), beach) ∧ at(loc(DP ), ocean),

· ms1 = at(loc(DP ), beach) ∧ at(loc(A), beach).

In other words, ms0 represents the initial state, where the
group of agents is located at the beach and the distressed
person is in the ocean, and ms1 represents the goal state,
where the distressed person is brought back to the beach.

In this example, we have three lifesavers A = {A1, A2, A3}
at the beach. The task consists of performing one action – to
rescue the distressed person. The values for the IR of A1, A2

and A3 for this action are IRA1(rescue) = 0.5 (stdv=0.4),
IRA2(rescue) = 0.8 (stdv=0.3), and IRA3(rescue) = 0.3
(stdv=0.2). That is, agent A1 has a medium performance
and is unstable, A2 has a high performance and is a bit more
stable, and A3 has a low performance and high stability.

For clarity of exposition, we assume that only agents A1

and A2 can select agents for a rescue. These two agents
(which are both observers and lifesavers) maintain models
of lifesaver agents A1, A2 and A3 (MA1(A1), MA1(A2) and
MA1(A3), and MA2(A1), MA2(A2) and MA2(A3)), and gen-
erate proposals involving the lifesaver agents. The models
are initialized randomly (i.e., each agent has an a priori,
random opinion of the other agents). Both A1 and A2 store
the last three observations made of the performance of the
lifesavers (OC=3), and apply the majority policy for select-
ing a lifesaver for a rescue. This policy chooses the lifesaver

that most agents voted for (in the event of a tie, the top
agent in an ordered list of agents is selected).

Table 1 illustrates the assignment of agents to a sequence
of rescues under the majority voting policy (the values ob-
tained after each rescue are boldfaced). The first column
shows the time of the rescue; the second column lists the ob-
server agents; the third and fourth columns show the agent
proposed by each observer agent and the agent selected by
the majority voting policy, respectively. Columns 5-7 con-
tain the observed performance of the lifesaver agents; and
columns 8-10 contain the models resulting from these ob-
servations (we have listed only the mean of the observed
performance).

The first two rows in Table 1 (corresponding to time T0)
contain the initial conditions of the collaboration. Columns
8-10 contain the initial values of the models maintained by
A1 and A2 for the Internal Resources (rescue performance)
of A1, A2 and A3. These initial values, which are not con-
sistent with the real performance of the agents in question,
are also recorded as the first “observed” performance of A1,
A2 and A3. This is done to model a behaviour whereby
an agent’s initial “opinion” of the members of its team can
be influenced, but not instantly replaced, by observations of
their performance.

According to the models maintained by A1 and A2, A3

has the best performance. Hence, A3 is selected by both A1

and A2 when a rescue is announced at time T1. However, as
expected from the IR of A3, the agent’s actual performance
(0.4 at time T1, Column 7) is poorer than that anticipated by
the observer agents. Both agents observe this performance,
and update their models accordingly (Column 10).

Now, when a new rescue must be performed (at time T2),
agent A1 proposes A3, as it is still the best according to
its models, but agent A2 proposes A1. As indicated above,
according to our tie-breaking rule, the first agent in the or-
dered list of agents is chosen. This is A1, as it appears in
the list before A3. However, A1 does not perform well in the
rescue (0.3 at time T2, Column 5), which lowers MA2(A1) to
0.45 (Column 8). As a result, A3 is once more the top choice
of both observer agents for the next rescue (at time T3). But
A3 performs quite badly (0.2 at time T3, Column 7), thereby
further lowering its expected performance according to the
models maintained by the observers (Column 10).

At this stage, the bad performance of both A1 and A3

has yielded models with low mean values for these agents.
Hence, for the next rescue, A2 is chosen by both observer
agents (at time T4). This is a high-performing agent that has
been under-estimated by both observers. Its good perfor-
mance (0.8 at time T4, Column 6) raises the expected value
in the models maintained by both observers (Column 9). As
a result, A2, who is now clearly preferred by both observers,
is chosen for the rescue at time T5, rendering once more a
good performance (0.7 at time T5, Column 6).

At this point, the models maintained by the observer
agents are closer to the IR of the lifesavers than the ini-
tial (random) models. Since both observer agents have an
observation capacity of three observations, the next time a
rescue is performed, the initial value will be dropped, which
will further increase the accuracy of the models.
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Table 1: Sample agent assignment to a sequence of rescues.

Time Observer Proposed Selected Observed performance of Models
agent agent agent A1 A2 A3 M(A1) M(A2) M(A3)

T0 A1 0.3 0.4 0.5 0.3 0.4 0.5
A2 0.6 0.5 0.7 0.6 0.5 0.7

T1 A1 A3 A3 0.3 0.4 0.5 0.4 0.3 0.4 0.45
A2 A3 0.6 0.5 0.7 0.4 0.6 0.5 0.55

T2 A1 A3 A1 0.3 0.3 0.4 0.5 0.4 0.3 0.4 0.45
A2 A1 0.6 0.3 0.5 0.7 0.4 0.45 0.5 0.55

T3 A1 A3 A3 0.3 0.3 0.4 0.5 0.4 0.2 0.3 0.4 0.37
A2 A3 0.6 0.3 0.5 0.7 0.4 0.2 0.45 0.5 0.43

T4 A1 A2 A2 0.3 0.3 0.4 0.8 0.5 0.4 0.2 0.3 0.6 0.37
A2 A2 0.6 0.3 0.5 0.8 0.7 0.4 0.2 0.45 0.65 0.43

T5 A1 A2 A2 0.3 0.3 0.4 0.8 0.7 0.5 0.4 0.2 0.3 0.63 0.37
A2 A2 0.6 0.3 0.5 0.8 0.7 0.7 0.4 0.2 0.45 0.67 0.43

3. SIMULATION-BASED EVALUATION
We evaluated our extensions of the ETAPP framework by

means of simulation experiments which assess the impact of
the following parameters on task performance: (1) Internal
Resources, (2) Observation Capacity, (3) Agent Proposal
Making Behaviour, and (4) Voting Policy. The same model-
updating procedure was used in all our experiments (when
OC=1, this procedure reverts to that used in our original
framework). Our simulation is based on the Surf Rescue
(SR) scenario introduced in Section 2.2, where the task is to
rescue a person in distress. However, in our simulation the
team of lifesavers is composed of five agents.

3.1 Simulation parameters
The parameters corresponding to our extensions are var-

ied as follows

• Internal Resources – We defined five teams of agents
with different degrees of stability: Invariant, Stable,
Medium, Unstable and Mixed. The agents in Invariant
teams exhibit the same performance in all the rescues.
Agents in Stable teams exhibit low performance variabil-
ity (the standard deviation of their performance distribu-
tion ranges between 0 and 0.2). The standard deviation
for the performance of agents in Medium teams ranges
between 0.2 and 0.8, and for agents in Unstable teams
between 0.8 and 1. The Mixed team includes a mixture
of stable, medium and unstable agents. The mean of the
performance distribution is randomly initialized for the
agents in all types of teams.2

• Observation capacity – We varied the OC of the
agents between 1 and 8. When OC=i, agents retain the
last i observations made, and when OC=1, their obser-
vation capacity is as for the original ETAPP framework.

• Group proposal-making behaviour – We defined
two parameters that affect the proposal-making be-
haviour of a group of agents: Agent Proposal Making Be-
haviour (APMB) and Number of Unreliable Team mem-
bers (NUT). The APMB parameter determines the type

2In the future, we propose to conduct experiments with
high-performing, medium-performing and low-performing
teams.

of unreliable agents in a team, i.e., selfish, lazy, corrupt
or conservative (Section 2.1).3 The NUT parameter de-
termines how many team members exhibit the unreliable
behaviour specified by APMB . The value of NUT varies
between 0 and m (the number of agents in the team).
NUT=0 means that no agent is unreliable (as for the
original ETAPP framework), and NUT=m means that
all agents are unreliable.

• Voting policy – We experimented with the three poli-
cies mentioned in Section 2.1: optimistic, majority and
weighted observation.

In addition, we constructed two benchmark collaboration
settings: rand and omni.

• The rand (or random) setting defines a lower bound
benchmark, where a rescue is conducted by an agent that
has been chosen randomly from the team. In this setting,
agents do not maintain models of their collaborators’
resources, do not communicate proposals, and do not
update models.

• The omni (or omniscient) setting defines an upper bound
benchmark, where the best-performing agent in the team
is always assigned to a rescue. This setting is consistent
with the traditional assumption of multi-agent systems
whereby agents have accurate knowledge about the per-
formance of team members prior to the collaboration
(i.e., MAi(Aj) = IRAj for i, j = 1, . . . , m). In this set-
ting, agents do not update their models or communi-
cate proposals, because all agents have the same accurate
models.

3.2 Methodology
We conducted two experiments as follows. In the first

experiment, we investigated the interaction between team
stability, agent observation capacity and voting policy, and
the impact of these parameters on task performance. In this
experiment, agents were assumed to be reliable.

3In the future, we will model teams composed of different
types of unreliable agents.
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This assumption was relaxed in our second experiment,
where we investigated the impact of number and type of un-
reliable agents (corrupt, lazy, conservative and selfish) and
voting policy on task performance. In this experiment, we
assumed that all agents exhibit a stable performance, and
have an observation capacity of OC = 3 (this value yields
the best performance for teams of stable agents, Section 3.3).

We ran one simulation for each combination of the sim-
ulation parameters in each experiment. For Experiment 1,
we performed 120 simulations (5 types of teams × 8 values
for OC × 3 voting policies), and for Experiment 2 we ran 72
simulations (4 types of unreliable agents × 6 values for NUT
× 3 voting policies). In addition, we ran one simulation for
each of the benchmark settings, rand and omni. Each sim-
ulation consists of ten trials, each divided into 1000 runs
(we selected this number of trials and runs because it yields
stable and continuous patterns of behaviour). Each run con-
sists of a rescue task that is repeated until convergence is
reached.

The IR and M for each agent are initialized at the begin-
ning of each run. IR are initialized as specified by the type
of the team (e.g., Stable or Unstable), and M are initialized
with random values. We also conducted experiments where
all the models are initialized with a value of 0.5 (medium ex-
pected performance), and with a value of 1.0 (high expected
performance). The overall results are similar to those ob-
tained with the randomly initialized models, except for the
Invariant and Stable group of agents and the 0.5 initial-
ization, which yield a worse average performance. This is
because a run terminates when the chosen agent’s perfor-
mance is repeatedly better than 0.5, and so other agents
who may be better are not given a chance, thereby converg-
ing to a local maximum (Section 3.3). The IR of each agent
remain constant throughout a run (the agent’s performance
is drawn from the distribution specified in the IR), while M
are updated from the observations made for each rescue in
the run.

The process for reaching convergence works as follows. At
the beginning of a run, different lifesavers may be proposed
for a rescue task due to the discrepancy between the models
maintained by the different agents. After each rescue, the
agents update their models based on the performance of the
chosen agent. Hence, when a rescue task is announced in
the next turn, more agents are likely to propose the same
lifesaver (but not necessarily the lifesaver chosen for the pre-
vious task). A run is terminated when the same lifesaver is
chosen in N consecutive turns (we have experimented with
N = 2, 3, 4, 5; the results presented in Section 3.3 are for
N =5).

Our measure of task performance for a run is the mean
of the IR distribution for the agent on which the observers
eventually converged. For instance, in the example in Ta-
ble 1, this agent is A2, whose IRA2(rescue) has mean 0.8
(stdv=0.3). This measure reflects the final outcome of the
combination of the parameters of the simulation for the run
in question.

3.3 Results
Experiment 1. Figure 1 depicts the average task perfor-

mance obtained with two voting policies as a function of OC

(a) Optimistic policy (b) Majority policy

Figure 1: Average task performance obtained with
the optimistic and the majority voting policies plot-
ted against observation capacity for several types of
teams

for our seven types of teams – rand, omni, Invariant, Stable,
Medium, Unstable and Mixed. Figure 1(a) shows the results
obtained with the optimistic policy, and Figure 1(b) shows
the results for the majority policy. The results obtained for
the weighted-observation policy are similar to those obtained
for the majority policy.

As expected, the results for the rand and omni settings
correspond to the worst and best performance respectively,
and are used as a benchmark for comparison with the other
settings. The performance for the Invariant team is slightly
worse than that for the omni setting. This is due to the
fact that agents in the Invariant team sometimes converge
to a local maximum, which is reached when the agents in
the team select an agent that is not the best. This happens
when the agents under-estimate the performance of the best
agent to the extent that it will never be proposed by any
agent in the group, and hence will never perform the task.
These results are consistent with the results obtained for the
rand, omni and default scenarios in our previous work [5].

As seen in Figure 1, the average performance obtained
for the other types of teams is generally worse than that
obtained for the Invariant team. This is due to the higher
variability in agent performance. In fact, the more unstable
the agents in the team are, the worse the performance be-
comes. We posit that the main reason for this outcome is
that the observing agents are unable to update their models
reliably when team members exhibit unstable performance.

The optimistic policy yields a substantially better perfor-
mance for the Invariant and Stable teams than the majority
policy, and it yields a slightly better performance for the
Medium and Mixed teams than the majority policy (these
results are significant with p=0.01). This is because if we
assume that agents are honest and helpful (i.e., they always
make the best proposal according to their models, and se-
lect the best of the proposals communicated by team mem-
bers), the optimistic policy is similar to a global optimiza-
tion, where the agent that appears to be best overall is se-
lected. In contrast, the majority policy selects the most
popular agent, which may not be the best overall.

Task performance improves for Medium and Mixed teams
when agents are able to remember observations of the per-
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(a) Corrupt (b) Lazy (c) Conservative (d) Selfish

Figure 2: Average task performance obtained with the optimistic, majority and weighted-observation voting
policies plotted against the number of unreliable agents which are (a) Corrupt, (b) Lazy, (c) Conservative,
and (d) Selfish.

formance of team members. This improvement is larger for
the optimistic voting policy than for the majority policy
(these results are significant with p=0.01). Further, this
improvement is achieved with only 2-3 observations for the
optimistic policy, and with 4-5 observations for the major-
ity policy. This discrepancy may be caused by the need for
additional “evidence” in order to get several agents to pre-
fer the same agent, as required by the majority policy. The
performance of Unstable teams is not affected by the voting
policy or the agents’ observation capacity, as the agents in
these teams exhibit too much performance variation for the
observer agents to reach reliable conclusions.

Experiment 2. Figure 2 depicts the average task per-
formance obtained with three voting policies as a function
of NUT and our four types of proposal-making behaviours
(selfish, lazy, corrupt and conservative). Additionally, as
above, we considered the rand and omni settings for com-
parison purposes.

We found that the proposal-making behaviour of a group
of agents has a significant influence on task performance.
As expected, the optimistic policy compares favourably with
the other policies when all agents are reliable. However, as
soon as agents make selfish or corrupt proposals, the op-
timistic policy yields a performance that is as bad as that
obtained with a random assignment of agents, i.e., the rand
scenario (Figure 2(a) and Figure 2(d)). A similar but less
dramatic result is obtained for conservative agents (Fig-
ure 2(c)). The reason for these results is that once an agent
proposes an inferior team member with a high attributed
performance, this deficient proposal has a large influence
on the proposal selection process. Only for lazy agents,
which propose random agents with a random performance,
the optimistic policy yields better results than the majority
or weighted-observation policy.

For the corrupt, conservative and selfish agents, as the
value of the NUT parameter increases, the majority and
weighted-observation policies yield a more stable task per-
formance than that obtained with the optimistic policy. In
addition, one or two corrupt or lazy agents have almost no
effect on task performance under the majority and weighted-
observation policies, but as expected, performance deterio-
rates rapidly when there are four or five of these agents.

For groups with corrupt, lazy and selfish agents, the ma-
jority voting policy yields slightly better results than those
obtained with the weighted-observation policy. In con-
trast, for groups with conservative agents, the weighted-
observation policy yields better results. This may be ex-
plained as follows. The added weight of proposals made for
previously observed agents also favours the proposals made
by agents who make observations. These agents in turn are
able to update their models, and thus make more accurate
proposals than those made by conservative agents.

4. RELATED RESEARCH
Several research projects have demonstrated that main-

taining models of features of collaborators can benefit dif-
ferent aspects of task performance. Such features have been
modeled in order to achieve flexible team behaviour in mil-
itary domains [10] and determine collaborators’ behaviour
based on utility functions [4].

Tambe [10] introduced a general teamwork model for com-
munication and behaviour (called STEAM), which enables
members of a team to coordinate their activities in order to
reach a joint goal. However, the dynamic modeling of agents
by team members is limited to a single status variable for
each agent (e.g., “busy” or “shot down”), as opposed to the
capabilities and resource limits modeled in our work.

Suryadi and Gmytrasiewicz [9] and Gmytrasiewicz and
Durfee [4] investigated agents that apply a decision-theoretic
procedure to make decisions that maximize their own indi-
vidual payoffs. This procedure takes into account the “pay-
off matrix” of collaborators, which in turn is learned from
observations of their behaviour. Our system also learns the
behaviour of other agents from observations (although we
learn only the mean and standard deviation of their per-
formance). However, whereas Suryadi and Gmytrasiewicz’s
agents make individual decisions and do not communicate
with each other, our agents communicate proposals in order
to make a joint decision.

Our OC parameter is similar to the attentional limitations
considered in [11], and is related to the memory bounded-
ness investigated in [8]. However, both Walker [11] and Ru-
binstein [8] also considered inferential limitations, while we
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consider agent-modeling limitations.
Our agents’ ability to build models of agents from obser-

vations resembles the work of Davison and Hirsh [3]. Their
model gave greater weight to more recent events than to
earlier events, while we achieve a similar behaviour through
our OC parameter, which specifies that only the last K ob-
servations should be considered.

Voting has been investigated in the context of collabora-
tive filtering, where the preference of one agent is predicted
by taking into account the preferences of other agents [7].
Conitzer and Sandholm [2] have recently studied the prob-
lem of voting manipulation. They define “tweaks” that are
designed to make manipulation of voting protocols computa-
tionally hard. In our research, we consider different types of
unreliable proposal-making behaviours, while Conitzer and
Sandholm assume a generic behaviour that can influence a
voting process.

Busetta et al. [1] proposed a form of group communica-
tion, called channeled multicast, which dynamically selects
the optimal agent for a service in a given context. While
several assumptions of Busetta et al.’s research are simi-
lar to the assumptions of our research, their agents apply
a different selection mechanism to find the optimal agent
for a task. Their agents use selection policies specifically
designed to cope with unreliable communication channels,
rather than unreliable agents. Agents considered in their
project overhear communication and if an agent believes it is
suitable for a task, it negotiates a handover with the agent in
charge. An unreliable agent could greatly diminish the over-
all performance of a team, because an unreliable agent may
have successfully negotiated a handover. In our work, agents
maintain models of team members in order to assess how
suitable the team members are to perform a task (Busetta
et al.’s agents estimate only their own performance).

Finally, if the team would know which team members are
unreliable, then the team could simply exclude them from
the voting process. Reputation mechanisms aim to identify
reliable agents, which can be nominated to make decisions
for the group. However, the process of identifying a trusted
third party, and how the trusted third party would assess
the opinions of reliable and unreliable members of the team
are problems in their own right [6].

5. CONCLUSION
We have extended our ETAPP collaboration framework to

model team members that exhibit variable task performance
and different proposal-making behaviours. We have mod-
eled four types of unreliable proposal-making behaviours,
employed a probabilistic representation to model variable
task performance, and endowed observer agents with the
capability to observe team members and a procedure for
building agent models from observations. We then investi-
gated the interaction between these parameters and three
voting policies.

We evaluated our extensions by means of a simulated res-
cue scenario, where we varied the agents’ proposal-making
behaviour, the performance stability of teams of agents, the
number of observations retained by observer agents, and the
policy used to allocate agents to tasks. Our results show that
performance variability has a significant impact on task per-

formance, and that when agents are reliable, it is enough to
make a few observations to improve task performance for
stable, mixed and medium teams. Further, the task perfor-
mance obtained by applying the optimistic selection policy
is at least as good as that obtained with the majority pol-
icy. In contrast, when agents are unreliable, the majority
and weighted-observation policies yield the most stable per-
formance for all proposal-making behaviours, while the op-
timistic policy produces an unstable task performance, even
when only a few agents are unreliable.
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