
Global Convergence of Local Agent Behaviors
H. Van Dyke Parunak, Sven A. Brueckner, John A. Sauter, Robert Matthews 

Altarum Institute 
3520 Green Court, Suite 300 

Ann Arbor, MI 48105 USA 
1-734-302-4600 

{van.parunak, sven.brueckner, john.sauter, robert.matthews}@altarum.org 
 
 

ABSTRACT 
Many multi-agent systems seek to reconcile two apparently in-
consistent constraints. The system has a global overall objective. 
However, the agents have only local information to guide their 
actions. Such systems are presently more art than science. They 
often exhibit regularities (such as exponential convergence) that 
we do not understand, and we do not know how to improve their 
functioning in a disciplined manner. In this paper, we develop a 
simple statistical model for such systems that can enhance both 
our intuitions about their functioning and our ability to engineer 
them, and apply it to three systems that we have constructed. 

Categories and Subject Descriptors 
F.2.0 [Analysis of Algorithms]: General; I.2.11 [Artificial Intel-
ligence]: Distributed Artificial Intelligence – Multiagent Systems 

General Terms 
Performance, Experimentation, Theory. 

Keywords 
Convergence, Emergent Behavior, Clustering, Graph Coloring, 
Vehicle Routing 

1. INTRODUCTION 
Many multi-agent systems seek to reconcile two apparently in-

consistent constraints. The system’s overall objective is defined 
globally. However, the agents have only local information avail-
able to guide their actions. This limitation may be due to many 
realistic factors, such as lack of long-range communications, pro-
prietary restrictions that limit exchange of information among 
agents, or the lack of a distinguished agent with sufficient capac-
ity to collect and analyze data from the entire population. 

Much current work on constructing systems of this sort is more 
art than science, relying on a “bag of tricks” whose effectiveness 
is empirically impressive in specific implementations, but has no 
guarantee that it can be achieved in systems not yet constructed. 
To move from tricks to engineering, we must understand the 
mechanisms by which agents with local knowledge can achieve 
global ends, and be able to place bounds on how close to a global 

optimum they can approach and how quickly they can do so. 
Empirically, many such systems converge exponentially fast to 

their global objective. Such convergence is highly desirable, since 
it supports “any-time” processing, in which the system quickly 
yields an approximate result and then (if given more time) refines 
it further. Any convergence curve with a decreasing first deriva-
tive would satisfy the “any-time” property, but it is striking that 
our data frequently show a good fit to an exponential of the form 

. The appearance of this fit in multiple settings suggests 
that the same underlying principles may be responsible for the 
behavior of the systems. If we can discover this theory, it would 
not only guide our scientific intuitions about the behavior of these 
systems, but also improve our engineering ability to develop and 
tune such applications. 

tBeA λ−±

We can map these systems onto a model of local behavior sim-
ple enough to analyze its convergence. This system converges 
exponentially, as do the more complicated systems to which it is 
related. Having thus established the relation between our model 
system and our real systems, we can draw conclusions from the 
model system that explain other features of the real systems. 

Section 2 gives three examples of systems that seek global per-
formance from local interactions. Two of these exhibit exponen-
tial convergence, while the third does not. Section 3 presents the 
“adaptive walk,” a model that is simple enough to be analytically 
tractable but can be mapped onto our examples. We show that this 
model exhibits exponential convergence and discuss the implica-
tions of the convergence equations for designing systems of this 
type. Section 4 revisits our three examples, explaining both the 
exponential convergence of the first two and the departure from 
exponentiality of the third, as well as exploring other of their fea-
tures in the light of the model system. Section 5 concludes. 

2. EMPIRICAL EXAMPLES 
Three example systems illustrate global convergence from local 
agent decisions: distributed clustering inspired by ant nest sorting, 
distributed graph coloring, and area surveillance using digital 
pheromones. In each case we motivate the application, identify 
the agents, the global objective they seek to satisfy, and their local 
decision algorithm, and describe the system’s convergence. 

2.1 Ant Clustering [13] Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
AAMAS'05, July 2529, 2005, Utrecht, Netherlands. 
Copyright 2005 ACM 1-59593-094-9/05/0007  ...$5.00. 

Motivation.—Clustering data items can be a useful foundation 
for further information retrieval tasks. Most conventional algo-
rithms [5] have two constraints. First, they are centralized, requir-
ing access to a central data structure, the similarity matrix, and so 
are difficult to distribute across many processors as the amount of 
data to be handled increases. Second, they are batch, requiring 
that both the population of items being clustered and the similar-
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ity function being used to compare them remain constant dur-
ing clustering. 

Nature suggests an alternative algorithm that is decentral-
ized and continuous. Ants cluster items in their nests, such as 
dead ants or food [2]. As they wander about, ants pick up ob-
jects with a probability u and drop them with a probability d. 
The probability u decreases, and d decreases, with the object’s 
similarity to nearby objects. As objects move from regions 
where they are dissimilar to their surroundings to regions 
where they are similar, homogeneous clusters form. This algo-
rithm can be distributed over many processors (the ants), and 
can continue to run as the population of items, or even the 
similarity function, change. 

Agents.—In the adaptation of this algorithm in [13], the ob-
jects to be clustered (typically, paragraphs of text) are them-
selves active “content agents” that move themselves rather 
than relying on a separate species of agents. Initially, content 
agents are assigned randomly to a fixed set of logical “places” 
that may be distributed over multiple processors. 
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Figure 1. Ant clustering convergence with fit (solid line) fit. 

Global Objective.— Each content agent has a binary vector 
indicating which concepts it attests. The similarity of two content 
agents is the cosine of the angle between their vectors. Each 
place’s Homogeneity is the mean of the pairwise similarities 
among its content agents. The global objective is to maximize the 
average of the place homogeneity across all places. 

Local Decisions.—A content agent monitors its similarity to a 
random sample of other content agents in its place, and to a ran-
dom sample of other places. It decides to change its place prob-
abilistically, where the probability increases with the increase in 
similarity that the move would provide. The decision is local in 
three ways. 1) A content agent considers only a restricted number 
of places and a limited number of content agents in each place. 2) 
An agent’s greater similarity to a new place than to its current 
place does not guarantee that its move will increase the homoge-
neity of either of those places. 3) Other content agents are concur-
rently making movement decisions, changing the environment as 
decisions are made. The algorithm selects documents randomly 
with replacement. Each time a document is selected, it decides 
whether or not to move. 

Convergence.—This algorithm was tested on a subset of 107 
candidate paragraphs that matched a test concept map. Table 1 
shows the parameters for a typical run. Figure 1 shows the con-
vergence of average place homogeneity over the course of 

the run. The solid line is a least-squares fit to . 
teBA λ−⋅−

Another experiment explored the system’s adaptability 
by adding new documents at a constant rate to random 
places as the clustering proceeds. Figure 2 shows that over a 
wide range of rates, the exponential fit is excellent with a 
decreasing asymptote. Surprisingly, the exponent λ is essen-

tially constant. Intuitively, as N increases, λ should decrease, 
since more documents need to be sampled and potentially moved 
to achieve the same homogeneity. 

2.2 Graph Coloring [1] 
Motivation.—Graph coloring is a useful abstraction of many re-
source allocation problems. Each node represents a task, each 
color represents a resource, and an edge between two nodes indi-
cates that a single resource cannot service them simultaneously. 
Resource allocation corresponds to coloring the graph to mini-
mize the proportion of adjacent nodes that have the same color. 

Consider a graph of N nodes, each connected to K neighbors 
via undirected edges, randomly constructed in the following way. 
Distribute the nodes randomly on a unit square. Then, cycling 
through the nodes in a fixed order, connect each node to its near-
est neighbor on the square until it has K neighbors. Once con-
structed, this structure is static. The resulting graph may not be 
planar, but violations will be local. Graphs constructed in this way 
approximate the connectivity of an idealized communications net-
work, in which each node is connected to all nodes within a fixed 
radius, but with an important difference. If the radius is fixed, the 
node degree K will vary broadly about some mean value. For ex-
ample, in one trial with 100 nodes in the unit square and a radius 
of 0.1, the mean K is about 3, but the standard deviation of K is 
1.7. In this study the focus is on how the dynamics of graph color-
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Figure 2. Effect of changing document population (all populations 

start at ~17221 and end at N). λ for all curves is essentially the same. 

Table 1.  Parameters for Ant Clustering 

Length of concept vector 5 
Total number of documents 17221 
Number of places per processor 100 
Number of processors 9 
Number of destinations considered 30 
Probability of considering a place on 
another processor 

1/30 

Max number of docs compared in 
each place 

30 
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ing vary with K, so it is better to fix K at a precise value, transfer-
ring the variation to the radius at which nodes can be connected. 

Agents.—Each node in this graph is an agent, and executes a 
soft real-time graph coloring algorithm [3, 7]. The agents execute 
synchronously in discrete time. At any step, each agent has one of 
G colors. The assignment of colors may change over time. An 
agent can perceive its neighbors’ colors after a delay.  

Global Objective.—The objective is to minimize the global 
degree of conflict, computed as the number of edges in the graph 
that connect two nodes with the same color, times G, divided by 
the overall number of edges. The global degree of conflict is 0 for 
a perfectly colored graph, about 1 if all agents make random 
choices, and greater than 1 if conflicts are worse than under ran-
dom choice. 

Local Decisions.—Agents are selected randomly without re-
placement in each round. All agents share a global activation level 
(the probability that the agent will activate at a given round). If 
activated, an agent re-evaluates its color assignment based on the 
local Degree of Conflict, (the number of neighbors that share the 
node’s color divided by the overall number of neighbors K). The 
node calculates the degree of conflict for each of the G possible 
colors, using the perceived color of its neighbors. It compares 
these degrees of conflict with that of its current color, and selects 
the color yielding the lowest local degree of conflict. Because this 
decision takes into account only the colors of immediate 
neighbors, it is local. It is also noisy, since the information about 
neighbors’ colors is delayed and 
may be inaccurate. 

Convergence.—Figure 3 shows 
the convergence of a run (Table 2) 
and the excellent exponential fit. 

2.3 Area Surveillance 
[12] 
Motivation.—A common task for 
uninhabited robotic vehicles is sur-
veillance of a region of territory. 
Such surveillance must satisfy sev-
eral characteristics. One is that ve-

hicles should spread out over the area to avoid double coverage 
and reduce the time needed to cover the entire area. 
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Figure 3. Graph coloring convergence. The solid line is a fit to 

Agents.—Each vehicle is an agent in this system. 
Global Objective.—A convenient metric for such a system 

is how rapidly the agents initially cover the territory that they 
must monitor, tracking the fraction of the area that has been 
seen as a function of time. 

Local Decisions.—A simple algorithm for this problem uses 
digital pheromones [8, 10, 11]. The environment is represented 
in the pheromone infrastructure as a square grid, each cell of 
which has a place agent. 
1. Once a second, each place agent deposits twenty units of 

attractive pheromone in its cell, propagates pheromone to the 
eight neighboring cells, and evaporates the pheromone by a 
fixed proportion. 

2. Every time a vehicle enters a new cell (on average, once 
every 4.8 seconds), it deposits two units of repulsive phero-
mone and zeros out the attractive pheromone in its current 
cell. 

tλeBA −⋅+ . 

3. Once every twelve seconds, each place evaporates (but does 
not propagate) its repulsive pheromone by a fixed proportion. 

4. Each vehicle moves to the neighboring cell for which differ-
ence (attractive pheromone – repulsive pheromone) is greatest; 
Agents’ decisions use only by the information available in 

their immediate vicinity, and thus are local (though the propaga-
tion of attractive pheromone in step 1 provides some spread of 
information over time). In the absence of a vehicle, step 1 leads to 
an asymptotically constant level of attractive pheromone in each 
cell, drawing in vehicles. Step 2 causes the vehicles to spread out 
from one another, and avoids repeat visits that are close to one 
another. Because step 1 repeats after step 2, and because the re-
pulsive pheromone from step 2 evaporates over time, eventually 
each site will be revisited.  

Convergence.—Table 3 shows the parameters for a run of this 
system. For the fastest possible coverage, at each time step, each 
vehicle should move immediately to a cell that has not yet been 
visited. Such a strategy is physically impossible, because it would 
require vehicles to move directly between noncontiguous cells. 
But it provides an upper limit, visiting 15 new cells or 15/40000 = 
0.0375% on each time step. Figure 4 shows both this upper limit 
and the actual convergence of the algorithm, in steps of 4.8 sec-
onds (the average time it takes a vehicle to move from one cell to 
another). The convergence is not exponential, but linear with a 
slope of 0.030. 

3. THEORY 
To understand these behaviors, we 
study a simple model that retains 
many of the features common to 
these applications, an extension of 
the adaptive walk [6]. This model 
converges exponentially fast, and 
the parameters that govern this 
convergence provide useful guid-
ance in designing and analyzing 
examples such as those we have 
just discussed.  

Table 2. Parameters for Graph Coloring 

Activation Level 2.5% 
Communication Latency 1 round 
Number of nodes N 600 
Node degree K 150 
Number of colors G 4 

Table 3. Parameters for Area Surveillance 

Size of Area (cells) 200x200 
Number of Vehicles 15 
Attractive pheromone  
 Update interval 1 sec 
 Deposit size 20 
 Evaporation rate 0.03 
 Propagation rate 0.75 
Repulsive pheromone  
 Update rate ~4.8 sec 
 Deposit size 2 
 Evaporation rate 0.3 
 Propagation rate 0 
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3.1 The Adaptive Walk Model 
Consider a binary vector of length N. Initially, all ele-
ments of S are 0. At each time step, 

{ }NS 1,0∈

1. Select an element of S at random. 
2. If the element is currently 0, set it to 1 with probability p01. If it 

is currently 1, set it to 0 with probability p10. Note that p01 and 
p10 are independent. In particular, there is no requirement that 
they sum to 0. 

The objective of this system is to maximize N1 = ΣS, the number 
of elements of S that are set to 1. 

Though simple, this model has the essential features shared by 
our more realistic systems. In Section 4, we will map each exam-
ple onto the adaptive walk. For now, the following general corre-
spondences will motivate the argument. 
• Each element of S is an agent, and the array corresponds to the 

entire system of agents. 
• The system objective is global over the entire system. 
• The agents do not have access to this global measure in making 

their decisions. In fact, in this simple model, they do not con-
sider the state of any other agent in making their decisions, but 
choose probabilistically. p01 reflects the probability that their 
local decision will advance the global goal, while p10 reflects 
the likelihood that their local decision will oppose the overall 
system objectives. 

3.2 Analysis 
Our extended adaptive walk can be modeled as is a finite state 
Markov chain, which is known to converge exponentially [4]. We 
derive the analytic form of this convergence from a mean field 
analysis in the continuous limit to facilitate subsequent analysis of 
our example problems.  

Consider the time rate of change of N0 = N –N1 (the number of 
0’s in S). The analysis for N1 is similar.  

On a given step, the algorithm will select a 0 element with 
probability N0/N and a 1 element with probability (N – N0)/N. If it 
selects a 0 element, it will turn it to a 1 with probability p01, dec-
rementing N0 on average by p01. Thus the effect on N0 due to 
changes of 0s to 1’s is p01 N0/N. Similarly, if the algorithm hap-

pens to select a 1, it will turn it to 0 with probability p10, thus 
incrementing N0 on average by p10, with net effect p10 (N – 
N0)/N. The total effect is given by the master equation 
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Figure 4. Area surveillance convergence: upper bound and 

achieved. 
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This simple differential equation is of the form BxAx −=& and 
has the solution , or BteCBAx −⋅+= /
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tegration. At time t = 0, N0 = N, requiring 
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= . To 

simplify the notation, we write  
( ) Npp /0110 +≡λ  , Equation 2 

yielding 
( ) λλ /01100

teppN −+=  . Equation 3 

Similar reasoning for N1 yields 

( ) λλ /1011
tepN −−=  Equation 4 

3.3 Discussion 
The dynamics of both N0 and N1 are governed by 

( ) Npp /0110 +≡λ , which determines both the asymptotes and 
the speed of convergence of the system. 

The speed of convergence increases with both p01 and p10. Low 
values of either mean that the system is likely not to change its 
state on a given step, so more steps will be necessary to converge. 
The speed of convergence decreases with N. Each step changes 
only one element of S, and the influence of a change to one ele-
ment decreases with the total number of elements. If time is meas-
ured in units of N steps, giving each element on average one 
chance to execute a decision cycle, this factor disappears. 

Equation 3 shows that N0 decreases exponentially from an ini-
tial value of N to a final value of 

( )0110

1010

pp
Npp

+
⋅

=
λ

. It is interesting 

that erroneous local decisions do not slow convergence, but rather 
increase the deviation from optimal that the system is able to 
achieve. The amount of this deviation increases with N and de-
creases with p01.  

Similarly, Equation 4 shows that N1 increases exponentially 
from an initial value of 0 to a final value of 

( )0110

0101

pp
Npp

+
⋅

=
λ

. The 

higher p01, the closer to the optimum the system can come. 
Although our analysis is based on the continuous limit, it is 

remarkably accurate for reasonably sized populations of agents. 
Figure 5 plots the average results across 20 runs of the adaptive 
walk with N = 100, p01 = 0.9, and p10 = 0.1, along with the theo-
retical model (solid line) and the actual fit (dashed line, obscured 
by the data points). The difference between the parameters of the 
theoretical equation and those of a least-squares fit to the data is 
less then 5%. 
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4. ANALYZING THE EXAMPLES 
The model is close enough to yield useful insights when applied 
to our three examples. Throughout this section, “the model” is the 
adaptive walk, and “the application” is the specific example. 

4.1 Ant Clustering 
In ant clustering, the content agents correspond to the elements of 
S. Since the global objective is the average homogeneity of a sin-
gle place, we focus on the convergence of a single place. The 
model’s dynamic of choosing an element of S and changing its 
state corresponds to two events in ant clustering: the departure of 
one content agent that judges the place less similar to itself than 
its destination, and the entry of another content agent that judges 
the place more similar than its original place. There is no guaran-
tee that every content agent that leaves a place will be replaced by 
an incoming one, and in practice some places grow in size while 
others shrink. But the approximation of constant place population 
is in the spirit of our simplified model. In the light of this map-
ping between the model and the application, we compare the 
shape, speed, and limits of the system’s convergence between the 
model and the experimentally observed result . 

te 012.046.095.0 −−
Shape.—One might question whether the exponential conver-

gence of the model’s global objective (number, or more usefully 
percentage, of 1’s) will be preserved in the objective of the appli-
cation (place homogeneity). To map one to the other, we compute 
the average pairwise homogeneity among elements in S, under the 
assumption that two elements of the same value have a similarity 
of 1 while two elements of opposite value have a similarity of 0. 

First, construct all possible pairs of elements, sum their simi-
larities, and divide by the total number of pairs. The total number 

of pairs is just the binomial coefficient 
⎟⎟
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To simplify further, consider the limit of large N, where N ~ (N – 

1), and let NNr /1≡ . Then the homogeneity of S becomes  

( )22 5.025.0122 −+=−+ rrr .  Equation 5 

Place homogeneity decreases with increasing r for r < 0.5, then 
increases. In ant clustering, with cluster agents initially assigned 
randomly to places, r begins at 0.5, so it is natural to see the fac-
tor ( ) as reflecting the degree of convergence of an adaptive 
walk that begins with a random S rather than one that is uniformly 
0. Thus, to a first approximation, place homogeneity varies as the 
square of r, which is an exponential with rate 2λ. The theory thus 
explains the exponential shape of the experimental results. 

5.0−r

Asymptote.—The model predicts 
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)( 1001
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Translation to homogeneity (Equation 5) yields 

2
1001

2
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2
01

)( pp
pp

A
+
+

=  Equation 6 

Experimentally, A = 0.95, suggesting . (The sim-
plicity of the model does not warrant such precision, but we carry 
out the computation for the sake of illustration.) Thus our algo-
rithm is less than 3% as likely to take a backward step as a for-
ward one. The uncertainty in our local decision is due entirely to 
partial sampling, not to any noise in the data, so it is reasonable 
that backward steps should be rare. The effectiveness of forward 
steps can be estimated by analyzing the speed of convergence. 

0110 026.0 pp =

Speed.—The experimental results in Section 2.1 covered two 
cases: clustering of a static document population, and clustering 
when the population grew at a constant rate. Our model supports a 
quantitative analysis of the first case, and (at present) a qualitative 
analysis of the second. 

First, consider the convergence with a fixed population. We 
are concerned with the average homogeneity of a single place, of 
average population 17221/900 ~ 20, so we expect r to grow as 

( ) 20/0110 pp +=λ , and place homogeneity as 

( ) 10/2 0110 pp +=λ . We do not know p01 and p10, but from the 
asymptote we know that when p01 = 1 (its maximum), p10 = 0.053, 
so an upper bound on 2λ would be 0.1053. 

The application converges as e-0.012t, where t is measured in 
seconds. On average, the application activates individual cluster-
ing agents 558 times each second, and these agents are distributed 
across 900 places. So on average an agent in the place we are con-
sidering is activated once every 558/900 ~ 0.6 seconds. The move 
of such an agent out of the place is only half of an update step. 
The other is the move of an agent from another place into our des-
ignated place. Other agents have 900 places from which to 
choose, and only one of these will lead to our place, which will 
happen once every 0.6 seconds. So the effective time required for 
the system to make one step is 1.2 seconds. Let q be the number 
of such steps. Then t = 1.2q, and the observed convergence rate 
0.012t = 0.014q, suggesting that 2λ ~ 0.014. This is within the 
upper bound suggested by the theory, and not so low as to be un-
reasonable. It would be exact if p01 ~ 0.136 and p10 ~ 0.004 At 
first glance, we would be disappointed to think that a content 
agent’s action advances the global objective so infrequently. More 
likely, the discrepancy is due to the incremental nature of the im-
provement achieved by replacing one document with another that 
is more similar to the place’s population. This improvement is not 
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Figure 5.  Theoretical vs. actual convergence of adaptive walk. 
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a binary change as in the adaptive walk, but a more incremental 
shift, analogous to incrementing an element of S by a real in [0,1]. 
If we think of the p01 parameter as the product of the probability 
of a beneficial move times the amount of benefit conferred, the 
estimated value of 0.13 might reflect (for example) a 65% prob-
ability of making an improving move times a 20% improvement. 

We do not yet have a quantitative analysis of the growing 
document population, but the model offers qualitative insight into 
the remarkable stability of the exponent λ as the growth rate in-
creases. Equation 2 supports our intuition that higher N should 
yield lower λ, all other things being equal. But other things are 
not equal. The random assignment of new documents to places 
reduces the accuracy of a document’s decisions about how consis-
tent it is with its own place and with alternatives. This uncertainty 
should increase the probability of a backward step p10, increasing 
the numerator of Equation 2. In other words, the higher rate of 
backward steps counterbalances the retarding effect of increased 
population. An increase in p10 relative to p01 as the population 
increases is consistent with the decrease of the asymptote, accord-
ing to Equation 6. Naïve application of Equation 6 to an asymp-
tote of 0.6 yields , corresponding to an increase in p

0110 6.2 pp = 10 
+ p01 by a factor of more than three that will counterbalance the 
increase in N in the numerator of λ. We should not be surprised 
that the correction is not exact numerically, since our theory does 
not yet provide for changes in the length of S during the adaptive 
walk. However, the static results do suggest qualitatively how λ 
might plausibly remain constant as N increases. 
4.2 Graph Coloring 
One might be tempted to map each agent of the graph coloring 
problem (the nodes) onto the elements of S, just as we did for the 
ant clustering agents. This will not work. The basic dynamic of 
the model maximizes ΣS, and the counterparts to the elements of 
S must be stateful entities such that we want to maximize the 
number of entities in a given state. The basic state of each node in 
the graph is its color. The global objective, minimal global degree 
of conflict, is achieved when the nodes have the most diverse 
range of colors possible, not when they are all colored the same.  

A more appropriate counterpart for elements of S is found in 
the edges of the graph. The state of an edge is 0 if it joins to nodes 
of the same color, and 1 otherwise. A monotonic decrease in the 
number of 0’s corresponds to a monotonic decrease in the global 
degree of conflict. This mapping is instructive because the ele-
ments in the adaptive walk do not correspond to the decision-
making agents in the application. Each node decision will affect K 
links, and we shall have to take this into account in our analysis of 
the speed of convergence. Let us compare the theoretical predic-
tions for this system with the observed experimental fit, 

, in shape, speed, and asymptote of conver-
gence. 

te 048.0093.017.0 −+

Shape.—As with ant clustering, we must first consider the re-
lation between the model’s objective function ΣS and the applica-
tion’s objective function of global degree of conflict. The latter is 
number of edges in the graph that connect two nodes with the 
same color, times the number of colors available, divided by the 
total number of edges. In the model, the objective function is thus 
(2GΣS /nK), the same as ΣS up to a constant, and the time steps 
are the same up to a constant (K), so the shapes will be the same. 

Asymptote.—In this problem, we are interested in minimizing 
rather than maximizing the objective function, so we use N0 

(Equation 3) rather than N1 as our model. In terms of Equation 3, 
our objective function is (recalling that nK/2 = N and G = 4) 
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Figure 6. Comparison of adaptive walk with area surveillance. 
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and the asymptote is ( )011010 /4 ppp + . 
Experimentally, our asymptote is 0.17, suggesting p10 = 0.04 

p01. This upper bound assumes that the non-zero asymptote is due 
only to a non-zero p10. In the application, another constraint pre-
vents the system from reaching a 0 asymptote: K > G, so it is im-
possible for even a single node to avoid conflict with all of its 
neighbors. We can estimate this effect by setting the communica-
tion latency to 0. At this setting, the asymptote is still 0.17, sug-
gesting that the nonzero asymptote is due solely to the overcon-
strained nature of the problem, and p10 = 0 even with a communi-
cation latency of 1. The activation level of 2.5% is apparently low 
enough to delay the activation of nodes long enough to permit 
information about their neighbors to reach them. 

Speed.—To compute λ and thus p01, we need to align the time 
steps between the model and the application. Two factors are in-
volved. First, the time axis in Figure 3 is in rounds, each of which 
updates all n nodes. Second, each node update changes the state 
of K edges. So one time step in Figure 3 corresponds to nK steps 
in the adaptive walk. Thus the convergence constant of 0.048 in 
the application corresponds to 0.048/nK for the adaptive walk, 
and it is this value that should be compared with λ. 2/nKN = , so 
( ) nKnKpp /048.0/2 0110 =+ , and ( ) 024.0010110 ==+ ppp . 

These figures apply to the model, and thus to link updates. In 
terms of the nodes, each node update changes K links, yielding 
p01K improved links out of nK/2. So the probability that a node 
will make a useful change is 2p01/n, or 8E-5 for our parameters. 
Thus while the update rule for the distributed graph coloring algo-
rithm always moves in the right direction, its contribution is very 
small, requiring long times for convergence. This slowness is not 
surprising, considering the highly over-constrained nature of this 
system. Again, the extreme simplicity of the model compared 
with the application urges us to take these results cum grano salis. 

4.3 Area Surveillance 
Our final example does not exhibit exponential convergence. 
Nevertheless, it is worthwhile to compare the experimental results 
and theoretical upper bound we have already presented with the 
adaptive walk. Like the upper bound computation, the adaptive 
walk is unrealistic, since it does not respect constraints on vehicle 
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movement, but assumes that any vehicle can move immediately to 
any cell in the area, even one remote from its current location. 

At each step in area surveillance, 15 vehicles are sampling 
cells of a 40000-cell area. In terms of the model, this is compara-
ble to |S| = 40000/15 ~ 2667. For p01 = 1, p10 = 0, we have λ = 
3.75E-4 (the same as the slope of the upper bound discussed in 
Section 2.3), and ( )tEeN 475.3

1 12667 −−−= . Figure 6 plots this line 
together with the upper bound and the observed data. 

In spite of its simplicity, the model provides an excellent fit to 
the experimental data up to about 40% coverage. The inset shows 
how the model rises slightly faster than the experiment, then be-
gins to fall below it. We attribute the rapid rise to the assumptions 
of the model: while the air vehicles are constrained by the need to 
move between contiguous cells, and so must often repeat cover-
age of cells that have already been seen, the model can go directly 
to any cell. Of more interest is the shortfall above 40% coverage. 
The adaptive walk slows as more and more of the area is covered, 
so that the random selection of the next site to visit frequently 
selects a site that has already been visited. 

The continued straight-line progress of the experiment shows 
the effectiveness of the pheromone mechanism in improving over 
the random selection of the next site to visit. This improvement 
arises because pheromones reduce the locality of the decision 
process, in two ways. First, the propagation of attractive phero-
mone makes information from one cell available in a neighboring 
cell, reducing spatial locality and generating a gradient that guides 
the movement of vehicles. Second, the persistence of pheromone 
deposited by one vehicle for sensing by another reduces the tem-
poral locality of decisions, enabling decisions at one point in time 
to take into account the results of previous decisions. 

From an engineering point of view, this example illustrates 
how the adaptive walk model can provide a lower bound for esti-
mating the achievable performance of a real system, and for 
measuring the effectiveness of mechanisms for overcoming local-
ity. 

5. CONCLUSIONS 
Many modern applications require systems that can make deci-
sions based on local knowledge to advance a global objective. 
Such systems are interesting both theoretically and from an engi-
neering perspective. Theoretically, it is interesting that they often 
(though not always) exhibit exponential convergence. To deploy 
them effectively, we need to understand how to predict, control, 
and evaluate their convergence. 

An enhanced version of the adaptive walk is simple enough for 
theoretical analysis, yet real enough for engineering study. Our 
experience with this model yields the following insights. 
1. Exponential convergence emerges from the simplest stochastic 

search, and thus should be very common in such systems. This 
is a fortunate result, since such convergence supports any-time 
processing in which solution quality increases very rapidly at 
the outset, yet continues to improve if more time is available. 

2. The speed of convergence is a function of three parameters: the 
number of interacting agents, the probability that an agent 
whose state needs to change will change (advancing the objec-
tive), and the probability that an agent whose state does not 
need to change will change anyway (hindering the objective). 

3. The model indicates two routes to improving the convergence 
of such systems. First, one can use mechanisms such as phero-
mones to propagate information through space and time, thus 
reducing the locality of the decisions. An example is the use of 

pheromones to guide robots in the area surveillance application. 
Second, one can focus on the three parameters mentioned in the 
previous step. An example is the use of pheromone learning [9] 
to favor the activation of agents most likely to improve the 
overall system behavior, thus effectively reducing N and in-
creasing speed of convergence. 

4. The model provides a template for assessing the performance 
of a real application. If an application exhibits exponential con-
vergence (as in the clustering and graph coloring examples), its 
asymptote can be used to estimate the relative size of p10 and 
p01, and thus how effectively the system avoids backward steps 
in favor of forward ones. Then its speed of convergence can be 
used to estimate the actual value of these parameters. If an ap-
plication does converge exponentially (as in the area surveil-
lance example), the model provides a baseline that can be used 
to judge the effectiveness of the application’s mechanisms. 
Our model is extremely simple, and we must be cautious in 

applying it to real systems. We have seen two examples of possi-
ble confusion in our analyses. 1) In the clustering application, the 
estimated p01 actually includes the size as well as the likelihood of 
a desirable step, and similarly, p10 will conflate the size and like-
lihood of an undesirable one. 2) In the graph coloring application, 
the asymptote depends on structural constraints that are not re-
flected in the model, and might lead an analyst to overestimate 
p10. In spite of such limitations, the model provides a hitherto un-
available framework for the disciplined analysis of distributed 
decentralized systems, and we offer it as the foundation for en-
hancements that will make it even more useful (such as incorpo-
rating dynamic change in the size of the population of elements). 
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