Towards a Theory of “Local to Global” in

Distributed

Multi-Agent Systems (II)

Daniel Yamins
Harvard University
33 Oxford St.
Cambridge, MA 02138 USA

yamins@fas.harvard.edu

ABSTRACT

There is a growing need to study abstract problems in distributed
multi-agent systems in a systematic way, as well as to provide a
qualitative mathematical framework in which to compare possi-
ble underlying system mechanisms. It is therefore of interest to
have a coherent theory of “local to global” in distributed multi-
agent systems, one which is able to describe and to analyze a
variety of problems. This is the second in a series of papers that
begins developing such a theory. Here, we describe four diver-
gent but representative “problems” — 1) equigrouping of mobile
agents 2) flocking of mobile agents, 3) coordinate system labeling
among fixed agents and 4) spatial structuring of mobile agents —
in simple but precise terms. We then introduce a unified model-
ing framework that captures the commonalities of the four prob-
lems. Our goal is to establish that the descriptive and analytical
approach taken in the other papers in this series may be gener-
alized to more complex and realistic problems.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent Sys-
tems

General Terms
Algorithms, Theory

Keywords

Distributed Algorithms, Local-to-Global, Emergent Order, Mod-
eling Frameworks

Introduction

Distributed multi-agent systems are abundant in the biological
world, exhibit rich and interesting behavior, and have been in-
spiring to researchers in many other areas. Examples of such sys-
tems — both natural and man-made — that often come to mind
include: flocks, herds, and schools ([24], [28],[12],[22]); bacte-
rial colonies and chemotaxis ([4], [26]); embryological and mor-
phogenetic systems ([32], [29], [20]); ant colonies and bee/wasp
swarms ([6], [11]); ant- and swarm-inspired algorithms ([8], [16]);
flight formation in UAVs ([35], [21]); neurons and neural net-
works ([18], [23]); the immune system and immune-inspired al-
gorithms; ([9], [14]); robot soccer and other multi-agent team

Permission to make digital or hard copies of all or part o$ twork for

personal or classroom use is granted without fee providetdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS 05, July 25-29, 2005, Utrecht, Netherlands

Copyright 2005 ACM 1-59593-094-9/05/000755.00.

191

sports ([19], [27]); Amorphous Computing, iRobots, SmartDust,
and other many-agent robotic systems ([1], [17], [13], [25]); and
cellular automata ([7], [31], [30]).

The dominant mode of studying these systems has been through
simulation ([24], [20], [6], [8], [1], [31]). Excellent simulations
have uncovered the probable underlying mechanisms of actual
multi-agent systems, including positive feedback, stigmergy, sig-
nal gradients, positional information, probabilistic action, etc.
Mathematical models have also been created to quantitively an-
alyze candidate mechanisms ([12], [22], [4], [26], [29], [6], [18], [9],
[14], [25)).

There is great diversity of methods for describing these sys-
tems. Though it reflects the diversity of the systems themselves,
this descriptional diversity may lead to a lack of clarity about
fundamental issues, making it hard to compare results between
systems and formulate (much less demonstrate) fundamental un-
derlying principles towards a satisfying comprehensive theory.
In this paper, we begin to address this difficulty by proposing
a meaningful framework in which to model many different sys-
tems. By providing an effective, clear way to describe different
problems in the same language, we hope to make possible the for-
mulation of more interesting general results than are currently
accessible.

Our framework consists in the concise formal specification of
three things for any given problem: 1) the space of possible static
structures of the system; 2) the space of possible dynamic oper-
ators of the system; and 3) the specific functionality expressing
the group task. Static structures in a multi-agent system are
made up of the agents themselves, other possible objects in the
environment, and the underlying geometric space in which the
agents “live”. Dynamic operators are agent-relative (discrete or
continuous) functions which take local neighborhoods of agents
and output modified neigborhoods to represent the agent’s ac-
tion. The specific functionality is a logical formula expressing
some desired property of the trajectories generated by the action
of the dynamics on the system’s static structures. Together, the
static structure space S, dynamic operator space D, and specific
functionality ¢ define a solution space F(S, D, ¢); F(S, D, ¢) con-
sists of operators d € D which when applied to structures in S
generate trajectories which satisfy ¢. Analyzing the mathemat-
ical properties of the solution space is the heart of the analytic
approach introduced in the first paper in this series.

To motivate our framework, we describe four divergent but rep-
resentative examples of multi-agent problems, trying to capture
the “essence” of each problem through careful choice of static
structures, dynamic operators, and specific functionality. The
first problem is that of “equigrouping”, a simple system in which
agents on a l-dimensional lattice separate into groups of equal
size. The second is that of flocking of multiple mobile agents,
one of the canonical mobile-agent problems of the field. The
third problem is that of creating “positional information” in non-
mobile agents, a highly biologically-motivated functionality that
is critical in the embryological development of multi-cellular or-

, 2000 o0

b) ® ¢ % % % e

Figure 1: a) A non-equigrouped stated in C. b) A 3-
equigrouped state, in C3 c C.

ganisms. The fourth and final problem is that of creating a spa-
tial “scaffolding” of agents, one of the critical tasks underlying
many higher-level functionalities. By generalizing from the (ad-
mittedly simple) Equigrouping problem to more complex prob-
lems, we indicate how the analytic methods used in Equigrouping
in the first paper can extend to these more realistic and interest-
ing systems. To demonstrate how to bridge this complexity gap
for a variety of important problems — and to demonstrate more-
over that it can in fact be done — is the goal of this paper. We
aim to describe and formulate, not (for the moment) to analyze.

1. EQUIGROUPING IN ONE DIMENSION

Consider a one-dimensional lattice. Two point-agents placed
on this lattice are said to be in the same group if all lattice points
between the two agents’ positions are occupied by other agents.
Conversely, two agents are separated if there is at least one unoc-
cupied lattice point between them. For each positive integer p,
the one-dimensional p-Equigrouping problem consists of finding
local algorithms which take any arbitrary initial configuration of
m X p agents (where m is a positive integer) into a configura-
tion of m separated groups containing p agents each — that is, a
“p-equigrouped” configuration with m separate groups.

Let £ be the one-dimensional integral lattice (with orienta-
tion). Denote by X an initial configuration of point agents
on L, so that Ag(X) = {ai1,...an} is a listing of the agent-
positions along L. Identifying £ with the integers Z, we denote
by pos(a, X) the integral value of the lattice point at which agent
a is located in configuration X, under this identification. For ex-
ample, pos(a, X) > pos(b, X) means that a is to the right of b in
X. Let the set of all configurations of finitely many agents on
L be denoted by C. For X € C denote by le(X) and re(X) the
left-most and right-most agents in X, respectively. Let C, < C
denote the set of all p-equigrouped configurations. See figure 1.

Dynamics are generated from (mostly) identical local operators
associated with each (mostly) identical agent. To describe this
mathematically, for a given agent a € X, let b,(a, X) < X be the
ball of radius r around a in X — meaning, the r lattice points
to the left and r lattice points to the right of a, together with
whatever agents are at those points. In all, b.(a, X) contains
2r + 1 lattice points (including the point where a itself is) and at
most 2r other agents. Let f(a;, X) be any operator given by

fbr(as, X) — s,

in which s is a lattice segment identical to b,(a, X) except that
agent a can have moved either to the left or right by one lattice
unit, or have stayed in place. We do not allow two agents to
occupy identical positions, so that, for example, if an agent is
directly to the right of another agent, the first agent cannot move
left. We require f to be identical for all agents a;, except the
right and left most agents re(X) and le(X), respectively. In
fact, we allow f({re(X),le(X)}, X) to be different from f(a, X)
where a is not an end-agent, corresponding to the idea of giving
agents line-of-sight information about whether or not they have
neighbors to their left and right (at whatever distance).® Denote

the (possibly different) left and right maps by fi, fr.

We require f to have a finite well-defined information radius r,
the size of the largest ball b,(a, X) from f can draw information.
This is denoted r(f). We will use the notation A to denote the
set of all local algorithm specifications of this kind; hence, any
local algorithm f is an element of A. The specification thus far
formally defines f on a local ball around a given agent; we can
“globalize” this action to all of X in an obvious way by taking
X to a configuration in which b-(a, X) has been replaced X with
s; that is

fla, X) = (X Obr(a, X)) Ds.

For each sequence of agent calls s = (ai,...,an,..
quence of compositions

Oif(a,) = flan, (... (flar,X)...)

will be denoted by f;, and applies to initial condition z¢ to gen-
erate trajectories {f;(zo0)}. We can allow f to be probabilisti-
cally specified by attaching to each possible configuration of the
agent’s br(a) probabilities p;, pr of moving to the left and right,
and probability 1 — p; — p, to remaining still.?

Let SEM be the set of all infinite sequences of agent-labels
such that each agent a; appears infinitely many times. These
allowable semantic strings correspond exactly to the UNITY se-
mantics described in [15].> We say that f is a solution to the p-
equigrouping problem if for all such zo with m X p agents for any
m and each s € SEM, the trajectory f,(xo) converges to a fixed
configuration in Cj in finite time with probability 1. If we let P,
be the probability that f;(xo) € C}, and ff’,:(f,i (z0)) = fi(xo) for
all m and s’ € SEM, then limn»xnPr = 1. Let Fp denote the
space of solutions to p-equigrouping.

In [34], [33], and the first paper of this series, we develop meth-
ods for analyzing the mathematical structure of the spaces Fp. In
the rest of this paper, it is our goal to show that generalizations of
the descriptive framework used to make this equigrouping model
can be found for other more complex problems.

.), the se-

2. FLOCKING

In this section, we will explore a functionality with agents’
mobility at its heart. The flocking (and herding, schooling and
swarming) of mobile agents such as birds (and buffalo, fish, and
bees), is one of the standard examples of distributed multi-agent
systems. Any effective general framework for multi-agent sys-
tems must be able to convincingly handle these systems. It is
intuitive to model flocking continuously, on a continuous plane
and with continuous-time dynamics. In this paper, we will de-
scribe both discrete and continuous two dimensional flocking sys-
tems. We work in two dimensions for simplicity, though the ideas
described here all easily generalize to three.

2.1 Discrete Flocking in Two Dimensions

Two-dimensional flocking models usually are made in contin-
uous planes. But we first want to be able to describe a discrete
version of flocking; it turns out that issues dealt with in the dis-
crete model will help understand to understand the right way to
do the continuous model.

In continuous models, the plane R? functions as the “base-
space”, the carrier of the two-dimensional geometry. The sim-
plest discrete carrier of this geometry is the square integer lattice
L£? = gr[Z*]. All the nodes of £? look the same locally, because

%If a given motion is unavailable since the adjacent position in
that direction is already occupied, the probability associated with
that motion is automatically 0. Deterministic algorithms are
simply the special case in which one of p;, pr,1 —pr —pp is 1 and
the others zero.

3Follovving standard notation, we will use s2 0 s1 to denote com-

Tt turns out that it is impossible to solve the equigrouping prob- 192 position of semantics with s1 first, followed by s2. The notation

lem without making this allowance; this is shown in [34].

s°* indicates the k-times composition of s with itself.

Figure 2: Illustration of the lattice graph £?. An agent
a is located at the bottom right corner of the lattice
heading toward the left side of the page oriented in a
clockwise fashion.

the specific coordinate information provided by Z? is thrown
away in gr[Z*]. L£? is like a two-dimensional version of £ used
to describe equigrouping, except that it does not possess the ori-
entation directionality (see figure 2). £ supports global orthog-
onal directions; so that it is sensible to write (n1,n2) || (n2,ns3)
and (n1,n2) L (n2,n4). However, £2 does not support local de-
termination of global directions. In other words, if two nodes
ni1,n2 € L2 are far apart (with respect to the information radius
of the relevant algorithms), then any one of the two orthogonal
directions at n; is locally identical to any of the orthogonal direc-
tions at ma. Therefore, a consistent identification of orthogonal
directions cannot be statically determined from any local test
even though globally, an orientation is well-defined. To a given
pair of nodes in £2 we can define their difference as the pair of
integral distances between them as measured along the two or-
thogonal lines. (So that |n1 —mn2| = {1,0}, |n1 — n3| = {1,1},
[n1 —na| = {2,0}.)

In analogy to the 1-D lattice setup described in the previ-
ous example, we allow agents to “live on” £2. That is, we can
add to the graph a set of agent-nodes Ag = {a;} indexed by
1 <4 < |Ag|. At any given time, an agent a has a position in
£%; to model flocking birds more realistically, we will also give
each agent a heading and an orientation, modeled by associating
with each agent a “head-position” and a “right-wing” position.
Hence, each agent in a configuration is therefore specified by its
identity, its position, its heading, and its orientation, by the four-
tuple (ai, pi, hi,r:). The positions (hs,ps;,r;) are required to be
a “right-angle triple” in £2 with p;. In graph-theoretic terms, a
configuration X is

X = £2 v (AQ7U{(ai7pi)7 (ai7 hi)? (aiv Ti, +)})

where the edges (a;, i, +) for the “right-wing” nodes are marked
by a + to distinguish them as in type from heading edges. For
any X, let Ag(X) = {(ai,pi,7i,hi)}; for any a; € Ag(X), let
plai, X) = pi, 7(ai, X) = ri, and h(as, X) = hi. Let C denote
the set of all such configurations. For any r € N, X € C, and a
point in p € £2, define b-(p, X) to be the “ball” of radius = in £2,
together with all agents in X located at nodes within that ball.*
For an a € Ag(X), br(a,X) = br(p(a), X). For any subgraph
Y < X, we define gr(X) = X n £? and Ag(Y) =Y n Ag(X).

A given configuration X represents the static structure of a set
of birds at a given time. Now we need to specify the space of
local dynamical operators. Intuitively, a local rule acts on any
r-ball configuration with an agent a at its center to produce a
change in the agent a’s location, heading, and orientation. Let
B, = {X, = br(a,X)|X € C}. A local rule f assigns to each
X, € B, a new r-ball configuration f(X,) identical to X, except
in which p(a, f(Xr)), h(a, f(X+)), and 7(a, f(X,) have changed.
We require dist(p(a, f(Xr)),p(a, X)) < m, where m represents
the maximal speed of the agents. We require f to have a finite
well-defined information radius r denoted r(f) = m. We will use
the notation A, to denote the set of all these local algorithms
and A = J,. Ar. As we did in the previous example, we trivially
extend the local rule from local neigborhoods X, to all of a given
configuration X by defining

fla, X) = (X © Ag(br(a, X))) @ f(br(a, X)).

For each sequence of agent calls s = (ai,...,an,...), the se-
quence of compositions Qif(a,-) = f(an,(...(f(a1,-)...) wil
be again denoted by f,, and applies to initial condition zo to
generate trajectories {f;(xo0)}. Dynamics can be probabilisti-
cally specified as was done for the equigrouping problem. We
will abuse notation denoting the set of extended algorithms by
A, and A as well.

Having specified the basic underlying structure and the set
of possible dynamcics, we must specify the flocking task itself.
It turns out that the formal notion of flocking is not so clearly
specified in many cases. Some careful work has described it ef-
fectively, making several choices ([22]). In this work, we adopt a
simple definition of flocking: for all configurations Xo in which
the agents form a single connected component, then eventually
the trajectory must converge to one with a constant non-trivial
velocity and a shared heading. More formally, for every Xy such
that Ugeag(x,)br(a, Xo) is a connected graph, there must exist
an N such that for all n = N Uaeag(sn(xo))br(a, f'(Xo)) is a
connected graph with

plai, f7(X)) = plas, f§1(X)) = {mki, mk2} # 0,

[A(as, (X)), plai, & (XN [Rlas, (X)), plai, £ (X))],

and

[r(as, £ (X)), pai, £ (XD] I [r(as, £ (X)), plag, £ (X))]-

The pair {k1, k2} represents the constant non-zero shared veloc-
ity, and the second and third equalities say that heading and ori-
entation must be the same throughout the group. Non-collision
is guaranteed by the dynamic setup. We can declare any such f
a solution to the discrete flocking problem. Let F(r,m) denote
the set of all such solutions with r(f) = r and maximal velocity
m, and denote F¢ = Ume<r F 4(r,m). One often-included aspect
of flocking is the requirement that agents maintain a fixed dis-
tance from each other — and can be added to the formulation if
desired.

2.2 Continuous Flocking in Two Dimensions

In the continuous version of flocking, the plane R? represents
the underlying geometric space in which agents exist. We again
consider a set of agents located at points in R?, represented by a
set of tuples A = {(as, ps, hi, 7:)} where a; is the label of the i-th
agent and p; is its position in R?, with (hs, p;, r;) an isoceles right
triangle with dist(hs,p;) = dist(r;,p;) = 1. The notations A(X)
p(a, X),h(a,X) and r(a, X) are defined analagously. b-(a,X)
is now defined using the real euclidean metric on R?, and for
YcX,gr(Y)=Y nR2%

Continuous-time dynamics are generated from identical local
differential operators associated with each identical agent. To

4The metric measuring distance is the implied Euclidean metric 193 describe this mathematically, let f5(a, X) be any operator given

in which each one-step link of £2? is measure as having length 1.

by fs : br(a,X) — bm(0) x [—a,a] where m is the maximum

Figure 3: Illustration of continuous flocking functional-
ity.

translational acceleration and |a| the maximum angular accel-
eration. We require f to have a finite well-defined information
radius r denoted r(f). We will use the notation A? to denote
the set of all these local algorithms and A¢ = U. A2, The oper-
ator fs gives the acceleration. For a given list of initial velocities
Vo = ((vi,wi) € R?|a; € Ag(X)) and distinct initial positions
Xo = ((pi, hi,ri)|a: € Ag(X)), we propagate trajectories ahead,
simultaneously for each agent. Hence, we can write

i(t) = (pi(t), hi(t),rs(t)) = f(ai,t, Vo, Xo)

for some function f. A rule f is valid for a set of initial condi-
tions (Vo, Xo) if all trajectories starting at these conditions have
pi(t) # p;(t) for ¢ # j, for all t. Let X (t) = (z:(t)|a; € Ag(X)).

Having specified the basic underlying continuous structure and
the set of possible continuous dynamcics, we must specify a con-
tinuous version of the flocking task itself. One continuous analog
of the discrete formulation is: for all Xy in which {p;(0)} form
an r-connected graph, and all Vp for which f is valid on (Vo, Xo)
is valid,

limi X (t) = (exot + d,, hxo + d,s x0 + dx,))

in which the relative positions {d‘} form an r-connected graph.
That is, the system converges to a common constant velocity
and common heading (a function of initial conditions) specified
by (ex,,hx,,7x,), Without collisions at any time. See figure
3. Any rule fs which possesses this functionality should be a
“solution” to the flocking problem.

But this formulation has a small technical problem. Unlike in
the case of £2, global directionality and position are specified by
the underlying R?, but local agents cannot have this information.
In the formulation we’ve made so far, the rule fs can formally
make use of this forbidden information, thereby allowing, trivial
(and totally unrealistic) algorithms to be “solutions.” To solve
this, we have to require that fs be invariant with respect to
this information. To this end, let Sym = O(2) x R? be the
group of rigid symmetries on R?, and interpret the action of
a on br(a,X) to be given by its action on the underlying real
radius-r disk in R%. That is, a : pos(X) — pos(a(X)) is given
by pos(a, X) +— a(pos(a, X)). We require that for all & € Sym,

fs(abr(a, X)) = a(f5(br(a, X))).

Let F°(r, m, o) denote the set of all such solutions with r(f) <

7, and acceleration limits m and «, and write F° for | J,. ., , F°(r,m, a).

This completes the specification of continuous flocking

Our intent in so carefully formulating these problems is to
make subsequent analysis of the solution spaces F¢ and F¢ pos-
sible. Questions to investigate include:

e Are the spaces non-empty? Are there any solutions at all

([24]) and analysis by Tanner et. al and Olfati-Saber ([12],
[22]), would appear to provide a solution — using the three
Reynolds Rules — that fit easily into this framework.

e Are there other, qualitatively different solutions, or are the
Reynolds Rules-like algorithms the only solutions to flock-
ing? Our hope to is discover a natural equivalence relation
=~ on the space A of algorithms (like the kernel equivalence
descrbed in paper I) that gathers all the Reynolds-like so-
lutions into a single equivalence class, and then show, for
example, that F°/ = contains exactly one element corre-
sponding to the Reynolds class.

e How does varying the functionality — requiring the ability
to change direction of motion in the flock in response to
obstacles — affect the space of solutions?

These are other questions are subject of future work, and are
made possible by modeling work done here.

3. CREATING POSITIONAL INFORMATION

Now we will consider systems performing a highly biologically-
motivated task, one that is critical in the embryological devel-
opment of multi-cellular organisms. Positional information is a
concept described by Wolpert in [32] as “the identity or posi-
tional value that [cells aquire] that is related to their position
along [a] line with respect to the boundaries at either end [of
the organism|. After they have acquired their positional values,
the cells interpret this information by differentiating according to
their genetic program.” Positional information is also important
in many other problems ([5], [1]).

Informally, the creation of positional information is the agents’
use of various forms of signaling to achieve consensus on a choice
of global two-dimensional coordinate positions. For example,
cells pass chemical gradients which establish the coordinates in
terms of concentrations. Agents which create positional informa-
tion do so once they have formed a stable discrete geometric spa-
tial substrate which the positional information is meant to coor-
dinatize. In biology, such substrates can be static 1-dimensional
discrete lines or rings, two dimensional rectangles or spheres, and
perhaps more complex structures like torii and three-dimensional
balls. We will model the process of creating positional informa-
tion on subsets of the two-dimensional (discrete) plane.

To model this, it is again natural to use £2 as the model of
the plane as we did in describing flocking. Various possible sub-
strates would be thought of as subgraphs H of £2. Each nodes a
of H represents a non-mobile agent (such as a cell). Each agent a
also has internal structure, denoted i(a) for the given agent and
1(X) for all of a configuration X, and it is this internal structure
which represents and changes during the propagation of the co-
ordinate inforamtion. The internal structure is represented by a
finite discrete graph whose nodes are labelled with internal state
elements in the arbitrary (possibly infinite) set St and whose
edges are directed. Internal structures i(a) are allowed to con-
tain edges between the internal nodes of the agents and other
agents in the system are allowed. A typical such configuration
is illustrated in figure 4. Let H be a set of such graphs H, and
define Cs¢, to be the set of all configurations X with under-
lying graph structure H € H and internal states in St. Agents
with empty internal structure graphs (having no nodes) are said
to be “blank.” For any a € X, the neighborhoods b,(a, X) are
defined using the euclidean norm in £2, restricted to X. i(X) de-
notes the internal-structures, and let b(X) denote the base-graph
structures without the internal structures.

The possible local dynamic operators allowed in this model are
functions f(a,X) : br(a, X) +— s in which s is identical b,(a, X)

to the problems as posed? There is reason to believe that 194 except that i(a) has been modified and edges between i(a) and

F¢ # &; in particular, simulations by Reynolds and others

other nodes in b,(a, X) have been added or removed. Such f can

Figure 4: Illustration of typical internal and external
structure of and links between agents. In this case, x,y €
St are valid labels of the internal nodes.

be easily extended to all of each X in the same way as was done
in the two previous problems

fla, X) = (X ©i(X)|b,(a,x)) ® s

Let A denote the set of all such operators f. Given a sequence
of agents calls s, the sequence of compositions denoted by f,; are
defined in the same way as before, and trajectories {f,(zo)} are
generated from initial conditions x¢. By definition of the possible
f’s, trajectories starting with base graph H evolves with the same
base graph. Hence f; : Cst,n — Cst, -

We can now define “coordinate creation and propagation” as
any process which dynamically modifies the internal structures
of the nodes in X so that the final output Y admits the existence
of a local agent-independent rule

¢ : gr(br(a, X)) — Z*

determining from the internal structure of a given agent-node a
(and perhaps those of its neighbors) a’s relative integral posi-
tions. Given ¢, let Yy be the set of all such Y. Consider f for
which there exists ¢ such that for all zo € Cs¢,n and s € SEM,

limn{fy(20)} = y* € Vs.

Any such f should naively be a “solution” to the problem of
coordinate creation and propagation.

But this formulation has two small technical problems. First,
the lattice graph £2 turns out to be inadequate for represent-
ing an important feature of the geometry of R?. In particular,
subgraphs of £? that are very different with respect to global
structure can be identical as stand-alone graphs. Notice that in
figure 2, the subgraph represented by nodes {ni,n2,ns} is iden-
tical to that given by {n1,n2,n4} when considered outside of the
embedding in £2. Hence, the statements (n1,n2) || (n2,ns) and
(n1,m2) L (n2,n4) are no longer meaningful. Similarly, rectangu-
lar subgraphs of differing length/width ratio but equal perimeter
become identical. Hence the various of sets H that can be rep-
resented is very small. One way to solve this would be to insist
on an a priori labeling of £2 from which the shape could be
recovered. But that would obviate the whole point of the po-
sitional information creation task and is, moreover, biologically
infeasible. Our solution is to formulate a new discrete carrier G
for plane geometry which carries the structural information of
orthogonality without having detailed coordinate labels. G is de-
fined by extending the pattern of finite graph G* illustrated in
figure 5 in all (planar) directions. Formally:

G=L?u2L% U 2L% +(0,1)]
U227 4 (1,00] u [2£° + (1,1)].

Notice that if there is a directed edge between nodes n1 and ne,
then that edge can be either a “one-step” edge (like that connect-
ing nodes n1 and n2 in the figure) or a “two-step” edge (like that
connecting nodes n1 and ng in the figure). Furthermore, there
are natural “straight line triples” in G, like that represented by
the nodes {n1,n2,n3} and natural “right-angle triples”, like that

(1)

represented by {ni,mn2,n4}. This information is independent of 195

the embedding in G.

N

@H@H?
(o
I
.

— (0

Figure 5: Illustration of G/, a finite subgraph which
generates G repetition in all square direction; the two-
step jump arrows are present at all nodes. The n; are
not actual node-labels (but just references for discussion
in the text.)

We can now require the substrates H to be subgraphs of G,
and the H to be sets of such graphs.

The other technical problem involves “forbidden information”
in the definition of the graph dynamics, similar to that in the pre-
vious example of continuous flocking. A graph is really an equiva-
lence class, not a single object. Formally, an implementation of a
graph is a pair (V, E') where the vertices V' = {v;} are represented
by distinct integers v; € N and E, the edges, are represented
by pairs (vi,v;) of integers in V. A graph is the equivalence
class of all implementations generated from a single implementa-
tion in which vertex numbers have been permuted by a bijection
¢ : N > N (or on transfinite numbers in the case of graphs
with uncountably many nodes). If (V2, Fs2) is generated from
(V1, E1) by any such permutation, then we write [(V1, E1)] =
[(V2, E2)]. A graph G is then G = [(V, E)], that is, the set of
all graph-implementations which are permutation-equivalent to
(V, E). Hence, it is perfectly easy to define a global dynamic on
the class of graphs as any function f : (V,E) — (V', E') such
that if [(Vl,El)] = [(VQ,EQ)] then [f(Vl,El)] = [f(VQ,EQ)] If
we were working with global dynamics, we wouldn’t need to men-
tion this. In our case, since we want to define local dynamics on
a graph, things aren’t quite so simple. The problem is that the
extension (X © i(X)|s,.(a,x)) ® f(br(a, X)) is not in general well
defined. That is because f(b-(a,X)) is an equivalence class of
graph-implementations, as is (X © i(X)ls,.(a,x)). For each im-
plementation z of the former, and each implementation y of the
latter which agrees with x on their common intersection, we can
form the union of the two implementations, z uy. But z Uy can
contain more than one graph equivalence class because symme-
tries of and y separately may not extend to all of x U y. In
the related graph-theoretic case of discrete flocking, this did not
occur, because all non-trivial local symmetries of the underlying
G were broken by the heading and orientations. Here, however,
this must be taken into account. In particular, we must define:

(X0 i(X)|b.(a,x))) Hf(br(a,X)) = {[z vyl
[z] = (X ©i(X)]b,(a.x)); (2)
[y] = f(br(a, X)) | b(x|or,(a,x)) = b(y)}

Now, we define [f] as the set of all maps

g: CSt,H i CSt,H

P T Y
O—0O—0—0—0—

i
O ®
I I
O O
I I
O

Figure 6: The rectangular loop graph [4. Shading
indicates (unique) positional information value carried
in each cell.

Figure 7: The rectangular loop graph with diagonal
W69} -

such that
9(X) € (X ©i(X) |, a.x) | [£(br(a, X))

for each X € C. This is the set of all local graph maps that
cannot be distinguished by local agents. We can finally state the
correct formal definition of a solution to the positional informa-
tion creation problem: it is any f € A for which there is a ¢ such
that all trajectories Qs fi(as@), Xo), with fi € [f], s € SEM and
Xo € Cst,1 converge to a fixed element in V,. Let F(H) denote
the set of such solutions.

We have investigated F(H) as a function of H. Possibilities
for H include:

e The set of all linear (one-dimensional) undirected graphs.
In this case, we can show that F () is non-empty and has
several distinct elements.

e Define (¢, »} to be the rectangular loop graph with sides
of length n and m (see figure 6). It can be shown that when
n,m > r, then F(H = {{O¢m,n}}) contains no elements f
with 7(f) < r. Hence

F(H = {{gm,nylm,neN}) = &.

e The set of all rectangular loop graphs with a single diagonal
(see figure 7). In this case, F(H) is non-empty and has
several distinct elements.

e The set of all rectangular sublattices of Z. In this case,
F(H) is again non-empty and has several distinct elements.

We do not have space to describe these results in detail here,
but will do so in future work. There is a relationship between

Figure 8: Illustration of typical hybrid discrete-graph
/ continuous plane configuration used to support the
model for scaffolding construction.

4. BUILDING STRUCTURAL SCAFFOLDING

Given a set of mobile agents in a plane, a task that repeat-
edly arises in solving other higher-level functionals is to move
those agents to construct various regular dispersed configura-
tions. Sometimes it is desirable that agents are simply equi-
dispersed, with equal distances between any agent and its imme-
diate neighbors, spread throughout the space. Sometimes it is
required to have the agents form a rigid structural scaffold, like
the various H c G used in the previous problem.

To describe this task, we will use a hybrid of continuous and
discrete structures. As in the example of continuous flocking,
the plane R? represents the underlying geometric space in which
agents exist. Consider again a set of agents located at points
in R?, represented by a set of pairs A = {(a;,p:)} where a; is
the label of the i-th agent and p; is its position in R?; in this
example, we have no need to model heading or orientation, so
we do not use h; and r;. As above, for an agent a in such a
configuration R?[] A, pos(a, X) denotes the coordinate position
of @ in R?, and b, (a, X) denotes the standard closed disk in R? of
radius r centered at pos(a, X), together with any agents located
in this ball.

We want to model the creation of a discrete substrate carrying
the structure independently of the base. To represent this, we
consider the agents as nodes in a directed graph D = (A4, ¢) where
e contains the edges in the graph. A typical configuration in this
hybrid discrete/continuous model will look like that in figure 8.
Let X = R?[[D denote the full configuration; write A(X) for
the set of agents and D(X) for the graph. Define by C the set
of all such hybrid discrete-graph/continuous-plane configurations
X.

Discrete-time dynamics are generated from identical local op-
erators associated with each identical agent.® To describe this
mathematically, let f be any operator f : br(a,X) — br(a, X),
in which:

1. pos(a) can have moved within R? n b,(a, X).
2. In which the internal state of a can have chaged, and

3. In which edges in D(X) attaching a to other elements in
D(X) nby(a, X) can have been removed or added.

We require f to have a finite well-defined information radius r
denoted r(f). We will use the notation A, to denote the set
of all these local algorithms and A = UT A,.. As we did in
previous problems, we trivially extend the local rule from local
neigborhoods b, to all of a given configuration X by defining

fla, X)=(XOb(a,X))Ds

SFor intuitive simplicity, we do not describe continuous-time dy-

this problem and distributed processor networks, as in [2], [10], 196 namics in this model, thought it would be possible to hybridize

and [3].

continuous dynamics like that in the previous example.

Figure 9: Illustration of symmetries. In a) The rotation
pr/2 is a Z4 symmetry; in b) The rotation p, and rotation-
flip-rotation p,/30 f op_r/3 are Zz symmetries.

where s = f(b.(a,X)). For each s = (ai,...,an,...) € SEM,
the sequence of compositions Qi f(a,) = f(an, (... (f(a1,X)...)
will be denoted by f,;, and applies to initial condition z¢ to gen-
erate trajectories {f;(zo)}. Dynamics can be probabilistically
specified as was done for the equigrouping problem. We will
abuse notation denoting the set of extended algorithms by A,
and A as well.

Informally, an algorithm for the creation of structural substrate
is any local rule which takes a set of unconnected agents located
at various (possibly arbitrary) initial positions and converges to
a configuration X whose connection graph D(X) is a subgraph
of G — the same G as described in the previous example. To
ensure that G is interpreted correctly in the discrete/continuous
hybrid environment, distances in R? between any two nodes in
D(X) connected by a one-step edge must be the identical, and
straight-line triples in D(X) must correspond to collinear points
in pos(X) < R% And, if three agents in X are collinear in
R?, then the points as represented in D(X) must carry the two
one-step edges and one two-step edge structure of a straight-line
triple in G. In this process, a substrate with well-defined local
orthogonal directions has emerged, and the links of G have been
endowed with actual geometric meaning in R?. Let the set of
all such configurations be denoted by X’; and denote by Xy the
set of initial conditions of unconnected agents (e = 0). Any such
configuration will possess well-defined relative positions inher-
ited from the underlying plane; these positions can be converted
into integer positions by normalizing the one-step integeragent
distance to be 1.

Consider an f € A such that for all zo € Xy, and all s € SEM,
the trajectories converge to both X, i.e.

limn{fo(zo)} =z e X.

Such an f is almost a solution to the problem of creating posi-
tional information.

But there is a bit of a technical problem with this formulation,
similar to the one we encountered above. When we required
invariance under the action of Sym, what we were doing was
preventing f from being to distinguish itself from other local op-
erations that were locally identical. This is what we need to do
in this case as well. But in the previous case, there were no local
balls b,(a, X) such that a(b-(a, X)) = br(a, X); that is because
the heading and orientation edges broke any such symmetry. In
this case, we do not have heading and orientation edges, and
indeed such symmetries may exist (see figure 9). Each such non-
trivial local symmetry that does not extend to a global symmetry
represents a different locally-identical operation. The solution to
this problem is to generate from such f the space of all globally-
distinct operators which look locally-identical and then require
that all of these operators solve the positional information cre-
ation problem. A

For each configuration X, let A(X) = {a; € O(2) x R%|i € Ix}

(2)
i@

Figure 10: Graph representation of 1-d lattice-agent
configurations.

- ®
D =s(®

be a set of rigid motions indexed by the (possibly uncountable)
index set Ix, and B(X) be a set of local configurations {b%(a;)|i €
Ix} of r-balls such that o;(bi(a)) = bi(a) for all s € Ix. Then
define:

Fap®r(a, X)) = Y Ty (0 x)mbi () X @ (F 07 ()

i€l x (3)

+ Lp, a,x)¢B(x) X fa, X).

That is, f 4.p is identical to f except with each f(b;) replaced

by ai(f(bs)). Let [f] be set of all such fA 5- Lf] is the set of all
operators that cannot be distinguished from f using locally ac-
cesible coordinate information. For consistency, we require that
as sets

[f1(abr(a, X)) = a([f](br(a, X))

for all & € Sym, in analogy to what we did in the continuous
flocking case. Then: a solution to the problem of positional in-
formation creation is any f such that for all semantics s, all
trajectories Qi fi(asqy, Xo), with fi; € [f], converge to a fized el-
ement tn X. Let us denote by Q the set of all solutions. In
future work, our goal will be to find a range of solutions in Q
and consider their properties.

The problem can be modified by taking Xy = {R?} and al-
lowing dynamics to create new agents; this problem then mod-
els the structural development in embryology. Another variant
is the problem of dispersion, modelled using this same frame-
work with a finite region of R? in place of the infinite plane and
a specific functionality which replaces the rigid substructure of
G with a simple dispersion criterion. Information propagating
along connections in D(X) can allow cooperative movement be-
tween agents more than r(f) distance from each other.

5. SPECIFYING FUNCTIONALITIES

Each of the above problems requires the expression of a func-
tional task, in addition to the static structures and (set of possi-
ble) dynamic rules. To explain more precisely how “functionali-
ties” — a concept that is usually left vague — can be formulated in
general, let’s consider the case of the 1-dimensional lattice used
in describing equigrouping in section 1. Any configuration X € C
can be thought of as a graph (V, E) in which the lattice elements
are nodes in V labelled by [, agents are nodes labeled a; and
edges in E are labeled e when between the lattice nodes create
spatial relations, while directed edges labeled @ between agents
and the lattice nodes represent positional locations. See figure
10. In other words, we can re-represent the 1-dimensional discete
lattice model as a collection of specially labeled graphs.

Now, the pair (C,.A) is a general setting in which 1-dimensional
pattern-formation problems, such as equigrouping, are situated.
A pattern P is specified by requiring trajectories {f,} generated
by a given f to have a desired property. Such a requirement
defines a space of solutions F — A whose trajectories satisfy
the given property: these are algorithms for P-generation. More
formally, if ¢(z) is a well-formed single-place formula of first-
order logic written in the graph-language

L = {37 _1567 =5l5a’567 @7‘/’E}7

then we define the solution space
F(¢) ={fe A|VaeC, seSEM, [¢({falco)})ll =1}

where ||¢|| denotes truth-value evaluation. By varying the re-
quired constraints on the trajectories as expressed by ¢, a wide
variety of patterns can be specified. Note that as defined so far,
the property ¢ can express a dynamic condition by virtue of act-
ing on the whole trajectory {f.(co)}, not just one time-slice of it.
However, most patterns (at least when thought of as “designs”
or tilings) are static in that they are defined in terms of the infi-
nite time limit limp— o0 fr(co) (assuming of course that this limit
exists).

More general systems, like those in previous few sections, can
easily be modeled as vertex- and edge-labeled graphs, in the same
way as equigrouping.® General properties will then be formulas
written in the graph language consisting of standard predicate
calculus symbols, together with the relevant label symbols in the
model. Functionalities are properties that apply to trajectories
generated by the dynamics of the system.

6. CONCLUSION: THE MODELING PROCE-
DURE

From the above examples, it is possible to identify a more
general framework underlying the systems. Though each model
defines a static structural space, a set of possible dynamics, and
the functional task specification, these are put together in the
following using the following more detailed directions:

1. Choose a basic carrier of geometry: R™ is used for contin-
uous models; for discrete, we use an n-dimensional analog
of £2 or G for models without inherent orientation.

2. Represent agents “living” on the geometry (ex. 1,2,4) or
“in” the geometry (ex. 3), represented by finite set {(as, pi)}
of agent identity-position pairs. The agents can have head-
ings and orientations specificed by {(pi, hi,r:)}. Local neigh-
borhoods b,-(a, X) of radius r are defined for agents a in
configurations X.

3. Agents a can possess internal states, modeled as finite di-
rected labaled graphs i(a) and inter-agent edges, modeled
as graphs D(X).

4. If the basic geometric carrier is G,, then discrete local dy-
namics f(a,X) are specified as functions modifying local
configurations around agent a € X. Local dynamics are
easily extended to the global configuration. For any se-
quence of agent calls s, we define f;(zo) as the trajectory
generated by calling f in the order specified by s starting at
the state zo. If the basic geometric space is R", then con-
tinuous or discrete dynamics fs(a, X) are specified as dif-
ferential operators specifying accelerations, and trajectories
fe(zo) are generated through simultaneous propagation.

5. Using local/global symmetries, fix the problem of “forbid-
den information” by generating from each local rule f a set
[f] of local rules that are indistinguishable locally.

6. The functional task specification is represented as a defin-
able first-order formula . A local rule f is said to be a
solution to the task ¢ if the set of trajectories [f](xo)
satisfies ¢ for all s € SEM and relevant initial conditions
Zo.

7. The solution space F(y) is the set of all such f. This is
the object to study — along the lines described in the first
paper of this series.

5The only significant challenge is the modeling of the real line

as a graph; but this can be done via standard axiomatizations of 198

the reals.

7. REFERENCES

[1] H. Abelson, D. Allen, D. Coore, C. Hanson., G. Homsy,
T. F. Knight, R. Nagpal, E. Rauch, G. J. Sussman, and
R. Weiss. Amorphous computing. Comm. ACM, 43(5),
2001.

[2] D. Angluin. In Proc. 12th STOC, 1980.

[3] H. Attiya. Jour. ACM, 35(1), 1988.

[4] M. Brenner, L. Levitov, and E. Budrene. Biophys. J., 74,
1998.

[5] W. J. Butera. Programming and Paintable Computer. PhD
thesis, MIT, 2002.

[6] S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau. Self-Organizing Biological
Systems. Princeton Univ. Press, 2001.

[7] J. Conway. Scientific American, March 1970.

[8] M. Dorigo. ACM Dig. Lib., 1999.

[9] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. In
Proc. IEEE Symp. RSP, 1994.

[10] G. N. Frederickson and N. A. Lynch. Jour. ACM, 34(1),
1987.
1] D. M. Gordon. Ants at Work. Free Press, 1999.

2] A. Jadbabaie, J. Lin, and A. Morse. In Proc. CDC03, 2003.
3] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century
challenges: Mobile networking. In Proc. 5th ACM/IEEE

CMCN, 1999.
[14] E. F. Keller and L. A. Segel. Traveling bands of chemtatic
bacteria. J. Theor. Bio., 30, 1971.
[15] E. Klavins. In Proc. CDC03, 2003.
[16] C. Langton and K. Shimohara. Artificial Life. ACM Dig.
Lib., 1989.
] J. McLurkin. The ants. Master’s thesis, MIT, 1996.
] M. Minsky. Perceptrons. MIT Press, 1988.
9] R. M. Murray. Euro. J. Control, 2003.
| R. Nagpal. MIT CSAIL AI Memo, 1999.
| P. Ogren, E. Fiorelli, and N. E. Leonard. In Proc. MTNS,
2002.
2] R. Olfati-Saber and R. M. Murray. In Proc. CDC03, 2003.
3] J. Pearl. Probabilistic Reasoning. Morgan Kaufmann, 1988.
4] C. Reynolds. Flocks, herds, and schools: A distributed
behavioral model. In Proc. SIGGRAPH, 1987.
[25] S. Sastry and M. Bodson. Adaptive Control: Stability,
Converges and Robustness. Prentice Hall, 1989.
[26] A. Stevens. SIAM J. Appl. Math., 61(1), 2000.
[27] P. Stone and M. Veloso. Autonomous Robots.
Kluweronline, 2000.
[28] J. Toner and Y. Tu. Flocks, herds, and schools. Phys. Rev.
E, 58(4), 1998.
| A. M. Turing. Phil. Trans. Roy. Soc. B, 1952.
| J. von Neumann. UIUC Press, 1966.
1] S. Wolfram. Rev. Mod. Phys., 55, 1983.
| L. Wolpert. J. Theor. Bio., 25(1), 1969.
] D. Yamins and N. Khaneja. In Submitted to Proc. ACC05,
2005.
[34] D. Yamins, S. Waydo, and N. Khaneja. In Proc. CDC0/,
2004.
[35] F. Zhang and P. Krishnaprasad. In Proc. CDC02, 2002.

