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ABSTRACT
Decision-support requires the gathering and presentation of infor-
mation, but is subject to many kinds of resource restrictions (e.g.
cost, length, time). Individual users differ not only in the resources
they have available to expend, but also in the priorities they place
on different kinds of information. While it is straightforward to
represent these differing priorities and related constraints in a user
model, using that model to allocate resources for an unseen task
across multiple agents in a dynamic environment is not as simple.
Before the information gathering process begins, it is not known
which agents will be able to usefully participate, or how much util-
ity they will ultimately be able to provide.

MADSUM is a distributed adaptive system that uses a negotia-
tion process to solicit and organize agents to produce information,
and a presentation assembly process to coherently assemble the in-
formation into text for decision support. MADSUM assumes poor
predictive models of ultimate information utility and thus requires
dynamic organizational management in response to run-time infor-
mation failures.

A user model, including content preferences, deadlines, and length
constraints, informs both processes. An evaluation demonstrates
that the influence of the user model on content selection and presen-
tation improves system output, and that the organization responds
appropriately and predictably in the presence of inevitable infor-
mation failures.

Categories and Subject Descriptors
H.5.2 [User Interfaces]:Natural Language
I.2.11 [Distributed Artificial Intelligence]:Multiagent Systems

General Terms
Algorithms
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1. MOTIVATION
An effective decision support system must produce valued in-

formation while taking into account the user’s constraints on re-
sources, the user’s priorities on resources, and the user’s priori-
ties on kinds of information that he is most interested in receiving.
Many of these constraints and priorities directly affect the manner
in which the system can achieve its goals. For example, a user’s
limits on cost and time translate directly into constraints for the
system.

However, the user’s priorities will change over time, requiring a
system that can manage varying constraints and preferences. Fur-
thermore, a system operating in a dynamic information environ-
ment must implement these changing considerations while the world
changes, too.

These observations motivated the development of MADSUM
(Multi-Agent Decision Support Via User Modeling), a hierarchical
agent system whose choices are driven by a user model containing
information about the user, the user’s resource constraints, and the
user’s priorities. MADSUM has two primary contributions. First,
it develops text plans for decision support while balancing, in a
decision-theoretic manner, the relative values to a user of multiple
resource and information attributes. Second, MADSUM’s imple-
mentation relies on an agent failure-handling protocol that facili-
tates flexible, fail-soft performance in a dynamic environment.

MADSUM is introduced in Section 2. Section 3 presents the
MADSUM architecture and its approach to dynamic response gen-
eration, with an emphasis on resource allocation. Section 4 gives
an example of how MADSUM balances resource and content pri-
orities along with information significance to produce adaptive re-
sponses. Our approach to result failure management is described in
Section 4.1. Section 5 presents evaluation experiments that demon-
strate both MADSUM’s success at adaptive response generation
and its promising time trials. Sections 6 and 7 then discuss related
work and our conclusions.

2. DISTRIBUTED DECISION SUPPORT
We have been investigating the design of a decision support sys-

tem that can adapt to a user’s resource constraints, resource priori-
ties, and content priorities in a dynamic environment. Our approach
consists of a hierarchy of cooperative agents that consider the pref-
erences and constraints of a user while gathering and assembling
information.

Agent decisions are guided by a multi-attribute utility function
as part of a user model. The utility function weighs the benefit of
different decisions about resource usage and information selection.
The user of the system can tailor the utility function to affect: the
information content of the result (which kinds of information are
included); attributes of the resulting message itself (such as length
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and cost); and attributes of the planning process (e.g. time). Our
approach provides a structure in which the priorities of the user can
be explicitly represented and considered in light of the environment
(information currently available, the cost of getting the information,
etc.). Furthermore, the use of an appropriately designed agent ar-
chitecture allows the system to dynamically respond to changes in
the environment and/or user priorities.

We have applied the MADSUM architecture to decision-support
in a financial investment domain, where the system must support a
user in making a buy/don’t-buy decision on a single investment.
The MADSUM decision making algorithms and the agent hier-
archy, communications, and interaction are domain-independent.
Furthermore, MADSUM is easily extended to new domains by
adding different attributes to its utility function. However, imple-
mentation in a particular domain requires a set of domain-dependent
information agents. These agents must “wrap” any external infor-
mation sources, but also must provide limited analysis. For ex-
ample, tailored decision-support in an investment domain requires
domain-dependent agents that can estimate how significant a par-
ticular piece of information will be to the current user, given her
stated priorities and current personal and financial status.

3. AGENT ARCHITECTURE
Information of all kinds is increasingly available from distributed

sources. Multi-agent systems are used as a means of addressing
the problems and opportunities presented by a dynamic, hetero-
geneous information environment[10]. The DECAF architecture
was selected for its built-in support for communication between
agents running on different systems, its graphical agent design in-
terface, and its ability to make scheduler choices at runtime (a fea-
ture which MADSUM does not currently leverage, but will use in
future work).

3.1 The DECAF Agent Internal Architecture
DECAF (Distributed, Environment-Centered Agent Framework)

is an agent architecture and toolkit for quickly prototyping multi-
agent information gathering systems that can represent and manage
the complexities and uncertainties of distributed information[7].
The toolkit provides a stable platform to design, rapidly develop,
and execute intelligent agents to achieve solutions in complex soft-
ware systems. DECAF provides the necessary architectural ser-
vices of a large-grained intelligent agent [5, 16]: communication,
planning, scheduling, execution monitoring, coordination, and even-
tually learning and self-diagnosis.

DECAF provides an environment that allows the basic build-
ing block of agent programming to be an agent action, or a pre-
specified subtask (collection of agent actions). These building blocks
are then chained together by the DECAF planner. This paradigm
differs from most of the well-known agent toolkits, which instead
use the API approach to agent construction (e.g., [15]). Function-
ally, DECAF is based on RETSINA [16] and TÆMS [4].

Figure 1 represents the high level structure of a single DECAF
agent. Structures inside the heavy black line are internal to the
agent architecture and the items outside the line are user-written or
provided from some other outside source (such as messages from
other agents).

As shown in Figure 1, there are five internal execution modules
(square boxes) in the current implementation, and seven associated
data structure queues (rounded boxes). DECAF is multi-threaded,
and thusall modules execute concurrently, and continuously(ex-
cept for agent initialization).

3.2 MADSUM Architecture
To address the issues of collecting and integrating information

from distributed sources into a single text plan, MADSUM is im-
plemented as a hierarchical network of independent agents. Though
designed for an arbitrary number of task and source agents, the cur-
rent implementation consists of thirteen DECAF software agents.
The Presentation Agent is at the top of the hierarchy, and is the
agent that receives requests from a user and delivers the final deci-
sion support text. At the lowest level are seven information providers
that can access information, sometimes from remote sources. The
internal task agents of the hierarchy each have the capacity to make
independent decisions about which information to pass upward from
their children and how to recover when results from agents below
fail to meet expectations. This distributed structure allows quick
development, incorporation, and maintenance of source “wrappers”
and agents with expertise in different areas; the incorporation of
agents managed by other organizations; rapid movement in and out
of the system by agents; and some benefits of parallelization and
fail-soft behavior due to process distribution[8].

MADSUM’s final product, a text designed for decision support,
is the result of a negotiation process consisting of four parts based
on the FIPA contract net protocol[6]. First, a decision-support task,
a utility function, and a set of soft and hard constraints are passed
to all agents. Next, agents bid by submitting multiple estimates for
results they expect to be able to provide, expressed as a series of
attributes. Third, an agent commits to specific bids from its chil-
dren; and finally gathering, integration, and propagation of results
occurs. At each point decisions are made based on the utility func-
tion and other aspects of the user model.

3.2.1 The User Model
MADSUM’s user model has three components: User Attributes,

a Utility Function, and a set of hard and soft constraints (hard con-
straints on an attribute are limits beyond which overall utility be-
comes zero, whereas exceeding a soft constraint only diminishes
utility). Although User Attributes might be captured in a long-term
user model that is constructed and revised over time, the constraints
and the Utility Function will vary with different user interactions
and perhaps even change during an interaction.

The User Attributes component of the user model captures char-
acteristics of the user, including appropriate domain-specific infor-
mation. For the financial investment domain, this component of
the user model includes the user’s age, salary, expected number
of years to retirement, approximate annual expenditures, current
investment portfolio, and portfolio allocation goals. The user at-
tributes affect the calculated significance of certain pieces of infor-
mation. For example, the more a proposed investment would cause
one’s investment portfolio to deviate from one’s portfolio allocation
goals, the more significant is information about the deviation.

3.2.2 Utility Function
The intent of every decision support system is to be effective, but

effectiveness is in the eye of the beholder. Specifically, the needs
of the user in the context of a particular environment determine
whether certain information will be deemed supportive or of little
worth. Identifying these needs is crucial to the system’s ability to
satisfy the user, but is subject to imperfect methods (e.g. asking or
observing the user) and assumptions (e.g. a rational user). Other
work focuses on this aspect of the decision support problem (see
[1, 13]). MADSUM asks the user for relative preferences about
information topics, to be input via graphical sliders, and has de-
fault settings for other attributes which an advanced user can alter.
Given these preferences we establish a function for calculating user
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Figure 1: DECAF Architecture Overview

utility. Utility is a number used during planning to approximate ef-
fectiveness given (necessarily) incomplete models of the user and
the environment.

MADSUM’s utility function containsn attribute terms, each con-
sisting of a weightwi giving the importance of that attribute to the
user, a parameteravaluei that is related to the value of the attribute,
and a functionfi.

Utility =

nX
i=1

wifi(avaluei) (1)

The weightswi, giving the importance of each attribute to the
user, are extracted from the positions of sliders that are manipulated
by the user in a graphical user interface. For resource attributes
such as length of response or processing time,avaluei is the ac-
tual value of the attribute, such as 75 words. On the other hand,
information attributes capture propositions that might be presented
to the user, and thus for information attributes,avaluei captures the
significance of a set of propositions to the decision task at hand —
ie., its significance in the environment of the user’s personal char-
acteristics and the application domain. We call this approximation
Decision Specificityor DS. Determining DS is a domain-specific
task, and thus in the MADSUM architecture, the functions that
compute DS are provided by the application designer as part of
the domain-specific information agents that propose propositions
for inclusion in the response to the user.

In the financial investment domain, we have implemented domain-
specific information agents for three categories of information: Risk
(the riskiness of an investment), Value (the prospects for the invest-
ment gaining in value), and Portfolio (how the investment relates
to the individual’s portfolio allocation goals). The associated deci-
sion specificity functions produce estimates of significance that are
referred to asDSr, DSv, andDSp respectively. It is important to
note that DS corresponds not with the precise attribute value but
instead with the significance of the information.

Each of the base utility functionsfi that appear in the user utility
function map their parameteravaluei into a value between 0 and 1.
The particular functionfi that is used determines whether a larger
parameter value increases or decreases utility (and at what rate).

These functions are chosen from an extendable library of functions
with varying characteristics, including variations on linear, normal,
and plateau functions and combinations of thereof. The soft con-
straints entered by the user adapt eachfi by determining its shape.
Exactly how the shape is modified depends on thefi, but soft con-
straints can affect mean, spread, or direction change points.

Thus the magnitude of a term in the overall utility function is
affected by the value of the attribute in the environment (either its
actual value in the case of resource attributes or the DS value com-
puted from propositions in the case of information attributes), the
base utility functionfi, and two user-selected modifiers (the weight
wi that gives the importance of this attribute to the user, and the soft
constraint that adapts the functionfi). Allowing the user flexibility
in designing each term’s contribution to utility ensures that the re-
sulting utility function reflects not only the attribute value, but also
the user’s opinion of how the attribute contributes to utility.

3.3 Allocation of Resources
MADSUM assumes that it is difficult to predict the utility of an

information-gathering task before the task is performed. Yet if re-
sources such as cost and time are limited, an attempt must be made
to distribute those resources across agents in a way that maximizes
utility. When utility functions are static, when a user can answer a
series of questions about the domain, or when the function is sim-
ply additive, it is possible to determine the degree to which each at-
tribute of a result contributes to overall utility and allocate resources
in a decision-theoretic manner. These assumptions do not apply in
our domain. For example, domain-specific processing might rec-
ognize that a result from one agent will enhance (or diminish) the
value of the result from another; but this cannot be determined by
a generic agent component examining the separate attributes of the
results.

Our approach is to allocate expected utility instead of resources.
This MADSUM design decision is consistent with the DECAF
strategy of committing to objectives, not to the plans that achieve
them. Committing to objectives allows agents to achieve the objec-
tives with the strategy that best utilizes the environment at runtime.
For example, a contractor should be able to commit to building a
house for a certain price, and by a certain date, without having to
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specify where materials are going to be purchased or exactly which
subcontractors will be used. Allocating expected utility makes even
more sense in decision-support, where the objectives of the process
and the utility of the result are almost the same thing (in contrast to
building widgets, for example).

The Presentation agent always seeks maximum utility under the
current utility function. After the bidding process, when a spe-
cific utility objective for this decision support task is determined,
the agent sets autility envelopefor each child agent based on the
accepted bid from that child. The purpose of an envelope is to al-
low some flexibility in accepting responses that are not exactly as
negotiated. This strategy reflects the real costs, in agent time, com-
putation, and communication, associated with rejecting a response
and trying to find an alternative. The default envelope minimum is
95 percent of the utility offered by the accepted bid. If an agent
has bid an alternative in addition to its accepted bid, then the cost
of rejecting the result of the accepted bid is lowerd, since finding
that alternative is trivial. Thus when an agent has an alternative
bid whose utility is higher than 95 percent of the accepted bid, the
alternative bid’s utility becomes the minimum acceptable utility.

To clarify the envelope concept, consider a case where the only
attribute of the result that is changing is the cost. For example: you
have decided to buy a widget for $10.00. When you get to the cash
register, you find that the widget is actually a different price. Un-
der what circumstances would this deter you from the purchase? If
the cost was very close, you might decide that purchasing the wid-
get at a higher price was your best course. However, if the widget
was now $10.50 and you had seen another widget in the same store
marked $10.20, you might decide to reject the higher priced widget
and walk a few feet to get the lower priced alternative. In other
words, your willingness to accept something other than what you
expected depends on your alternatives (as well as hard constraints
such as how much cash you brought to the widget store; hard con-
straints are examined separately from utility envelopes).

One advantage to doing using a utility envelope is that it is simple
and fast. The utility an agent agrees to provide is expected from its
children in proportion to the utility of their contibutions. If the
utility of the whole is greater than the sum of the utilities of the
parts, then children are assigned an envelope with the utility of their
original bid, and the parent agent assumes that the combined results
will again exhibit gestalt properties.

Unfortunately, there is no guarantee that given only an expected
utility, an agent will consume resources in the same quantity it
originally proposed. However, our system consists of cooperative
agents which share a common utility function, so in the usual case
they can be expected to approach their predicted consumption. For
the other cases, MADSUM agents monitor the results produced by
their children and have an elaborate but speedy protocol (see Sec-
tion 4.1) for addressing results that do not meet specifications.

One problem faced when allowing independent branches of an
agent tree to make commitments is that two branches may both
commit to the maximum consumption of some resource. For ex-
ample, in the text planning domain every source agent could sub-
mit a bid that would produce the length of the entire desired result.
This would leave agents above with the option of allowing only a
single source agent to contribute, or forcing all bidders to re-bid;
and in the latter case, nothing would stop the same problem from
occuring again, and being repeated at each level of the tree. The
MADSUM architecture addresses this issue by allowing agents to
make improper allocations, but employing strategies to avoid this;
and by focusing on recovering from such failures gracefully (see
Section 4.1).

In summary, there are several important features of the MADSUM

negotiation process:

• Agents are presented with the user’s utility function and the
total resources available, as well as any overall constraints,
so that they can contribute to the best of their ability in all
cases.

• Agents can present more than one bid, so that they can offer
options for a range of utility/cost tradeoffs. Agents present
not just high utility options, but options that differ widely
in parameter space, to allow maximum flexibility should the
utility function change mid-process.

• A utility envelope allows bidders some flexibility in the util-
ity they ultimately provide, but that flexibility is partially de-
pendent on the utility of the next best alternative.

• Agents bid with specific attibutes, but commit to providing a
certain overall utility. This allows agents to choose alterna-
tive means of providing a result, so that the process is more
flexible and robust at runtime.

• The possible hazards of allocating utility and allowing result
flexibility are mitigated later, during execution, by a failure
handling protocol.

The MADSUM negotiation process is designed to reflect the dy-
namic, user-oriented environment into which it is deployed. Even
if a negotiation protocol could be designed that would promise full
resource specification and an optimal combination of results, the
calculation-intensive solution could be rendered useless by a sud-
den change in the environment, or a agent’s failure to deliver an
expected result.

4. UTILITY BASED RESPONSES
First, the top-level Presentation Agent receives a request from

the user to provide information that will help in a decision about
a proposed investment;1 this triggers the negotiation process men-
tioned previously. To estimate the potential significance (Decision
Specificity or DS) of the information that they might provide, the
lowest level agents utilize a cache of information (saved from prior
transactions or gathered during off-peak times) about the proposed
investment as well as the user model. The agents will estimate the
value they can deliver for each term of the utility function and sub-
mit it to their parent agent.

Most agents will submit multiple bids representing a range of in-
formation with a range of different resource consumptions and ben-
efits provided. High utility bids are submitted, but also alternative
bids that vary widely from the high utility bid in parameter space
(this provides options during later parts of the task). This diversity
provides flexibility in a dynamic environment. For example, if a
user’s utility function changes during the message generation, bids
that previously had high utility may now be unnattractive. If all
the alternatives were chosen based on utility, thenall might well be
unattractive. Bid diversity will also likely be valuable under certain
failure circumstances.

At each level of the hierarchy, agents will consider various com-
binations of the bids submitted in terms of utility, determine a “bas-
ket” of combinations, and propagate new bids representing the bas-
ket up the tree. This occurs recursively to the top of the tree.

1The implemented system does not do natural language under-
standing; instead the system is given the proposed investment ob-
ject (such as IBM) and the amount of the investment (such as 100
shares).
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2a: Risk metrics indicate IBM has a low debt-equity ratio, sug-
gesting the ability to weather an economic downturn; further, the
company has a strong current ratio, indicating good short-term
liquidity. In addition, IBM has historically maintained a mod-
erate debt policy, and the stock has maintained a moderate risk
profile. On the other hand, from a portfolio perspective you have
already exceeded your allocation goal for equities. Value met-
rics indicate IBM has a price earnings ratio similar to the tech
industry average.

2b: Risk metrics indicate IBM has a low debt-equity ratio, sug-
gesting the ability to weather an economic downturn; further, the
company has a strong current ratio, indicating good short-term
liquidity. On the other hand, from a portfolio perspective you
have already exceeded your allocation goal for equities.

2c: Value metrics indicate the stock has a price earnings ratio
similar to the tech industry average; on the other hand, from a
portfolio perspective you have already exceeded your allocation
goal for equities.

Figure 2: Three responses, derived from different soft con-
straints and priority settings.

Though agents submit multiple bids, each combination includes at
most one contribution from each child agent; thus the complexity
of the problem is constrained by limiting the number of children
of an agent. More precisely, since each basket of bids considered
has at most one bid from any given child, then fork children and a
maximum number ofm bids per child, the number of combinations
considered by a task agent is

(m + 1)k − 1 (2)

Through the hierarchical design of MADSUM the combinatorial
auction complexity can be restricted via the number of children a
given agent is allowed. There is also work towards making the gen-
eral case of such auctions more tractable by imposing some minor
restrictions on the process; see [18, 3]. Because the auction process
is expensive, agents keep copies of bids that are not used, in case
of future need (see Section 4.1).

The topmost agent (the Presentation Agent) selects the highest
utility bid, which recursively propagates back down the tree as a
commitment of resources (see 3.3) and an associated expectation
of utility that will be produced.

When the commitment reaches the information agents, they match
it to the bid they had made and produce the intended information
(consuming resources at the same time). This is the stage that in-
cludes transfer of funds to outside agents to cover the cost of any
purchased information. The raw information is passed from the
lowest-level information agents to their parent task agents, who use
the information to generate small text plan trees. As the trees are
propagated further up the agent hierarchy, the task agents assemble
them using coherence rules for combining text plan trees. In doing
so, the task agents first order the text plan trees according to the
utility of their highest utility proposition, and the rules for combin-
ing trees attempt to assemble larger trees with the higher ranked
constituents on the left, so that the higher ranked constituents will
appear earlier in the response (subject to coherence constraints).
Once an assembled tree is returned to the Presentation Agent, it is
resolved to text via templates, and the text is presented to the user.

It is important to note that our system does not seek to provide

an “optimal” solution that could be determined by simultaneously
considering all possible assemblies of all possible subtrees. (Such
an approach would not scale well.) Instead, the system finds the
best solution that results from a series of utility-guided choices. De-
cisions made by agents at every level constrain the decision space
of agents above, in theory possibly eliminating the best solutions,
but also rendering the communication and calculations practical in
size and time.

4.1 Managing failure
We define a “failure” as a result that does not meet expectations.

This does not imply that a failed result cannot be used. In many
domains a failed result may be better than no result at all; also, a
result that is slightly below par when considered by itself may be
acceptable in a larger context.

Failure is part of a dynamic world. Information that was valuable
during a proposal at timet may not be worth much att + 1. Net-
work problems, human errors, and disk failures all cause problems
that a distributed system must handle efficiently and with minimal
performance degradation.

Failure is a part of the normal operation of MADSUM. The re-
source allocation issue described above necessitates that “failure”
will occur in MADSUM any time agents consider a plan in which
two branches want to use the same resources.

The decision to embrace “failure” as a means of addressing the
resource allocation problem means that the MADSUM design can-
not avoid failure, but must instead focus on being fault-tolerant and
minimizing the performance penalties incurred.

MADSUM has four core strategies for managing failures. First,
allow task agents to handle failures that occur below them when-
ever possible.This prevents low-level failures from overwhelming
the top level agent with failure-related computation.

Second,agents maintain records of all bids submitted by their
children. When confronted with a failed result from a child, a par-
ent can consider the alternate bids from that child, as well as bids
from other children that may not have looked as attractive as the
failed bid. This allows an agent to ask a child to fulfill an earlier
offer without resorting to a communication-intensive bidding pro-
cess.

Third, don’t manage failures at the level where they first occur.
Handling a failure may become unimportant when viewed by an
agent with greater perspective, either because the result at the next
higher level is not substantially adversely affected, or because the
failure gains significance in light of other failures and should be
propagated still higher. Also, this strategy reduces the possibility
that an agent will replace a failed result with one that consumes an
inordinate share of resources, since the agent above will be viewing
the failed result in the context of other expenditures.

And fourth, failures that indicate substantial problems with a
sub-agent’s performance, such as a time-out or exceeding con-
straints, mean that the sub-agent’s other bids will not be considered
for failure recovery purposes.

The failure management protocol in Figure 3 shows the proce-
dure for handling failures caused by insufficient utility being pro-
vided by the results from a child agent, as determined by apply-
ing the utility function to the attributes of a result. The flow chart
shows that low cost attempts to rectify the situation are made early,
while solutions that require additional communication or propaga-
tion to a higher agent are last resorts. Low cost attempts are based
on attribute values, and thus do not require extensive calculation or
extensive domain knowledge.

Of primary concern to an agentA is having its resultRA meet the
utility expected by its parentP , represented in the utility envelope
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Figure 3: MADSUM current agent hierarchy and protocol for handling failed results.

UEnvP→A. The result from the childC, RC , has utilityURC and
is compared toUEnvA→C to see if it has failed. If it has, then the
protocol proceeds as follows.

The first step of the protocol checks to see ifURC , though lower
than expected, still allows all child results

P
URCi

to exceed
UEnvP→A. If this is the case, then no further failure processing
is necessary unless some other child result fails. The failedRC

may or may not become a part of this agent’s resultRA, depending
on whether it increases total utility for the result.

Next agentA re-examines every set of bidsBi derived by com-
bining bids from children. For eachBi it is determined whether the
set contains a bid already in process, i.e. one to whichA has already
committed. IfA has already committed to a bid, then the marginal
resource cost of that bid is zero, thus reducing the apparent cost of
Bi. After performing this check on eachBi, A re-calculates util-
ity for eachBi. Then the highest utility (of setBhi) is compared
to the (now lowered) expected utility of the bid setBcurrent con-
taining the bid forRC . If UBhi is lower thanUBcurrent , then the
best strategy is to continue the present course. Otherwise ifUBhi

is greater, thenA will commit to the parts ofBhi to which is has
not already done so.

Note that this marginal cost accounting greatly favors alterna-
tives that include parts that have already been “paid for”. Further-
more, because each committment reduces available resources, thus
altering constraints, it is unlikely that the system can take a radi-
cally different approach after failure unless resources are plentiful.

Finally, when all results are in or a time limit is approaching,
the highest utility combination of results is sent for any domain-
specific processing that needs to occur. Then results are marked as
meetingUEnvP→A or failing.

The domain processing happens last since it is expensive relative

to the attribute-based utility calculation. Attribute calculations are
accurate in many cases (SUM works well for a weight attribute) but
may only be a heuristic in others. For example, eitherSUM or MAX

might be correct for combining two height attributes, but it is also
possible that a complex 3-D rendering would be necessary. Delay-
ing this calculation until a set of sub-results has been determined
heuristically could possibly miss an optimal solution to a task, but
also keeps computation costs low.

5. RESULTS
Figure 2 shows three responses produced by MADSUM under

different soft constraint and priority settings. The first text was for a
user with a soft length constraint of 75 words and a high priority on
information about Risk. For the second text, the length constraint
was reduced to 35 words while other attributes remained constant.
The third text was similar, but with a high priority placed on Value
information. Note that the Value information, “similar to the tech
industry average” was placed last in the first text and eliminated
from the second due to its low DS evaluation. In contrast, informa-
tion about exceeding a preset goal had a high DS and was included
in all three texts even though Portfolio Allocation information was
not a high priority.

MADSUM makes decisions about information selection and or-
dering based on the contents of the user model. It is possible that
a user’s stated priorities (in the utility function) will not be consis-
tent with the system’s analysis of the information’s DS based on
other aspects of the user model, such as the user’s portfolio bal-
ances or proximity to retirement. We were particularly interested
in 1) the effectiveness of MADSUM’s use of a utility function to
arbitrate among available propositions for inclusion in a response
and 2) the appropriateness of MADSUM’s ordering of the selected
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Figure 4: Runtime vs. sources count, 42 trials

propositions.
To test the system’s ability to select appropriate content, we per-

formed an experiment in which 21 subjects were each presented
with 7 scenarios. Each scenario consisted of 1) a graphic depiction
of sliders representing user priorities for the three kinds of con-
tent (risk, value, and impact on portfolio allocation goals), 2) two
sets of propositions, one of which had been produced by the sys-
tem. Sometimes the system’s response was listed first and other
times the alternative appeared first. The subjects were asked to de-
termine, given the user’s slider settings for content priority, which
content set was most appropriate for that user. In some scenar-
ios, the significance (DS value) of propositions and the priority that
the user placed on that kind of information were congruent, (i.e.
each proposition was either both significant and high priority, or
both of lesser significance and lesser priority) and in other scenar-
ios the significance and priority of propositions were in conflict.
The alternatives to the system’s responses were constructed to give
subjects the opportunity to choose between responses that favored
priority in content selection, responses that favored significance,
and responses that balanced priority and significance as is done by
MADSUM’s utility function. We applied a one-tailed binomial test
to the results which showed that the subjects had a statistically sig-
nificant (p<.01) preference for MADSUM’s strategy of balancing
significance and priority in content selection.

MADSUM places the highest utility propositions early in the re-
sponse, subject to coherence constraints on the construction of text
plan trees. To test the system’s ordering of propositions in its pre-
sentation to the user, we performed an experiment in which 16 sub-
jects were each presented with 9 scenarios. Each scenario again
included a graphic depiction of sliders representing user priorities
for the three kinds of content. But in this experiment, the sub-
jects were presented with two different orders of presentation of
the same propositions. In each case, most cue phrases and con-
nectives were removed in an attempt to prevent subjects from be-
ing influenced by phrasing. Once again, a one-tailed binomial test
showed statisticallysignificant (p < .01) support for the system’s
decisions about order of presentation of propositions. This was true
even when proposition significance (DS value) and user priority for

30

35

40

45

50

55

60

65

70

75

80

0 1 2 3 4 5 6 7 8
Number of failing sources

se
co

nd
s |

| u
til

ity
 u

ni
ts

 Time Utility Linear ( Time) Linear (Utility)

Figure 5: Source failure penalties, 24 trials

that kind of information conflicted, although the level of statistical
significance for this subset of the scenarios dropped to (p < .05).

Since multiple MADSUM agents are required to perform a de-
cision support task, it was our intent that the design should scale
well. Figure 4 shows that incremental additions of source agents to
the system result in a linear increase in time required to perform a
task2. Data are shown for when only sufficient task agents (three to
six) are active above the sources, and also when all six task agents
are active throughout the test. Perhaps more importantly, Figure
5 shows the results of the failure management protocol when pre-
sented with zero to seven source agents failing to meet utility. Two
of the agents had results with utility substantially lower than origi-
nally predicted, three had options with similar utility, and two had
no result available at all. These linear results are preliminary, and
must be repeated with substantially more trials and alternative con-
figurations, but our knowledge of the system leads us to conclude
that these performance indications will be borne out.

6. RELATED WORK
MADSUM is related to work in decision support applications,

multi-agent systems, user modeling, and failure recovery. [12] is
a single-agent information gatherer that provides decision support
and responds to user priorities, but the priorities are related to the
problem domain, while MADSUM, a distributed system, can also
consider preferences about the attributes of the response itself, such
as length.

Other systems have made use of utility theory to take user prefer-
ences into account. Early work using multiple attribute preferences
with adjustable factors includes [2]. Lesh used a similar model in
ranking airline flights for a travel domain. More recent work in-
cludes MATCH[17] and FLIGHTS [14] which use formal utility
functions to allow user preferences about domain attributes to in-
fluence system results.

While each of these systems makes use of a utility function, they
each use the utility function to compute the utility of the expected
resultof a choice by the user - the utility of a certain train ride, or
a particular airline flight. In contrast, MADSUM’s utility function
2For timing experiments all agents ran on a single laptop.
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explicitly includes user influence on attributes of the system’s out-
put, in terms of cost, length, and time, as well as domain-specific
preferences such as topic. Thus MADSUM agents are concerned
with the total utility of themessageto the user, including the utility
of the both information provided as well as the the utility of the
attributes of the presentation.

Our decentralized failure management protocol is largely domain-
independent and relies on a team of cooperative agents, as do [11]
and [9]. However, these systems focus primarily on agent failure,
and assume a high degree of inter-agent connectivity. MADSUM
failure management emphasizes problems with the quality of re-
sults, and all communication is along the tree structure.

7. CONCLUSIONS
MADSUM is an implemented multi-agent system for decision

support. It was designed to provide integrated texts that reflect both
the information and resource priorities of a user while function-
ing in a dynamic information environment. A human study shows
significantly (p < .01) that human subjects agreed with the way
MADSUM balances user priorities and information significance
when selecting information for presentation. A second study shows
agreement (p < .05) with MADSUM’s method of ordering infor-
mation even when information importance and user priority are not
congruent. While these tests cannot fully predict the ultimate qual-
ity and usefulness of MADSUM ouput, information selection and
ordering are two critical tasks in presenting information for deci-
sion support.

MADSUM is an adaptive system that relies on a negotiation pro-
cess to acquire and integrate information from multiple sources.
The architecture was designed for an environment where informa-
tion utility could not be easily predicteda priori. Thus a small
number bids from each agent allow the establishment of a target
utility at a high level, while MADSUM agents allocate expected
utility recursively to sub-agents, allowing the sub-agents to deter-
mine precisely how to derive that utility themselves. This allows for
several options in handling information failures, each with a differ-
ent associated cost. Preliminary testing shows that MADSUM’s
efficient failure management protocol handles the number of fail-
ures in linear time.
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