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ABSTRACT
The aggregation of conflicting preferences is a key issue in
multiagent systems. Due to its universality, voting has a
central role among preference aggregation mechanisms. Vot-
ing among a set of alternatives can be used for such diverse
tasks as choosing a joint plan in a multiagent system, deter-
mining a leader in a group of humans or agents, or voting
among different resource or task allocations. Maintaining
privacy of individuals’ votes is crucial in order to guarantee
freedom of choice (e.g., lack of vote coercing and reputation
effects), and not facilitate strategic voting. We investigate
whether unconditional full privacy can be achieved in voting,
that is, privacy that relies neither on trusted third parties
(or on a certain fraction of the voters being trusted), nor on
computational intractability assumptions (such as the hard-
ness of factoring). In particular, we study the existence of
distributed protocols that allow voters to jointly determine
the outcome of an election without revealing any informa-
tion but the election outcome. We show the impossibility of
reaching unconditional full privacy for a variety of the most
common voting schemes ranging from simple veto voting to
the single transferable vote scheme. On the positive side, we
propose several distributed protocols that privately compute
the outcome of common voting schemes while only revealing
a limited amount of information.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; J.4 [Computer Applica-
tions]: Social and Behavioral Sciences—Economics; E.4
[Data]: Coding and Information Theory

General Terms
Economics, Security, Theory
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Voting Protocols, Multiparty Computation
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1. INTRODUCTION
AI and voting theory are research fields that mutually

benefit each other. On the one hand, results from voting
theory have been used in AI, for example in multiagent
planning (e.g., [15]) and collaborative filtering (e.g., [25]).
On the other hand, AI research has made contributions to
voting theory (e.g., [11, 10]). Voting among a set of alterna-
tives can be used for such diverse tasks as choosing a joint
plan in a multiagent system, determining a leader in a group
of humans or agents, or voting among different resource or
task allocations. Two seminal impossibility results in voting
theory [1] [16, 27] show that there is no voting scheme that
satisfies even a modest set of desiderata in general.1 This
explains why a wide variety of voting schemes with differing
advantages and disadvantages have evolved.

Maintaining privacy of individuals’ votes is crucial in vot-
ing. For one, this is required to achieve freedom of choice:
avoiding vote coercing, allowing a voter to vote for a casino
over a school without fear of adverse reputation effects, etc.
Second, learning about others’ votes opens the possibility
for a voter to benefit from voting insincerely—and accord-
ing to one of the seminal impossibility theorems [16, 27], all
voting schemes (except dictatorial ones) are manipulable in
this sense, as long as there are more than two candidates. In
other words, uncertainty about other agents’ preferences is a
critical requirement for voting schemes to operate as desired
and therefore needs to be protected appropriately. Consult-
ing a trusted third party is a straightforward but very weak
way of obtaining privacy. It is virtually impossible to pre-
vent the third party from revealing sensitive information to
voters, candidates, or other agents.

This paper investigates whether unconditional full privacy
can be achieved in voting, that is, privacy that relies neither
on trusted third parties (or on a certain fraction of the voters
being trusted), nor on computational intractability assump-
tions (such as the hardness of factoring). We study the ex-
istence of distributed protocols that allow voters to jointly
determine the outcome of an election by exchanging mes-
sages without revealing any information but the outcome.
In the rest of this paper, this is called emulation of a voting
scheme. Our setting consists of n agents that vote among m

candidates using common voting schemes (for convenience
we assume that n > 2 and m ≤ n). We derive several im-
possibility and possibility results in this setting.

1In certain special cases, the desiderata can be obtained. For
example, if there are only two candidates, majority voting
works.
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One dimension along which privacy guarantees differ is
how many of the agents need to collude before privacy can
be breached. In this paper, we will require the strongest vari-
ant, full privacy or so-called (n − 1)-privacy, which means
that no information (beyond what can be inferred from the
outcome) can be uncovered by a coalition that does not in-
clude all of the agents.

Another criterion along which privacy guarantees differ is
if and how the computational power of the adversary is lim-
ited. In fact, using computational intractability as a barrier
against undesirable behavior has a long tradition in modern
cryptography since Diffie and Hellman’s seminal paper [14].
When relying on the existence of so-called “trapdoor one-
way permutations”, it has been shown that arbitrary func-
tions can be jointly computed so that no private input can
be revealed by a polynomially-bounded adversary [18]. Un-
fortunately, computational intractability not only relies on
the unproven assumption P 6= NP but also on the widely
unknown field of average-case complexity and further, more
specific assumptions. Moreover, even when these conjec-
tures are true, it may be possible to breach privacy in the
future when sufficient computational power becomes avail-
able. In this paper, we will study the strongest privacy vari-
ant along this dimension, unconditional privacy (aka. non-
cryptographic or information-theoretic privacy), where the
adversary’s computational power is unlimited and a com-
plete network of private channels between agents is given.
It is known that only a restricted class of functions can be
computed fully privately in this model.2 Section 4 presents
some known results about this class of functions. In the rest
of the paper, when we say privacy, we mean unconditional
full privacy.

In order to simplify the presentation, we assume that the
adversary is passive, that is, agents do not deviate from
the prescribed protocol. There are standard cryptographic
techniques (for example, perfect zero-knowledge arguments)
that force active adversaries to act according to a protocol
(see e.g., [17]).3 However, using these techniques will in-
cur massive overhead. Less secure but potentially more ef-
ficient methods have recently been suggested, for example,
redundancy, policing, and careful partitioning of the prob-
lem across agents [24, 23]. After all, negative results in the
passive adversary model also hold in a model that allows
active adversaries.

The remainder of this paper is structured as follows. In
Section 2, we review related research. Descriptions of the
voting schemes to be studied are given in Section 3. Sec-
tion 4 contains fundamental theoretical results that we will
leverage in our proofs. In Section 5, we propose impossi-
bility results whereas in Section 6 we propose constructive
possibility results. The paper concludes with an overview of
the obtained results in Section 7.

2When assuming that a majority of the agents is trustworthy
(recall that this is not full privacy), all functions can be
jointly computed in the unconditional model [2, 7] (assuming
passive adversaries).
3Using perfect zero-knowledge arguments to prevent manip-
ulation requires a careful definition of the adversary. Loosely
speaking, one would assume that the adversary is incapable
of performing super-polynomial computations during the
protocol (which is somewhat reasonable given the typically
short execution time). Once the protocol is finished, the ad-
versary might take as much time (and computational power)
as he wants in order to try to breach privacy.

2. RELATED RESEARCH
There is a large body of cryptographic voting protocol

research (e.g., [6, 26, 13, 19]), out of which some pro-
posed techniques provide unconditional privacy (e.g., [6,
26]). However, with the notable exception of Kiayias et
al’s recent contribution [19], all of these approaches rely on
a number of trusted third parties where privacy is based on
the assumption that these third parties do not collude.

There is a conceptual difference between this paper and
existing cryptographic work. Whereas the latter focuses on
technical aspects of how to obtain anonymity in the plural-
ity scheme, we investigate the existence of voter-distributed
protocols that reveal as little information as possible (prefer-
ably only the election winner). Furthermore, we not only
consider plurality but also a variety of other common voting
schemes.

We recently generalized the impossibility result of Theo-
rem 3 to arbitrary social choice functions (and social welfare
functionals) that are non-dictatorial, Pareto-optimal, and
monotonic [5]. Regarding sealed-bid auctions, it has been
shown that the outcome of first-price auctions can be com-
puted unconditionally fully privately by bidders whereas this
is impossible for second-price auctions [4]. In a remotely re-
lated paper, the communication complexity of the common
voting schemes was investigated (without privacy consider-
ations) [12].

3. COMMON VOTING SCHEMES
In this section, we review the most common voting

schemes. These are the schemes we will study in the re-
mainder of the paper. The first scheme we consider differs
from the following ones in that it only decides on the accep-
tance of a single candidate (or issue) over the status quo.

Veto voting (aka. unanimity voting) Each voter is
only allowed to express his agreement or refusal. If at
least one voter disagrees, the candidate/issue at hand
is rejected. Otherwise, it is accepted.

The following schemes select one out of m candidates. The
candidates are not necessarily agents. A candidate can be
any abstract object, e.g., a plan, parameter, task assign-
ment, or schedule. The first four schemes will be called
score-based because the decision is based on the accumu-
lated scores that each voter assigns to the candidates.

Plurality Each voter votes for his most preferred candi-
date. The candidate with the highest score wins.

Rejection4 Each voter states his least preferred candidate.
The candidate with the lowest number of votes wins.

Borda Each voter gives m− 1 points to his most preferred
candidate, m−2 to his second choice, . . . , and 0 to his
last. The candidate with the highest score wins.

Approval Each voter gives each candidate he likes a single
point (everything from giving 0 to m points in total is
feasible). The candidate with the highest score wins.

In the following voting schemes, each voter submits a com-
plete list of candidates in the order of his preference. We
call these schemes order-based.

4This scheme is sometimes also called veto voting.
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Copeland For each candidate j, candidate i gets a point
if there are more voters who prefer i over j. He is
deducted a point if more voters prefer j over i. The
candidate with the highest score wins.

Maximin (aka. Kramer-Simpson) A candidate’s score
is the lowest number of voters that prefer him over
any other candidate, i.e., his worst performance in any
pairwise comparison. The candidate with the highest
score wins.

Cup The cup is defined by a balanced binary tree with
one leaf per candidate. Each non-leaf node is assigned
to the candidate that more voters prefer among the
node’s children. The candidate assigned to the root
wins.

Single transferable vote (STV, aka. instant runoff)
Winner determination proceeds in rounds. In each
round, a candidate’s score is the number of voters
that rank him highest among the remaining candi-
dates, and the candidate with the lowest score drops
out. The last remaining candidate wins. (A vote
“transfers” from its top remaining candidate to the
next highest remaining candidate when the former
drops out.)

4. PRELIMINARIES
In this section we describe the underlying communication

model and review some key results which we will use as
building blocks in our proofs.

The outcome function f(·) of the election is jointly com-
puted by agents using a distributed, randomized5 proto-
col consisting of several rounds. In order to enable secure
message exchange, we make the standard assumption of a
complete synchronous network of private channels between
agents. In each round, each agent may send a message to
any other agent. Each message an agent sends is a func-
tion of his preferences, his independent random input ri,
the messages he received so far, and the recipient. When
the protocol is finished, all agents know the value of f(·).
As usual, full privacy in the context of information-theoretic
function evaluation is defined as follows: A distributed pro-
tocol for computing f(x1, x2, . . . , xn) = a is unconditionally
fully private if any coalition of agents is incapable of uncov-
ering any information besides what can be inferred from a

and the coalition’s preferences.6 More formally:

Definition 1 (Privacy). For any T ⊆ {1, 2, . . . , n}
and every two input vectors ~x, ~y ∈ Xn satisfying ∀i ∈ T :
xi = yi and f(~x) = f(~y), and for every choice of random in-
puts {ri}i∈T , the messages seen by agents belonging to T in
both cases are identically distributed. Let viewT be a func-
tion that, given the vector of individual inputs and random

5Indeed, randomization is necessary in order to privately
compute any non-degenerate function [17].
6Excluding the information that follows from a and the
coalition’s preferences is essential for the definition to be
non-trivial. For example, when privately computing the sum
of input values, a coalition of n − 1 agents can always infer
the remaining agent’s input xn = a −

P
n−1

i=1
xi no matter

which protocol is used. However, this does not rule out the
existence of a private protocol for computing f(·) according
to Definition 1. As a matter of fact, such a protocol exists
(see Lemma 3).

values, yields the concatenation of all (prefix-free) messages
exchanged between members of T and T̄ = {1, 2, . . . , n} \T .
A protocol for computing f(·) is private if

〈viewT (~x, {ri}i∈T )〉 = 〈viewT (~y, {ri}i∈T )〉

where 〈. . . 〉 denotes the probability distribution of the inner
term with the probability taken over {ri}i∈T̄ .

A complete characterization of all privately computable
Boolean functions has been given by Chor and Kushile-
vitz [9].

Theorem 1. A Boolean function is privately computable
if and only if it is of the form f(x1, x2, . . . , xn) = B1(x1) ⊕
B2(x2)⊕ · · · ⊕Bn(xn), where Bi(xi) are Boolean predicates
and ⊕ is the Boolean exclusive-or operator.

Such a complete characterization for general (non-Boolean)
functions is not yet known (except for only two agents [21]).
However, there are necessary conditions for the private com-
putability of a function [9].

Lemma 1 (Corners Lemma). Let f : X × Y → Z be
a privately computable 2-ary function. For every x1, x2 ∈ X

and y1, y2 ∈ Y , if f(x1, y1) = f(x1, y2) = f(x2, y1) = a,
then f(x2, y2) = a.

Lemma 2 (Partition Lemma). Let f : X1 × X2 ×
· · · × Xn → Z be a privately computable n-ary
function. Then, for each i ∈ {1, 2, . . . , n} the 2-

ary function f2(xi, (x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn))
def
=

f(x1, x2, . . . , xn) is privately computable.7

By combining Lemma 1 and Lemma 2, we can obtain a nec-
essary condition for the possibility of privately computing
an n-ary function. This can be used to prove that an n-
ary function is not privately computable (as in Theorem 3).
Due to the lack of a more detailed characterization of n-ary
privately computable functions, the only way to show that
a function is privately computable is to give a concrete pro-
tocol that fulfills this task (as in Theorems 4, 5, 6, and 7).
As first observed by Benaloh, there is a simple protocol to
privately compute modular sums [3].

Lemma 3. f(x1, x2, . . . , xn) =
P

n

i=1
xi mod p is pri-

vately computable.

Proof. Each agent i chooses n random values xij ∈ Zp so
that the modular sum

P
n

j=1
xij mod p = xi. He then sends

each addend xij to agent j and keeps xii. After all agents
have done this, each agent i publishes si =

P
n

j=1
xji mod p,

i.e., the modular sum of his remaining xii and the n − 1
addends he received. f(x1, x2, . . . , xn) =

P
n

i=1
si mod p

can be computed by each participant.

5. IMPOSSIBILITY RESULTS
We are now ready to present our results. In this section

we present negative results whereas in the next section we
present positive ones (by allowing the revelation of addi-
tional information besides the election outcome). We as-
sume that each voter i possesses a complete ranking of the

7This is a special case of the Partition Lemma for t = n− 1
according to the definition by Chor et al [8].
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candidates in the order of his preference. Based on this rank-
ing and the specific voting scheme, he enters some private
input value xi (e.g., his most preferred candidate) into the
joint computation of the outcome function. The protocols
in this section must not reveal more information than the
winning candidate’s identity. In other words, f(·)’s range is
Z = {1, 2, . . . , m}. This is justified by the fact that when-
ever something beyond the election winner is revealed, that
information could be used by a coalition of less than all the
agents to breach a noncolluder’s privacy. For example, if a
veto protocol reveals the total number of vetoes, a coalition
of all vetoers can easily derive the votes of all remaining
agents. In the case of ties, we deliberately leave the out-
come undefined. As a consequence, the impossibility results
of this paper hold regardless of what is done in the case of a
tie: picking the winner at random, using priorities, or even
revealing the identities of tied candidates.

It might seem unlikely that any relevant function can be
computed at all in our extremely rigorous privacy setting.
This is not entirely true as for example the outcome of first-
price sealed-bid auctions [4] or the arithmetic mean8 can be
computed privately. Nevertheless, when it comes to voting,
it turns out that all schemes listed in Section 3 can not be
emulated by private protocols.

Theorem 2. There is no private protocol for veto voting.

Proof. Because the veto protocol just yields a Boolean
outcome (veto or not), we can apply Theorem 1. The veto
outcome function is fv(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn

and because this (inclusive) disjunction cannot be expressed
as an exclusive disjunction of Booleans of its parts, it imme-
diately follows from Theorem 1 that it cannot be computed
privately.

Theorem 3. There are no private protocols for plurality,
rejection, Borda, approval, Copeland, maximin, cup, and
STV voting.

Proof. The outcome function, fp, of the plurality voting
scheme is

fp(x1, x2, . . . , xn) = arg
m

max
j=1

n��{i | (1 ≤ i ≤ n)∧ (xi = j)}
��o.

Essentially, the impossibility of fully privately emulating a
voting scheme can be shown by finding an “embedded or”
of combinations of votes for any number of voters n and
candidates m: Let ~x and ~y be vectors of n − 1 votes and
x and y single votes. If (~x, x), (~x, y), and (~y, x) all yield
candidate a as the winner, then (~y, y) has to yield a as well.
In order to obtain the most general impossibility, the fol-
lowing counter-examples are designed for a setting with just
two candidates. They can trivially be extended to any num-
ber of candidates by assuming that nobody votes for the
additional candidates.

8In multiagent systems, this can be used to decide on the set-
ting of a global parameter via “average voting”. In the aver-
age voting scheme, voters’ preferences are numbers in a given
interval and the outcome is the arithmetic mean of these
numbers. Private computability follows from Lemma 3.

Case 1 (n mod 2 = 1): Let

~x = (1, . . . , 1| {z }
n−1

),

~y = (1, 2, 1, 2, . . . , 1, 2| {z }
n−1

),

x = 1, and y = 2.

Then

fp(~x, x) = fp(~x, y) = fp(~y, x) = 1,

but fp(~y, y) = 2.

Case 2 (n mod 2 = 0): Let

~x = (1, 2, 1, 2, . . . , 1, 2| {z }
n−4

, 1, 1, 1),

~y = (1, 2, 1, 2, . . . , 1, 2| {z }
n−4

, 1, 1, 2),

x = 1, and y = 2.

Then

fp(~x, x) = fp(~x, y) = fp(~y, x) = 1.

fp(~y, y) results in a tie and thus is undefined. How-
ever, any other function value than 1 (including spe-
cial “tie output symbols”) will yield an embedded or.
For this reason, fp(~y, y) has to be set to 1. This
yields an embedded or at a different position. Let
~p = (1, 2, 1, 2, . . . , 1, 2| {z }

n−4

), then

fp(~p, 2, 1, 2, 2) = fp(~p, 2, 2, 2, 2) = fp(~p, 1, 2, 2, 2) = 2,

but fp(~p, 1, 1, 2, 2) = fp(~y, y) = 1.

This proves the impossibility of computing fp privately.
Instead of constructing similar vote configurations that

yield embedded ors in all remaining schemes, we employ
May’s Theorem [22]. May’s Theorem says that, if there
are just two candidates, plurality voting is the only voting
scheme that is neutral (both candidates are treated equally),
symmetric (all votes are treated equally), and monotonic
(voting for a candidate cannot make him lose). Since all
suggested schemes (except veto voting which is not neutral)
satisfy these criteria, this implies that for two candidates
all schemes collapse to plurality voting (which is then called
“majority rule”). If we furthermore observe that all sug-
gested schemes are Pareto-optimal (i.e., if all voters prefer
candidate a over b, than b cannot win the election), we can
easily find configurations that yield embedded ors: Any
configuration of votes where each agent votes according to a
preference ranking where candidates 1 and 2 are ranked as
in the counter-examples for plurality voting and all remain-
ing candidates are ranked in the same fixed order below 1
and 2, e.g., 3, 4, . . . , m, will yield an embedded or.

The only scheme for which this argumentation is flawed is
rejection voting. Due to the very restricted expressiveness
of votes in rejection voting (voters may only state their least
preferred candidate), any candidate who is not ranked last
in the configuration given above may be chosen. In other
words, which candidate will be chosen entirely depends on
the tie-breaking policy. Nevertheless, the impossibility of
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privately emulating rejection voting for any number of can-
didates, regardless of tie-breaking, can be shown by the fol-
lowing construction. The outcome function, fr, of the rejec-
tion voting scheme is

fr(x1, x2, . . . , xn) = arg
m

min
j=1

n��{i | (1 ≤ i ≤ n)∧ (xi = j)}
��o.

Since rejection voting is equivalent to plurality voting for
two candidates, it suffices to consider the case m > 2: Let

~x = (1, . . . , 1| {z }
n−m+1

, 2, 4, 5, . . . , m),

~y = (1, . . . , 1| {z }
n−m+1

, 1, 4, 5, . . . , m),

~z = (1, . . . , 1| {z }
n−m+1

, 3, 4, 5, . . . , m),

x = 2, y = 1, and z = 3.

If m > 3, vectors ~x, ~y, and ~z are filled up with candidates
4, 5, etc. to ensure that always candidate 2 or 3 is chosen.
This is unnecessary when there are just three candidates.

It turns out that

fr(~x, x) = fr(~x, y) = fr(~y, x) = 3,

and (~y, y) results in a tie, but has to be set to 3 due to the
Corners Lemma: fr(~y, y) = 3. However,

fr(~z, z) = fr(~z, y) = fr(~y, z) = 2

requires fr(~y, y) = 2 (again due to the Corners Lemma)
which is a contradiction (see Table 1).

fr 1 2 3 . . . m

1, . . . , 1, 1, 4, 5, . . . m ? 3 2
1, . . . , 1, 2, 4, 5, . . . m 3 3
1, . . . , 1, 3, 4, 5, . . . m 2 2

Table 1: Rejection voting (m > 2)

We have recently extended this impossibility to any so-
cial choice function (and social welfare functional) that is
non-dictatorial, Pareto-optimal, and monotonic (regardless
of neutrality and symmetry) [5].

6. POSSIBILITY RESULTS
It is natural to ask which kind of privacy relaxations en-

able the private distributed emulation of a voting scheme.
Modifying the outcome function to reveal more than just the
minimum information makes it more likely that a scheme
can be privately evaluated. The veto scheme outcome, for
example, can be computed while only revealing the num-
ber of vetoers or without revealing any information to non-
vetoers:

Theorem 4.

(i) There is a private veto protocol that only reveals the
total number of vetoes.

(ii) There is a private probabilistic veto protocol that only
reveals to a vetoer whether he is the only vetoer (and
no information to non-vetoers).

Proof.

(i) Such a protocol can be designed easily by computing
the sum (see Lemma 3) of individual inputs that are
either 0 (no veto) or 1 (veto). Of course, p (the finite
group’s size) must be greater than n (the maximum
number of vetoes) in order to avoid “overflows”.

(ii) A similar protocol in which agents also compute the
sum f(x1, x2, . . . , xn) =

P
n

i=1
xi of their inputs, but

where xi is an arbitrarily chosen random number in Zp

when agent i vetoes and 0 otherwise, has some inter-
esting properties. For appropriately large p, f(·) = 0
if and only if nobody vetoed, with exponentially small
error probability. Agents that did not veto and out-
siders do not learn any additional information besides
the outcome (veto or not). Vetoers can see if somebody
else vetoed by comparing f(·) and xi. If f(·) 6= xi 6= 0,
then there must have been another vetoer. However,
the total number of vetoers remains unknown.

6.1 Anonymity
One of the lowest levels of privacy is that the outcome

function is anonymous (we only deal with symmetric voting
in this paper). Loosely speaking, a voting protocol is anony-
mous if the exchange of ballots from any pair of agents does
not lead to different information to be revealed during the
protocol. For a formal definition, we restrict the equality of
distributions in Definition 1 to the case of permuted input
vectors.

Definition 2 (Anonymity). Let T , ~x, ~y, and viewT

be defined as in Definition 1 and furthermore assume that ~x

is a permutation of ~y (in addition to ∀i ∈ T : xi = yi and
f(~x) = f(~y)). A symmetric function f(x1, x2, . . . , xn) can
be computed anonymously if

〈viewT (~x, {ri}i∈T )〉 = 〈viewT (~y, {ri}i∈T )〉.

Anonymity can be achieved in all voting schemes under con-
sideration by using the protocol proposed in Lemma 3 to
privately add numbers (including veto, see Theorem 4).

Theorem 5. There are anonymous protocols for all vot-
ing schemes considered in this paper. All protocols, except
STV, require a constant number of rounds and polynomial
communication resources.

Proof. Let us first consider score-based voting schemes:
plurality, rejection, Borda, and approval voting. Every bid-
der constructs a vote-vector ~vi = (vi1, vi2, . . . , vim) where
vij denotes the number of points voter i is willing to give
candidate j. Each voter must distribute his points according
to the rules of the underlying voting scheme, i.e.,
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• Plurality/Rejection: (∀j : vij ∈ {0, 1})∧

 
mX

j=1

vij = 1

!
• Approval: ∀j : vij ∈ {0, 1}

• Borda: ∃j : vij = m − 1, ∃j : vij = m − 2, . . . , ∃j :
vij = 0

Voters can prove the correctness of their vote vectors using
perfect zero-knowledge arguments (see Footnote 3).

In the following, voters jointly compute ~s =
P

n

i=1
~vi using

the protocol specified in Lemma 3 (with p set to a sufficiently
large number to avoid “overflows”). The outcome function
f(~v1, ~v2, . . . , ~vn) = ~s is anonymous due to the commutativ-
ity of addition and the winner can easily be determined by
looking for the greatest component.

In order-based schemes Copeland, maximin, and cup each
bidder submits a m×m matrix9 Vi in which element Vijk is
1 if voter i prefers candidate j over k, −1 if he prefers k over
j, and 0 if he is indifferent. As mentioned before, in this pa-
per, we assume that all agents honestly follow a prescribed
protocol. In practical applications, voters not only should
prove the correctness of the matrix in zero-knowledge, but
also that it corresponds to a non-cyclic preference order-
ing. This may be a costly task. Voters then jointly compute
S =

P
n

i=1
Vi. f(V1, V2, . . . , Vn) = S is an anonymous out-

come function according to Definition 2. It can be easily
verified that the outcome of all three voting schemes can
be inferred from S. An anonymous multi-round STV proto-
col consists of consecutive “rejection” executions that yield
direct scores with more and more candidates removed. A
constant-round STV protocol could be enabled by making
each voter submit a vector of length m! (the number of pos-
sible preference orderings) which results in exponential com-
munication complexity.

6.2 Partial Privacy
Now, can privacy beyond anonymity be obtained in the

common voting schemes? To answer this, we define the no-
tion of partial privacy. A voting protocol is partially private
if it is anonymous and there is a configuration of votes in
which the modification of a single vote does not affect the
outcome.10

Definition 3 (Partial Privacy). Let T and viewT

be defined as in Definition 1. A symmetric function
f(x1, x2, . . . , xn) can be computed partially privately if it
is anonymous and there are two input vectors ~x, ~y ∈ Xn so
that ∃j ∈ T̄ : xj 6= yj, ∀i 6= j : xi = yi, f(~x) = f(~y), and

〈viewT (~x, {ri}i∈T )〉 = 〈viewT (~y, {ri}i∈T )〉.

It turns out that in most schemes (rejection and cup being
the exceptions) the incremental revelation of information
enables partial privacy. As a consequence, a higher degree
of privacy can be obtained at the cost of round complexity
(see Table 2).

9Technically, a half-matrix suffices as all Vi are antisymmet-
ric.

10Is is essential for the definition to only allow one vote to
change. Otherwise, most protocols presented in Theorem 5
would be partially private already because the sums of scores
(or pairwise comparisons) can be identical for different vote
configurations.

Theorem 6. There are partially private protocols for plu-
rality, Borda, approval, Copeland, maximin, and STV.

Proof. In some voting schemes, the components of the
resulting vector ~s of candidates’ scores can be revealed one
after another in random order so that it it is unneces-
sary to reveal all scores (in expectation). E.g., for plu-
rality voting, scores can be revealed in random order until
∃a ∈ I : sa > n −

P
i∈I

si where I is the set of candi-
dates whose score has been revealed so far. Such a protocol
is partially private because it reveals exactly the same in-
formation no matter who the remaining voters voted for.
Similar criteria can be found for the Borda and approval
scheme. Perhaps surprisingly, in the rejection scheme, the
scores of all candidates have to be revealed in order to de-
termine the outcome. The reason is that, even if there are
just two scores left to be opened, it is always possible that
one of them is zero.

It can easily be seen that the Copeland protocol also al-
lows for criteria that make it unnecessary to open all ma-
trix components (e.g., when a candidate accumulated m−1
points). In the maximin protocol, a technique similar to
alpha-beta-pruning [20] can be applied: Candidate i’s score
si is obtained by incrementally revealing components Si1,
Si2, . . . , Sim and then computing si = minj{Sij}. Whenever
Sij < sk for some other candidate k, candidate i can be dis-
carded. Furthermore, some structural properties of S enable
more pruning in both the maximin and the Copeland pro-
tocol.11 Interestingly, there seems to be no pruning method
for the cup protocol. All matrix elements (relevant to the
pre-determined) cup need to be revealed which suggests that
the cup protocol can only provide anonymity but not partial
privacy (although we do not have enough evidence to claim
that there exists no partially private protocol for the cup
or the rejection scheme). Even though the STV protocol
consists of consecutive iterations of the rejection protocol
(which does not provide partial privacy), not all informa-
tion has to be revealed. Since each remaining candidate’s
score is increasing from round to round (due to rejected can-
didates), protocol execution can terminate early whenever
a candidate accumulated more points than the sum of the
other candidates’ scores.

In many cases, the candidates are agents themselves, pos-
sibly even the voters themselves (e.g., when determining a
leader among a set of agents). In this case, a technique rem-
iniscent of the Dutch (i.e., descending) auction can be used
to obtain a high degree of privacy in score-based schemes.

Theorem 7. Consider a voting setting where the candi-
dates are agents who can take part in the distributed protocol
(they need not be the voters, although they can be). There
are private protocols for plurality, rejection, Borda, and ap-
proval voting in which the winner’s score is revealed to ev-
eryone, each candidate learns his own score, and no other
information is revealed.

Proof. The following protocols consist of two phases. In
the first phase voters compute the score of each candidate,
and in the second phase candidates compute the maximum
score and corresponding candidate.

11E.g., transitivity: if all voters prefer candidate i over j, and
half of them prefer j over k, then at least half of the voters
prefer i over k.
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Protocol Partial Privacy Round Complexity

Plurality X O(m)

Rejection – O(1)

Borda X O(m)

Approval X O(m)

Copeland X O(m2)

Maximin X O(m2)

Cup – O(1)

STV X O(m2)

Plurality X O(n)

Rejection X O(n)

Borda X O(m · n)

Approval X O(n)

Table 2: Proposed anonymous voting protocols

First, all voters compute the sum of their vote vectors
(see Theorem 5) according to Lemma 3. However, the in-
termediate sums si (see Lemma 3) are not published but
privately sent to the corresponding candidate, so that only
each candidate learns his score. In the following, the can-
didates engage in a protocol that determines the maximum
score similar to the Dutch auction protocol.

1. j = n (plurality and approval),
j = 0 (rejection), or
j = (m − 1) · n (Borda), respectively

2. Each candidate i broadcasts 1 if his score si = j,
or 0 otherwise.

3. If all agents broadcasted 0,
set j = j − 1 (plurality, approval, and Borda),
or j = j + 1 (rejection), respectively,
and proceed to step 2. Otherwise, the candidate who
submitted 1 is the election winner.

This only reveals the winning candidate’s score to the pub-
lic. As mentioned before, we do not consider ties here. The
round complexity of the proposed protocols is shown in the
lower part of Table 2. As mentioned in Footnote 3, per-
fect zero-knowledge arguments can be used to ensure that
voters follow the protocol truthfully and do not manipu-
late, for example by wrongfully broadcasting their identity
in step 2.

A different recent idea for achieving partial (uncondi-
tional) privacy is that of using an elicitor that incrementally
asks questions from the voters about their preferences on an
as-needed basis until the elicitor has enough information to
determine the winning candidate (e.g., [10]). However, un-
like the protocols proposed in this paper, that method can-
not guarantee anonymity because the elicitor knows from
which agent each answer comes.

7. CONCLUSIONS
Voting among a set of alternatives can be used for such

diverse tasks as choosing a joint plan in a multiagent system,
determining a leader in a group of humans or agents, or
voting among differing resource or task allocations.

This paper investigated whether unconditional full pri-
vacy can be achieved in voting, that is, privacy that relies
neither on trusted third parties (or on a certain fraction of
the voters being trusted), nor on computational intractabil-
ity assumptions (such as the hardness of factoring). In par-
ticular, we studied the existence of distributed protocols that
allow a group of voters to jointly determine the outcome of
an election while revealing as little information as possible.
We derived several impossibility and possibility results in
this scenario for the most common voting schemes:

• None of the voting schemes under study can be em-
ulated privately without revealing more information
than just the winning candidate, even when there are
just two candidates.12

• The veto scheme can be emulated privately without
revealing information to non-vetoers.

• All voting schemes can be emulated anonymously (in a
constant number of rounds and with polynomial com-
munication resources, except STV).

• There are partially private protocols for all schemes
except rejection and cup.

• When candidates are agents, there are partially pri-
vate protocols for plurality, single disapproval, Borda,
and approval in which the only publicly revealed in-
formation is the winner’s score.
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[8] B. Chor, M. Geréb-Graus, and E. Kushilevitz. On the
structure of the privacy hierarchy. Journal of
Cryptology, 7(1):53–60, 1994.

[9] B. Chor and E. Kushilevitz. A zero-one law for
Boolean privacy. In Proceedings of the 21st Annual
ACM Symposium on the Theory of Computing
(STOC), pages 62–72. ACM Press, 1989.

[10] V. Conitzer and T. Sandholm. Vote elicitation:
Complexity and strategy-proofness. In Proceedings of
the 18th National Conference on Artificial Intelligence
(AAAI), pages 392–397. AAAI Press, 2002.

[11] V. Conitzer and T. Sandholm. Universal voting
protocol tweaks to make manipulation hard. In
Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI), pages 781–788,
2003.

[12] V. Conitzer and T. Sandholm. Communication
complexity of common voting rules. In Proceedings of
the 6th ACM Conference on Electronic Commerce
(ACM-EC). ACM Press, 2005.

[13] R. Cramer, R. Gennaro, and B. Schoenmakers. A
secure and optimally efficient multi-authority election
scheme. In Advances in Cryptology - Proceedings of
the 14th Eurocrypt Conference, volume 1233 of Lecture
Notes in Computer Science (LNCS), pages 103–118.
Springer, 1997.

[14] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[15] E. Ephrati and J. S. Rosenschein. Deriving consensus
in multi-agent systems. Artificial Intelligence,
87(1–2):21–74, 1996.

[16] A. Gibbard. Manipulation of voting schemes.
Econometrica, 41:587–602, 1973.

[17] O. Goldreich. Foundations of Cryptography.
Cambridge University Press, 2001.

[18] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game or a completeness theorem for
protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on the Theory of
Computing (STOC), pages 218–229. ACM Press, 1987.

[19] A. Kiayias and M. Yung. Self-tallying elections and
perfect ballot secrecy. In Proceedings of the 5th
International Workshop on Practice and Theory in
Public Key Cryptography (PKC), number 2274 in
Lecture Notes in Computer Science (LNCS), pages
141–158. Springer, 2002.

[20] D. E. Knuth and R. W. Moore. An analysis of
alpha-beta pruning. Artificial Intelligence,
6(4):293–326, 1975.

[21] E. Kushilevitz. Privacy and communication
complexity. In Proceedings of the 30th Symposium on
Foundations of Computer Science (FOCS), pages
416–421. IEEE Computer Society Press, 1989.

[22] K. May. A set of independent, necessary and sufficient
conditions for simple majority decisions.
Econometrica, 20:680–684, 1952.

[23] D. Parkes and J. Shneidman. Using redundancy to
improve robustness of distributed mechanism
implementations. In Proceedings of the 4th ACM
Conference on Electronic Commerce (ACM-EC),
pages 276–277. ACM Press, 2003.

[24] D. Parkes and J. Shneidman. Distributed
implementations of Vickrey-Clarke-Groves
mechanisms. In Proceedings of the 3rd International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 261–268. IEEE
Press, 2004.

[25] D. M. Pennock, E. Horvitz, and C. L. Giles. Social
choice theory and recommender systems: Analysis of
the axiomatic foundations of collaborative filtering. In
Proceedings of the 17th National Conference on
Artificial Intelligence (AAAI), pages 729–734, 2000.

[26] B. Pfitzmann and M. Waidner. Unconditionally
untraceable and fault-tolerant broadcast and secret
ballot election. Hildesheimer Informatik-Berichte,
Institut für Informatik, Universität Hildesheim, 1992.

[27] M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

364




