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ABSTRACT
This paper presents an agent strategy for complex bilateral nego-
tiations over many issues with inter-dependent valuations. We use
ideas inspired by graph theory and probabilistic influence networks
to derive efficient heuristics for negotiations about multiple issues.
Experimental results show — under relatively weak assumptions
with respect to the structure of the utility functions – that the de-
veloped approach leads to Pareto-efficient outcomes. Moreover,
Pareto-efficiency can be reached with few negotiation steps, be-
cause we explicitly model and utilize the underlying graphical struc-
ture of complex utility functions. Consequently, our approach is
applicable to domains where reaching an efficient outcome in a
limited amount of time is important. Furthermore, unlike other so-
lutions for high-dimensional negotiations, the proposed approach
does not require a mediator.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent Agents, Mul-
tiagent Systems; I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and tree search strategies, Heuristic methods

General Terms
Algorithms, Economics, Experimentation

Keywords
negotiation, market-based methods, utility graphs, influence dia-
grams, graphical models, game theory, decision theory

1. INTRODUCTION
Automated bilateral negotiation forms an important type of in-

teraction in agent based systems for electronic commerce [9]. It al-
lows seller and customer to determine the terms and content of the
trade iteratively and bilaterally. Consequently, deals may be highly
customized (especially for complex goods or services) and highly
adaptable to changing circumstances. Moreover, by automating the
negotiation, the potentially time-consuming process is delegated to
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autonomous software agents who conduct the actual negotiation on
behalf of their owners.

In this paper, we consider the problem of a seller agent nego-
tiating bilaterally with a customer about selecting a subset from
a collection of goods or services, viz. the bundle, together with a
price for that bundle. Thus, the bundle configuration — an array
of bits, representing the presence or absence of each of the shop’s
goods and services in the bundle — together with a price for the
bundle, form the negotiation issues. Like the work of [18, 6, 12,
16, 11], the techniques developed in this paper try to benefit from
the so-called win-win opportunities, by finding mutually beneficial
alternative bundles during negotiations.

The methods proposed in Faratin et al. [12], Coehoorn and Jen-
nings [11] are geared towards finding win-win opportunities through
modeling the preferences of the negotiation partner, for issues with
independent valuations. This paper follows a similar approach; we
consider interdependencies between issues, however, which make
the problem considerably harder. In order to model such complex
utility interdependencies between items, we introduce the novel
concept of utility graphs.

Utility graphs build on the idea introduced in Chajewska and
Koller [2] and Bacchus and Grove [1] that highly nonlinear util-
ity functions, which are not decomposable in sub-utilities of in-
dividual items (such as in the seminal work of Raiffa [14]), may
be decomposable in sub-utilities of clusters of inter-related items.
They mirror the graphical models developed in (Bayesian) infer-
ence theory (cf. [7, 13]). Graphical models have been shown to
be a powerful formalism for modeling decisions and preferences of
other agents (see Lauritzen [7] for an overview). The idea behind
using utility graphs in a multi-issue bargaining setting is to provide
the seller with a formalism that can be used to explore the exponen-
tially large bundle space, efficiently. In this paper, we show how
utility graphs can be used to model an opponent’s (i.e. customer’s)
preferences. Moreover, we also propose an updating procedure to
obtain approximations of the customer’s utility graph indirectly, by
only observing his counter-offers during the negotiation.

An important benefit of using utility graphs in this setting is scal-
ability: the problem becomes harder for larger number of items
only if the underlying preference function becomes more complex
as well. Graphical models (such as the one proposed in this pa-
per), exploit the decomposable structure of utility functions, hence
enabling more efficient search of the contract space.

At the start of a negotiation process, the seller’s approximation
of the customer’s utility graph represents some prior information
about the maximal structure of the utility space to be explored. This
prior information could be obtained through a history of past nego-
tiations or the input of domain experts. (An important advantage of
a utility graphs is that they can handle both qualitative and quantita-
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tive prior information.) After every (counter) offer of the customer,
this approximation is refined. Conducted computer experiments
show that — by using only a fairly weak assumption on the max-
imal structure of customers’ utility functions — the updating pro-
cedure enables the seller to suggest offers that closely approximate
Pareto efficiency 1. Moreover, efficient outcomes are reached after
relatively few negotiation rounds, which enables our approach to
be used in applications where time constraints or the impatience of
buyers are limiting factors.

The rest of this paper is organized as follows. Section 2 presents
the negotiation setting: it defines the efficiency criteria, the nego-
tiation protocol and the top-level outline of the negotiation algo-
rithm. Section 3 defines the concept of utility graphs, it describes
how such graphs can be used to model complex utility functions
and to learn the preferences of the opponent in negotiation settings.
Section 4 presents the set-up and results from the experiments per-
formed to validate the model, while Section 5 concludes the paper
with a discussion of related work and outlines the contributions of
this paper.

2. THE NEGOTIATION SETTING
We consider a buyer and seller who negotiate bilaterally over a

set of n binary-valued issues or items, and one continuous issue, the
price. Henceforth, we will refer to the binary-valued issues as items
and to subsets formed with these items as bundles. Negotiations are
conducted in an alternating exchange of offers and counter offers.
The offers and counter offers contain a n-dimensional vector of 0’s
and 1’s representing an instantiation of the n items, plus a price
offered/asked for this bundle.

The utility (measured in terms of monetary value) a buyer as-
signs to any bundle of items is given by a complex (nonlinear)
function that takes into account interdependencies between various
items. The seller’s utility for a bundle (measured in net monetary
value) is the difference between the price received for a bundle and
the costs incurred for providing a bundle. These costs are additive:
i.e., the bundle cost equals the cost of offering the items individu-
ally. Both the buyer’s utility and the seller’s cost represent private
information, which remains undisclosed before or during the ne-
gotiation. Therefore, the negotiation setting can be describes as
double-sided incomplete information.

2.1 Net Utility functions of Buyer and Seller
Let B = {I1, . . . , In} denote the collection of n items a seller

and buyer negotiate over. Each item Ii takes on either the value 0
or 1: 1 (0) means that the item is (not) purchased. Thus B has the
domain Dom(B) = {0, 1}n (so there are 2n possible bundles).
The n-dimensional vector ~b ∈ Dom(B) denotes an instantiation
of these n items. In our approach, the utilities assigned to different
outcomes (combinations) are represented by monetary units, rather
than values between 0 and 1. We found this choice more natural
for the e-commerce scenarios we consider. The utility function u :
Dom(B) 7→ R specifies the monetary value a buyer assigns to all
(2n) possible outcomes. Due to interdependencies between various
items the function u is highly nonlinear. The buyer’s net utility (i.e.
net monetary value) for purchasing a bundle~b for a price p, denoted
by nub(~b, p), is defined as follows:

nub(~b, p) = u(~b)− p. (1)

That is, nub(~b, p) is the difference between the monetary value for

1A deal is Pareto efficient whenever no party can be made better
off without making the other one worse off.

acquiring (consuming) bundle~b minus the price p paid for purchas-
ing bundle~b. The net monetary value of the seller is computed as:

nus(~b, p) = p− Costs(~b) (2)

Thus, the seller’s net monetary value for the sales of a bundle ~b

for a price p is just the price minus the cost for selling the items.
Currently, the seller has an additive cost structure: i.e., the bundle
costs Costs(~b) equals the sum of the cost incurred when selling the
items individually.

2.2 Using gains from trade as efficiency crite-
ria

The most widely used performance criteria in multi-attribute ne-
gotiations is Pareto efficiency. Raiffa [14] provides a method to
compute Pareto-efficient outcomes in the case utility functions of
both parties are normalized between 0 and 1. In our model, utili-
ties are represented in monetary units instead of mappings between
0 and 1. Consequently, it is more insightful to compute the gains
from trade that can result from exchanging a certain bundle of items
~b. The gains from trade are defined as:

GT (~b) = u(~b)− Cost(~b), (3)

where u(~b) denotes the buyers monetary value for ~b. The notion
of gains from trade is well founded in the economic literature on
trade (c.f. [10]). Moreover, for the above setting (where utility
is expressed in monetary units) the set of bundles maximizing the
gains from trade can be proven to be the same as the set of Pareto-
efficient bundles (c.f. [16]). Intuitively, the gains from trade can
be seen as the maximal size of joint gains, which can be achieved
through negotiation, while the continuous attribute, the price repre-
sents different ways to divide these joint gains.

2.3 Top-level outline of the negotiation algo-
rithm

The negotiation, in our model, follows an alternating offers pro-
tocol. At each negotiation step, each party (buyer/seller) makes
an offer which contains an instantiation of 0/1 for all items in the
negotiation set (denoting whether they are/are not included in the
proposed bundle), as well as a price for this bundle. The decision
process for each party, at each negotiation step, is composed of 3
inter-related parts: (1) take into account the previous offer made by
the other party, (2) compute the contents (i.e. item configuration)
of the next bundle to be proposed, and (3) compute the price to be
proposed for this bundle.

Alg. 1 gives an outline of the algorithm the seller uses in each
negotiation step. On the buyer’s side, the followed steps mirror
Alg.1 with the notably difference that the buyer does not try to es-
timate or reach the highest gains from trade, but selects the bundle
that optimizes only his own expected net utility (i.e., he is entirely
selfish). Based on the ongoing negotiation process he can update
this choice, however. In this model, the burden of exploring the
huge bundle space and recommending jointly profitable solutions
is therefore passed to the seller, who must solve it by modeling the
preferences of the buyer. This is a reasonable model in cases where
an electronic merchant negotiates with different buyers in succes-
sion and tries to optimize both his own profits and buyer satisfac-
tion (essential for building up a durable client relationship, which
would generate repeated business). Furthermore, in e-commerce
domains it is reasonable to assume that electronic merchants are
more knowledgeable than individual buyers.

In our model the seller starts the negotiation by posting an ask
price for each item. This price reflects the maximum profit the
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Algorithm 1 Top level algorithm used by the seller

Denote by (~bb, pb) the previous offer of the buyer and by (~bs, ps)
the previous offer of the seller.
1. If ~bb = ~bs (configuration is agreed) and ps − pb < ∆p (dif-
ference in ask and offer prices is under some maximum acceptable
threshold), then Success.
2. Otherwise:
3. Update the estimated utility graph of the buyer based on his
past bid~bbuyer

4. Compute (one of) the bundles ~b∗ with the highest gains from
trade
5. Compute the price to be proposed for ~b∗ such that it represents
a linear time concession from my previous offer
6. Propose this bundle and price to the buyer

seller expects to make by selling that item (i.e. the ask price re-
flects his maximal aspiration level). The buyer also has a maximal
aspiration level, which reflects the maximum discount he expects to
get. The discount the buyer will actually get for a bundle depends
on the content of that bundle and on the negotiation process itself.

The seller’s approach is to search for a bundle that has the maxi-
mum gains from trade, since in this way he increases the joint gains:
the only way he can continue to offer a better discount, but also in-
crease his own profits, while the Buyer is strictly selfish and will
always propose a bundle that increases his own (expected) utility.
Regarding price concessions, both the buyer and the seller com-
pute, for the current proposed bundle their current aspiration level
and then make a time-dependent price concession with respect to
that aspiration level.

For consistency, all experimental results reported in this paper
refer to the linear, time-dependent concession case. However other
time-dependent concession strategies usually employed in bilateral
negotiations (such as hard-headed, boulware [5]) have been imple-
mented and tested, with consistently good results. We note that
the accuracy of the bundle predicted to have the highest gains from
trade (step 3 and 4 in Alg. 1) does not significantly depend on the
price concession strategy, because we made the explicit modeling
choice that the concession strategy concerns only the pricing (step
5 of Alg. 1 above), not the exploration of the bundle content itself
(steps 3 and 4 of Alg. 1). We acknowledge, however, that if the con-
cession strategy were directly embedded in the opponent-learning
mechanism (performed using the utility graph), the consistency of
our experimental results may be effected. Finally, we model time
pressure and/or buyer impatience through a break-off probability:
at each step there is a small risk of breakdown (a value of 2% was
used in the simulations).

3. USING GRAPHS TO MODEL UTILITY
FUNCTIONS

3.1 Decomposable Utility Functions
Recall that we consider a buyer who negotiates with a seller over

a bundle of n items, denoted by B = {I1, . . . , In}. Each item Ii

takes on either the value 0 or 1: 1 (0) means that the item is (not)
purchased. The utility function u : Dom(B) 7→ R specifies the
monetary value a buyer assigns to each of the 2n possible bundles
(Dom(B) = {0, 1}n).

In traditional multi-attribute utility theory, u would be decom-
posable as the sum of utilities over the individual issues (items)
[14]. However, in this paper we follow the previous work of [2] by
relaxing this assumption; they consider the case where u is decom-

posable in sub-clusters of individual items such that u is equal to
the sum of the sub-utilities of different clusters.

DEFINITION 1. Let C be a set of clusters of items C1, . . . , Cr

(with Ci ⊆ B). We say that a utility function is factored according
to C if there exists functions ui : Dom(Ci) 7→ R (i = 1, . . . , r

and Dom(Ci) = {0, 1}|Ci|) such that u(~b) =
∑

i
ui(~ci) where

~b is the assignment to the variables in B and ~ci is the assignment
to the variables in Ci, induced from the assignment ~b. We call the
functions ui sub-utility functions.

The factorization of a decomposable utility function is not unique.
In this paper, we use the following factorization, which is a rela-
tively natural choice within the context of negotiation. Single-item
clusters (|Ci| = 1) represent the individual value of purchasing an
item, regardless of whether other items are present in the same bun-
dle. Clusters with more than one element (|Ci| > 1) represent the
synergy effect of buying two or more items; these synergy effects
are positive for complementary items and negative for substitutable
ones.

The factorization defined above can be represented as an undi-
rected graph G = (V,E), where the vertices V represent the set
of items I under negotiation. A vertex between two nodes (items)
i, j ∈ V is present in this graph if and only if there is some cluster
Ck that contains both Ii and Ij . We will henceforth call such a
graph G a utility graph 2.

EXAMPLE 1. Let B = {I1, I2, I3, I4} and C = {{I1}, {I2},
{I1, I2}, {I2, I3}, {I2, I4}} such that ui is the sub-utility function
associated with cluster i (i = 1, . . . , 5). Then the utility of pur-
chasing, for instance, items I1, I2, and I3 (i.e., ~b = (1, 1, 1, 0))
can be computed as follows: u((1, 1, 1, 0)) = u1(1) + u2(1) +
u3((1, 1)) + u4((1, 1)), where we use the fact that u5((1, 0)) = 0
(synergy effect only occur when two or more items are purchased).
The utility graph of this factorization is depicted in Fig. 1.

To give a numerical example, suppose: u1(1) = $7, u2(1) =
$5, u3((1, 1)) = −$5, u4((1, 1) = $4, u5((1, 1)) = $4. More-
over, all item costs are equal to $2: i.e., c(I1) = c(I2) = c(I3) =
c(I4) = $2. In this case the bundle with the maximum gains from
trade (i.e. the bundle denoted by~b∗ in Alg. 1) is: (0, 1, 1, 1), which
has the net monetary value of $5+$4+$4 - 3*$2 = $7. From this
simple example we can already highlight an important problem.
The assignments for items I1 and I3, I4 influence each other indi-
rectly, through the assignment for I2 (although there are no direct
links from I1 to I3, I4). This feature is exploited by our decompo-
sition algorithm.

At the computational level, each cluster is represented by a joint
utility table, which assigns a utility value for all combinations of
instantiations with 0/1 of items in that cluster (this is similar in con-
cept to the joint probability tables, used to represent inter-dependent
variables in probabilistic networks). Therefore, the cost of this util-
ity representation is then exponential in the number of items in the
cluster. For this reason, we limit the maximum size of any cluster
to 4. However, this does not mean that the maximum size of the
inter-dependencies is limited to 4 – it can be arbitrarily large. This
is because one item can simultaneously belong to several clusters,
so when deciding whether to include it or not in the optimal bundle
(see section 3.3), the utility values in more than one table need to be

2The concept of cluster defined for utility graphs can be seen as
corresponding to the concept of cliques in probabilistic networks.
However, for consistency, we use only the term cluster throughout
this paper.
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Figure 1: The utility graph that corresponds to the factoriza-
tion according to C in Example 1. The + and − signs on the
edges indicate whether the synergy effect are positive or nega-
tive.

taken into account. There is also a second, more fundamental rea-
son to limit the maximum cluster size, i.e. with higher-order inter-
dependencies, the decomposition algorithm on which our method is
based is not guaranteed to produce a satisfactory partition (Section
3.3 gives a more precise description of this issue).

3.2 The maximal interdependency graph
As shown in the previous section, we assume that the buyer’s

utilities can be modeled as a graph. The structure of this graph, as
well as the sub-utilities corresponding to different clusters consti-
tute private information which is not revealed during the negotia-
tion.

However, the seller does have some prior information to guide
his opponent modeling. He starts the negotiation by having a maxi-
mal item inter-dependence graph of all possible inter-dependencies
between the issues (items) which can be present in a given do-
main. The utility graphs of buyers form subgraphs of this graph.
Note that this assumption says nothing about the weights or values
of the sub-utility functions, so the negotiation is still with double-
sided incomplete information. Furthermore, it does not mean that
the seller has to know the exact structure of the utility graph of the
buyer. For example, suppose two issues are assumed substitutable
by the seller, so the utility of the combination containing both items
is lower than the sums of utilities for individual items. If the buyer
signals (through his bids) that he is willing to accept bundles con-
taining both items, the seller will adjust the weight of this relation
(i.e. adjust the values for the relevant cluster sub-utility) towards
the sum of utilities for individual items. Conceptually, this is equiv-
alent to removing the edge from the graph (which means they are
no longer assumed substitutable).

The presence of this graph helps to greatly reduce the complexity
of the search space on the side of the seller. The structural infor-
mation contained in such a graph can be obtained either from a
history of past negotiations or elicited from human experts. Note
that in most domains it is reasonable to assume that the seller does
know something about the goods he is selling. For example, if he is
selling online pay-per-view journal articles, then articles within the
same category (or with the same author) can be potentially related
(though not guaranteed to be related for every buyer).

3.3 Selecting the best counter offer
A problem which the seller faces at each negotiation step (see

Alg. 1, step 2) is to choose a bundle ~b∗ which has the highest
gains from trade of the 2n bundles. More formally stated: ~b∗ =

argmax~b
(ĜT (~b)) = argmax~b

(û(~b)−Cost(~b)). Note that in the
above definition, we use the notations ĜT and û instead of GT and
u, since the seller does not know the true utility value of the buyer.
He only has an estimation of it, which is updated after receiving a

(counter) offer.
A straight-forward, brute-force solution to determine ~b∗ is to

generate all bundles ~b and select one which has the highest (esti-
mated) gains from trade. Since this involves 2n steps at every iter-
ation, it is clearly not feasible for large n, so a heuristic is needed
to reduce this search space.

Suppose the utility graph is decomposable into two or more com-
pletely disjoint parts (no overlapping vertices). We can then com-
pute an optimal sub-bundle for each of the parts and merge them.
However, for the more general case we still need a method for
reducing the complexity of the search, when the original graph
(or a large sub-component of it) is not decomposable in such a
straight-forward way. We do this by applying ideas of the tree-
decomposition theory to the utility graph Ĝ = (V̂ , Ê).

Informally, a tree decomposition of a graph is a family of small,
not necessarily disjoint, subgraphs Ĝ1, . . . , Ĝk (for some k ∈ N),
the union of which makes up the initial graph. Associated with a
tree decomposition Ĝ1, . . . , Ĝk is a collection of cutsets: a cutset
is a subset of vertices that belong simultaneously to the same two
subgraphs. (See [17] for a more formal discussion of tree decom-
position algorithms).

EXAMPLE 2. Figure 2 depicts such a decomposition. The ver-
tices {Ia1, Ia2, Ia3, Ia4, Ic} and {Ib1, Ib2, Ib3, Ic} form the two
cliques and corresponding subgraphs of Ĝ. There are only two sub-
graphs therefore there is only 1 cutset; Ic forms this cutest because
it is the only vertex that lies in both subgraphs.

In the conducted experiments, cutsets contain at most 1 or 2 ver-
tices. This is because, for any graph, polynomial-time algorithms
exist for decomposing a graph according to cutsets of size 1 or 2,
provided that the given graph can be decomposed in cutsets of size
maximum 2 (cf. [17] for an overview). For the algorithm presented
below, we do not need to decompose the whole graph, however.
It suffices to decompose the graph at enough points to reduce its
complexity. This means that the largest sub-component of vertices
left (i.e. which is not or cannot be decomposed any further) has a
manageable size to allow exhaustive search.

Algorithm 2 Algorithm returns ~b∗, a bundle with the highest gains
from trade (i.e.,~b∗ ∈ argmax~b∈Dom(B)

ĜT (~b))

Ĝ1 = (V1, E1), . . . , Ĝk = (Vk, Ek) and the union of all cutsets
S ⊆ V are given; ĜT i : Dom(Vi) 7→ R denotes the predicted
gains from trade resulting from the sales of a subset of the items
in Gi; and Vi[j], S[i] ∈ {1, . . . , n} denote the reference to the
item in B that corresponds to the jth and ithvertices in Vi and S,
respectively.

1. X := ∅ //X will contain n-dimensional vectors
2. For all ~s ∈ Dom(S) {

3. Initialize~b //~b is a n-dimensional vector
4. For (1 ≤ i ≤ k){
5. //Get max gains from trade of Gi consistent with ~s

6. ~v∗
i ∈ argmax~x∈Dom(Vi)

ĜTi(~x)

7. s.t. ~x(l) = ~s(m) if Vi[l] = S[m]
for some 1 ≤ l ≤ |Vi| and 1 ≤ m ≤ |S|

8. For (1 ≤ j ≤ |Vi|)~b(Vi[j]) := ~v∗
i (j)

9. }X := X ∪~b

10.} return~b∗ ∈ argmax~x∈XĜT (~x)

Alg. 2 generates all possible combinations only for items that
overlap between subgraphs (i.e. cutset items). Then, for all sub-
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Figure 2: Utility graph where the vertices {Ia1, Ia2, Ia3, Ia4, Ic} and {Ib1, Ib2, Ib3, Ic} form the two cliques and corresponding
subgraphs of Ĝ. Moreover, {Ic} forms the only cutest.

graphs it chooses the sub-combination that represents a local max-
imum for the gains from trade function in the considered subgraph,
but subject to the constraint that the items that belong to more than
one subgraph (i.e. cutset items) have the same values in all sub-
graphs. Finally, the best overall combination is chosen as a maxi-
mum of combinations of local maximums achieved for all possible
instantiations for cutset vertices (items).

It can be shown that Algorithm 2 produces equivalent results
to computing the bundle with the maximum gains from trade the
straight-forward way, by generating all possible bundles. However,
for large graph structures it is considerably faster (in fact the direct
method is too slow to work in practice for large graph structures).

EXAMPLE 3. Consider the graph in Figure 2. Generating all
bundle combinations and testing them takes 2p+c+q steps. Our al-
gorithm generates all possible combinations only for cutset C, then
computes optimal sub-bundles for subgraphs A and B for each
combination of C and merges them. This requires only 2c(2p +2q)
steps. Since c in our case is of size 1 or 2, while p and q can be
arbitrarily large, the decrease in the number of steps is exponential.

More generally, suppose the decomposition of a utility graph leads
to k cutset nodes (|S| = k) and MaxV denotes the number of ver-
tices of the subgraph with the largest number of vertices. The com-
plexity of Algorithm 2 is then O(2k+MaxV ) (proofs are omitted
due to lack of space).

3.4 Updating Sub-utility Functions
The search method described in Section 3.3 works on the utility

graph Ĝ, and corresponding sub-utility functions ûi (i = 1, . . . , |Ĉ|,
where Ĉ denotes the set of clusters). They represent the best model
of the opponent (i.e. buyer) that the seller has so far. After receiv-
ing a counter offer from the buyer, he will update this model. More
precisely, he will update the sub-utility functions. In this Section,
we will discuss the rule for updating these sub-utility functions.

The learning algorithm determines, for all Ĉi ∈ Ĉ, which com-
bination in Ĉi was asked by the buyer at the last iteration (where
there are 2|Ci| possible combinations). Then it increases the ex-
pected monetary value of the buyer for that combination and de-
grades the other combinations in the cluster. Intuitively, the idea
is to strengthen a link between vertices (represented by the corre-
sponding sub-utility value) whenever a buyer indeed expresses an
interest in purchasing the items corresponding to the vertices; oth-
erwise the link is weakened. Algorithm 3 gives the actual updating
rules.

Algorithm 3 Algorithm for updating sub-utility functions
The seller’s and buyer’s last offer contain the binary assignments
~bs and ~bb to the variables in B; moreover ~ci,s and ~ci,b denote the
assignments to the items in Ĉi, induced by ~bs and ~bb (i.e. ~ci,s and
~ci,b are sub-arrays of~bs and~bb).

1. For (1 ≤ i ≤ |Ĉ|) {
2. if ~ci,s 6= ~ci,b{
3. ui(~ci,b) := ui(~ci,b) ∗ (1 + αc)

4. For all ~c ∈ {0, 1}|Ci| \ {ci,b}
5. ui(~c) := ui(~c) ∗ (1− α(i))}}

EXAMPLE 4. Suppose we have the cluster Ci = {I3, I5, I6}
(for a i ∈ {1, . . . , |C|}). The buyer’s last offer contains the combi-
nation I3 = 0, I5 = 1, and I6 = 1. Then the expected buyer util-
ity for purchasing item 5 and 6 is increased: i.e., ui((0, 1, 1)) =
ui((0, 1, 1)) ∗ (1 + α(i)). The expected utilities for all other com-
binations in {0, 1}|Ci| (namely ui(1, 1, 0), ui(1, 0, 1), ui(1, 0, 0),
etc.) are decreased.

Parameter α(i) in Algorithm 3 defines how much weight should be
given to the request from the buyer’s last bid, in each cluster. A
higher α(i) mean that the seller is more likely to give in to buyer’s
preferences for a cluster. A straightforward choice would be to
assign the same α to all clusters. The seller would then only take
into account the buyer’s preferences. However, he should also take
into account the expected gains from trade of a cluster, which also
depend on his costs (unknown to the buyer). We therefore define a
factor called the Gains from Trade Importance Ratio (GTR) as:

GTR(i) =
GTi(~ci,b))

GT (~bb)
(4)

for all i = 1, . . . , |C|. In the above equation,~bb denotes the seller’s
last offer containing the assignment~bb to the variables in B and ci,b

denotes the assignment to the variables in Ci, induced by~bb.
Intuitively, this ratio provides a measure of the cluster’s impor-

tance weight, by comparing the gains which can be obtained in
this cluster to the gains for the whole bundle. The measure can
be compared to the inverse of total number of clusters 1/|C|, for
the purpose of fine-tuning the alpha parameter for each cluster (al-
though the clusters vary in size in the conducted experiments from
1-4 items, the above ratio still provides a useful heuristic). The
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cluster-specific α is then computed as the sum between a fixed and
variable component (computed by a sigmoid function): i.e.,

α(i) = αfixed + αvar ∗
1

1 + eβ∗(GTR(i)−1/|C|))
(5)

for all i = 1, . . . , |C|. Here the parameter β is a positive value,
which gives a measure of how steep the sigmoid function is. After
conducting a number of experiments, we observed that transform-
ing the function into a simpler step function (by assigning β →∞)
produces reasonably good experimental results. The values as-
signed to the alphas in the conducted experiments are αfixed = 0.1
and αvar = 0.3.

The rationale behind the above formula is the following: if a
cluster has a high importance for the seller (i.e. if GTR(i) >

1/|C|), then the concession made for this particular cluster will be
small (equal to αfixed). Intuitively, this means that for this cluster,
the costs of the seller are low, so the the seller should keep insist-
ing more on offering his own values for the items in this cluster for
longer, since he knows he can offer them cheaper (the buyer does
not know this, because he does not know the cost structure of the
seller). For clusters with relatively low gains from trade (i.e. if
GTR(i) < 1/|C|), there is not much difference between the offer
of the buyer and that of the seller - therefore the seller can concede
towards the buyer’s offer without much perceived utility loss.

We note that our updating rule implicitly entails that the seller
uses a monotonic concession strategy, because in all clusters at
least a small, non-negative concession αfixed is made towards the
buyer’s offer. We made this choice since it assures that our algo-
rithm guarantees convergence (i.e configuration agreement) within
a limited number of negotiation steps (although how efficient this
agreement is depends on the tuning of parameters).

We also note that our update model is geared to a particular class
of buyer strategies, one in which the buyer will make an overall
time-dependent concession at each step on either configuration or
price. We can best exemplify this through the simplest strategy of
this class: the case in which the buyer is “hard-headed” about the
configuration, by insisting on her own values for all the items under
negotiation, though he/she is willing to concede on the price. In this
case, the seller will keep trying to offer the buyer other items, but
will insist more on the items for which his costs are low. However,
eventually she will concede by agreeing to the configuration asked
(but she can still extract a considerable concession on the price).

4. EXPERIMENTAL ANALYSIS

4.1 Experimental set-up
There are several dimensions, which we want to test in our model:

• The distance to Pareto-efficiency of the outcome reached (mea-
sured, in our case, as the average percentage from the maxi-
mum possible gains from trade) as well as the robustness of
this result to large variations in buyer and seller profiles.

• The time taken to reach a solution, measured as the number
of negotiation steps.

We test our model in a negotiation over 50 binary-valued issues.
The maximal preference graph, which the seller considers as pos-
sible, includes 28 clusters representing the direct synergy between
items (either positive for complementarity or negative for substi-
tutability effects): 4 of them contain 4 items each, 13 of them 3
items, 6 of them 2 items and 3 only 1 item. It is important to empha-
size that in our representation, each cluster is represented through
a utility table with one entry for all sub-combinations in the cluster

(therefore of size 2|C|, where |C| is the number of nodes per clus-
ter). So, for example, for a cluster of size 3, we implicitly consider
all its possible sub-clusters of size 2 and 1.

On the seller side, the cost of each of the n items is normally
distributed according to N(µcost, σcost). On the buyer side, the
value of each of n individual items is normally distributed accord-
ing to N(µgains, σgains). Moreover, the synergy effects between
subsets in each of the above 11 (non-singleton clusters) is normally
distributed according to N(0, k2σsyn), where k denotes the num-
ber of items in the subset.

To somewhat limit the number of parameters, we set σ = σcosts =
σgains = σsyn. The parameter σ captures the problem of finding
Pareto-efficient solution very, nicely: the higher σ the higher the
likelihood of complementarity and substitutability effects, hence
the higher the likelihood of non-linearity, in the problem.

The mean of the cost distribution for each item µcosts is always
set to 1. For the mean of the distributions for the buyer µgains, we
conduct experiment with 3 different values: 1.1, 1.25, 1.5. Oth-
erwise stated, the valuations of the Buyer are, on average 10%,
25% to 50% greater than those of the Seller. In the reported tests,
σ takes 8 values, ranging from 0 to 5. In other words, we con-
sider to whole spectrum from no randomness, and consequently
linear preferences, to a very high degree of randomness, and con-
sequently (with probability) highly nonlinear preferences. Recall
from Section 3.4 that the seller uses a subutility functions in con-
junction with the utility graph to model a buyer. These functions
are initialized such that the seller on average correctly predicts the
opponent’s utility. Already for relatively small values of σ the ini-
tially predicted utilities will (with all likelihood) be very different
from the actual values, however.

For each combinations of values of µcosts, µgains, and σ, 100
tests were performed. This means in total: 1 ∗ 3 ∗ 8 ∗ 100 = 2400
tests were performed (or 300 tests for each point σ reported in the
figures below. For this number of tests per points the variance of
the results does not decrease, we can therefore conclude that this
number of tests provides statistically significant results.

4.2 Experimental results
The experimental results produced from the setting described

above are given in Fig. 3 and 4. As mentioned, each point was
produced from 300 negotiations and the error bars give the result-
ing variance. The two figures highlight the results with respect to
reaching an agreement over the bundle configuration (i.e., the ac-
tual content of the bundle). By agreement, we mean that thereafter
the bundle content no longer changes. After such an agreement
is reached, it may take more negotiation rounds before bargainers
agree upon the price (if an agreement is reached at all). The Pareto-
efficiency of a deal — which is the focus of this paper — is then
already determined, however.

There are several conclusions that can be drawn from the analy-
sis of these results. Regarding the ability to find a bundle close to
maximum efficiency (Fig. 3), we can conclude that our approach
performs very well. (Please keep in mind that the Y axis in Fig.
3 is scaled for values between 80% and 100% of optimal). Even
for very high values of σ, the algorithm is able to extract around
97% of the maximum gains from trade, with a variance of maximal
5%. This is particularly remarkable for very large values of σ (e.g.,
σ between 4-5). For these values, (with all likelihood) the prob-
lem becomes highly nonlinear and the buyer’s utilities predicted
initially by the seller will be very different from the actual values.

Regarding the number of steps needed to find the optimal config-
uration (Fig. 4), we do see a significant increase in this number for
larger values of σ. Clearly, problems for larger σ are more difficult
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to solve, so more steps are needed to correctly update the model
of buyer’s preferences and to find a good bundle. Nevertheless, a
bundle very close to maximal efficiency is usually found, even in
these more difficult cases.

Thus, the results strongly support the underlying idea put for-
ward in this paper. That is, having a maximal utility graph of pos-
sible interdependencies can be used to successfully navigate the
contract space and reach Pareto-efficiency with a limited number
of steps, even for a relative large number of interdependent issues.
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Figure 3: Percentage of the Gains from Trade (compared to the
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5. DISCUSSION
In this section we provide a review of related work, with special

attention to the features relevant for our approach. We conclude by
summarizing the main contributions of our work and identifying
directions for future research.

Most of the work in multi-issue negotiations has focused on the
independent valuations case. Faratin, Sierra & Jennings [12] a
method to search the utility space over multiple attributes is intro-
duced, which uses fuzzy similarity criteria between attribute value

labels as prior information. Coehoorn and Jennings [11] extends
this model with a method to learn the preference weights that the
opponent assigns to different issues in the negotiation set, by using
kernel density estimation. Jonker and Robu [18] consider a similar
model, the prior information are not fuzzy similarity criteria but a
partial ordering of value labels. Both these papers have the advan-
tage that they allow flexibility in modeling and deal with incom-
plete preference information supplied by the negotiation partner.
They do not consider the question of functional interdependencies
between issues, however.

Other approaches to multi-issue negotiation problem are the agenda
based approach (Fatima et. al. [15]) and the constraint-based ne-
gotiation approach (Luo et. al. [19]). Both provide comprehensive
formal analyses. They do not address the scalability and interde-
pendence, however. Debenham [4] proposes a multi-issue bargain-
ing strategy that models the iterative information gathering which
takes place during the negotiation. Unlike our approach, the agents
in [4] do not model the preferences of their opponent, but construct
a probability distribution over all possible outcomes. However, this
paper does not consider efficiency criteria for the reached outcomes
(such as Pareto-efficiency), nor does it discuss scalability issues (it
provides a convincing example, but restricted to only two issues).

Two negotiation approaches that specifically address the prob-
lem of complex inter-dependencies between multiple issues — and
are therefore most related to our work — are [6, 8]. Klein et. al.
[6] use a setting similar to the one considered in this paper, namely
bilateral negotiations over a large number of boolean-valued issues
with binary interdependencies (although we also allow higher-level
interdependencies, up to 4 items). In this setting, they compare
the performance of two search approaches: hill-climbing and sim-
ulated annealing and show that if both parties agree to use sim-
ulated annealing, then Pareto-efficient outcomes can be reached.
In a similar line of work, Lin [8] uses evolutionary search tech-
niques to reach optimal solutions. Both of these approaches have
the advantage that they are scalable to large numbers of issues and
Pareto-efficient outcomes can be reached without any prior infor-
mation. However, a drawback of these learning techniques is the
large number of negotiation steps needed to reach an agreement
(around 2000 for 50 issues [6]).

By comparison with this work, our approach uses an explicit
model of the buyer utility function - in the form of a utility graph.
Although we assume no prior information about the preferences of
any given opponent, we do assume that the maximal super-set of
all possible interdependencies which are possible in the domain is
known. This allows us to restrict the size of the search space and
therefore reach Pareto-efficient agreements considerably faster. To
some degree our approach could be also compared to solutions pro-
posed to determine the winner in combinatorial auctions (Conitzer
et. al. [3]). The problem is, in the general case, intractable, but by
imposing some constraints on the type of bids which can be speci-
fied, efficient solutions can be found.

Our solution should be applicable in complex domains where
fast agreements must be reached, by using some prior information
about the structure of the utility space to be explored. This prior in-
formation could be a history of past negotiations or the input of do-
main experts. The relatively small number of steps needed to reach
an agreement in our model allows it to be used in time-constrained
negotiations or negotiation where impatience of one of the parties
is a limiting factor. This is a significant result since, to the best of
our knowledge, bargaining under time pressure in negotiations with
many, inter-dependent issues was not considered in previous liter-
ature. Furthermore, in our setting, no trusted mediator is needed
and the negotiating agents keep their preference information (i.e.
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monetary utility, respectively costs) private.
Another direction of research relevant to our work is the one on

graphical representations of utility functions. Bacchus and Grove
[1] provide an early fundamental discussion of the graphical mod-
eling of utility and preference functions and introduce the concept
of conditionally additive independence. Their work is mostly con-
cerned with formally analyzing the semantics and properties of
graphical utility representations. Chajewska and Koller [2] build
on this idea, by discussing the decomposability of non-linear util-
ity functions into clusters and, in addition, they present an efficient
procedure for eliciting such functions from human users, in a med-
ical application domain.

In comparison with these works, our approach is geared towards
finding an efficient algorithm which exploits the structure of utility
graphs to model an online learning problem, such as negotiation,
where agent preferences are revealed only indirectly, through re-
peated offers and counter-offers. Therefore we adapt the utility
graph formalism for our setting, to assure a good trade-off between
representation power of complex utility functions on one side, and
computational efficiency in exploring the large bundle space on the
other. To the best of our knowledge, very little work exists which
applies this powerful formalism to settings which require online
learning on the part of the agents, such as negotiation or virtual
market settings.

Future work can follow two directions. A first direction for re-
search should focus on using more advanced techniques inspired by
learning in graphical models ([7, 13]), to construct the structure of
utility graphs from scratch, without any prior information. For this
purpose, aggregate customer information (for example information
regarding all previous negotiations) could be used. A second di-
rection is extending the current model to handle simultaneous one-
one negotiation threads. For this, the problem of synchronizing the
exchange of offers and especially the concessions made between
parties remains an important open issue.

Another direction of potential further research is the applicability
of the utility graph concept to model agent decision making in other
settings. For example, in virtual market scenarios, utility graphs
could be used to devise efficient bidding policies for simultaneous,
sequential or repeated auctions.
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learning of aggregate knowledge about nonlinear preferences
applied to negotiating prices and bundles. In Proc. 6th Int
Conf. on E-Commerce, Delft, pages 361–370, 2004.

[17] R. L. Rivest T. H. Cormen, C. E. Leiserson. Introduction to
algorithms. The MIT Press, 1989.

[18] C. Jonker V. Robu. Automated multi-attribute negotiation
with efficient use of incomplete preference information. In
3rd Int. Conf. on Autonomous Agents & Multi Agent Systems
(AAMAS), New York, pages 1056–1063, 2004.

[19] N. Shadbolt H. Leung J. H. Lee X. Luo, N. R. Jennings. A
fuzzy constraint based model for bilateral multi-issue
negotiations in semi-competitive environments. Artificial
Intelligence Journal, 142 (1-2):53–102, 2003.

287




