
Towards a Theory of “Local to Global” in Distributed
Multi-Agent Systems (I)

Daniel Yamins
Harvard University

33 Oxford St.
Cambridge, MA 02138 USA

yamins@fas.harvard.edu

ABSTRACT
There is a growing need for a theory of “local to global” in dis-
tributed multi-agent systems, one which is able systematically to
describe and analyze a variety of problems. This is the first in a
series of two papers that begins to develop such a theory. Here,
we analyze one particular multi-agent problem – the “equigroup-
ing problem,” in which multiple identical agents organize them-
selves into groups of equal size. We develop a formal model
for describing the system and an notion of equivalence charac-
terizing multi-agent algorithms in terms of the group behaviors
induced by the algorithm. Our main result is a characterization
of the space of all solutions to the equigrouping problem with
respect to this group behavior equivalence. The result allows us
to obtain infinitely many substantially different solutions to the
Equigrouping problem, and to understand these different solu-
tions in a qualitatively satisfying manner. The second paper in
this series indicates how to develop and generalize the modeling
method obtained here to other problems.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Sys-
tems

General Terms
Algorithms, Theory

Keywords
Distributed Algorithms, Theory of Algorithms, Local-to-Global,
Emergent Order, “Local-to-Global”

Introduction
Distributed multi-agent systems are abundant in the biological
world, exhibit rich and interesting behavior, and have been in-
spiring to researchers in many other areas. Examples of such sys-
tems – both natural and man-made – that often come to mind
include: Flocks, herds, and schools ([20], [24],[8],[18]); Bacte-
rial colonies and chemotaxis ([2], [22]); Embryological and mor-
phogenetic systems ([28], [25], [16]); Ant colonies and bee/wasp
swarms ([3], [7]); Ant- and swarm-inspired algorithms ([5], [12]);

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Flight formation in UAVs ([31], [17]); Neurons and neural net-
works ([14], [19]); The immune system and immune-inspired al-
gorithms; ([6], [10]); Robot soccer and other multi-agent team
sports ([15], [23]); Amorphous Computing, iRobots, SmartDust,
and other many-agent robotic systems ([1], [13], [9], [21]); and
Cellular Automata ([4], [27], [26]).

The dominant mode of studying these systems has been through
simulation ([20], [16], [3], [5], [1], [27]). Such simulations have un-
covered important mechanisms underlying distributed systems,
including positive feedback, stigmergy, signal gradients, posi-
tional information, probabilistic symmetry breaking, division of
labor, stability etc. Mathematical models have also been created
to quantitatively analyze candidate mechanisms in many cases
([8], [18], [2], [22], [25], [3], [14], [6], [10], [21]).

More abstract questions, regarding solution optimization, group-
level programming, task and algorithmic complexity, and the lim-
its of (de)centralization, have also been posed. In the current
state of the field, there is a great diversity of (mostly informal)
descriptive methods, mirroring perhaps the diversity of the sys-
tems they describe. However, there is a growing need to study
these abstract problems in a systematic way, as well as to pro-
vide a qualitative mathematical framework in which to compare
various possible underlying mechanisms. It would therefore be
useful to have an coherent theory of “local to global” in dis-
tributed multi-agent systems, one which is able to describe and
to analyze a variety of problems.

In this series of two papers, we attempt to provide the begin-
nings of a theory which addresses this question. In the first paper,
we focus on a simple illustrative problem – that of “equigrouping”
mobile agents into groups of equal size from arbitrary initial po-
sitions. We introduce a formal model of the system and carefully
analyze the set of all one-dimensional solutions to equigrouping
with respect to a group behavior equivalence. We thereby obtain
a spectrum of infinitely many solutions, together with necessary
and sufficient conditions characterizing the possible combinations
of group behaviors of any solutions. In the second paper we in-
dicate how to generalize the modeling approach used here to
complex and realistic multi-agent systems. We believe that ana-
lyzing a given problem’s solution space – distinct from the typical
approach of describing and verifying a single solution – is a novel
theoretical appraich to multi-agent systems.

1. THE EQUIGROUPING PROBLEM
In this paper, we describe and analyze the simple but in-

structive “equigrouping” problem introduced in [30]. Consider
a one-dimensional lattice. Two point-agents placed on this lat-
tice are said to be in the same group if all lattice points between
the two agents’ positions are occupied by other agents. Con-
versely, two agents are separated if there is at least one unoc-
cupied lattice point between them. For each positive integer p,
the one-dimensional p-Equigrouping problem consists of finding
local algorithms which take any arbitrary initial configuration

183

b)

a)

Figure 1: a) A non-equigrouped stated in C. b) A 3-
equigrouped state, in C3 ⊂ C.

of m × p agents (for m a positive integer) into a configuration
of m separated groups containing p agents each – that is, a “p-
equigrouped” configuration with m separate groups.

The equigrouping pattern – that of p-sized groups laid out
separated from each other – is one of the intuitively simplest
non-local patterns available in one dimension. But despite of
its simplicity, the problem was shown in [30] to cleanly illustrate
several key difficulties in the local construction of global patterns.

More formally, let L be the one-dimensional integral lattice.
Denote by X an initial configuration of point agents on L, so
that Ag(X) = {a1, . . . an} is a listing of the agent-positions along
L. Identifying L with the integers Z, we denote by pos(a,X)
the integral value of the lattice point at which agent a is lo-
cated in configuration X, under this identification. For example,
pos(a,X) > pos(b,X) means that a is to the right of b in X.
(We will drop the argument X from the notation when the con-
text is clear.) Let the set of all configurations of finitely many
agents on L be denoted by C. For X ∈ C denote by le(X) and
re(X) the left-most and right-most agents in X, respectively.
Given a ∈ ag(X), let a± denote the agents adjacent to the right
and left, respectively. (Of course, a− (resp. a+) will not exist
if a = le(X) (resp. a = re(X)).) Let Cp denote the set of all
p-equigrouped configurations (Figure 1).

We will use the notations ⊕ and 	 to refer to addition and
removal of agents, respectively. A decomposition of agents X =
X1 ⊕X2 is consecutive if pos(re(X1)) < pos(le(X2)). If X and Y
are two configurations of agents, then X � Y represents the set
of all Z for which X⊕Y is a consecutive decomposition.1 Hence-
forth, we will use ◦ to denote an empty lattice position and • to
denote an occupied position, so that in the (sub)configuration in
figure 1a) is denoted ◦••••◦◦••. We will use exponential nota-
tion (for which g = ◦ •4 ◦2•2) to efficienctly denote configuration
segments.

Dynamics are generated from (mostly) identical local operators
associated with each identical agent. To describe this mathemat-
ically, for a given agent a ∈ X, let br(a, X) ⊂ X be the ball of
radius r around a in X – meaning, the r lattice points to the
left and r lattice points to the right of a, together with whatever
agents are at those points. In all, br(a, X) contains 2r +1 lattice
points (including the point where a itself is) and at most 2r other
agents. Let f(ai, X) be any operator given by

f : br(ai, X) → s,

in which s is a lattice segment identical to br(a,X) except that
agent a can have moved either to the left or right by one lat-
tice unit, or have stayed in place. We do not allow two agents
to occupy identical positions, so that, for example, if an agent
is directly to the right of another agent, the first agent cannot
move left. We require f to be identical for all agents ai, except
the right and left most agents re(X) and le(X), respectively. In
fact, we allow f({re(X), le(X)}, X) to be different from f(a, X)
where a is not an end-agent, corresponding to the idea of giv-
ing agents line-of-sight information about whether or not they

1Hence, as defined here, � is not a commutative operation. We
will use the notation g�k to denote the k-times � of g with
identical copies of g.

have neighbors to their left and right (at whatever distance).2

Denote the (possibly different) left and right maps by fl, fr. In
the case that f(a, X) “moves” the agent a to the left, we write
[f(a, X)] = L; and use analagous notation for R, S to denote
right and stationary movement.

We require f to have a finite well-defined information radius
– the size of the largest ball br(a, X) from which f can draw
information. This is denoted r(f). We will use the notation A
to denote the set of all local algorithm specifications of this kind;
hence, any local algorithm f is an element of A. The specification
thus far formally defines f on a local ball around a given agent;
we can “globalize” this action to all of X in an obvious way by
taking X to a configuration in which br(a,X) has been replaced
X with s; that is

f(a, X) = (X 	 br(a,X)) ⊕ s.

For each s = (a1, . . . , an, . . .) ∈ SEM, the sequence of composi-
tions

©if(a, ·) = f(an, (. . . (f(a1, X) . . .)

will be denoted by fs
n, and applies to initial condition x0 to gen-

erate trajectories {fs
n(x0)}. We can allow f to be probabilisti-

cally specified by attaching to each possible configuration of the
agent’s br(a) probabilities pl, pr of moving to the left and right,
and probability 1 − pl − pr to remaining still.3

Let SEM be the set of all infinite sequences of agent-labels
such that each agent ai appears infinitely many times. These
allowable semantic strings correspond exactly to the UNITY se-
mantics described in [11].4 Let Ŝ be the set of all eventally peri-
odic sequences. We say that f is a solution to the p-equigrouping
problem if for all such x0 with m× p agents for any m and each
s ∈ SEM, the trajectory fs

n(x0) converges to a fixed configura-
tion in Cp in finite time with probability 1. If we let Pn be the

probability that fs
n(x0) ∈ Cp and fs′

m (fs
n(x0)) = fs

n(x0) for all m
and s′ ∈ SEM, then limn→∞Pn = 1. Let Fp denote the set of
deterministic solutions to p-equigrouping.

Our goal in the rest of this paper is to learn about the structure
of Fp. The first and most obvious question to ask is: is Fp non-
empty? Can any solutions be found? In [30] and [29] we identified
two qualitatively different deterministic solutions:

Algorithm 1 For each p, define the algorithm F1(p) with infor-
mation radius r(F1(p)) = p locally to any given agent a by the
rules:

1. Suppose a 6= le(X), but a = le(g) for some consecutive
group g ⊂ X. Then if |g| 6= p, move left, i.e. [F1(p)(a,X)] =
L.

2. Conversely, suppose a = le(X). If a is in a group of size
greater than p, the action is L.

3. In all other cases, stay, i.e. [F1(p)(a,X)] = S.

Algorithm 2 Define a local rule F2(p) with information radius
r(F2(p)) = p + 7 which, on the state X, is given locally to any
given agent a by:

1. Suppose a = le(X), re(X). Then F2(p)(a,X) = F1(p)(a,X).

2It turns out that it is impossible to solve the equigrouping prob-
lem without making this allowance; this is shown in [30].
3If a given motion is unavailable since the adjacent position in
that direction is already occupied, the probability associated with
that motion is automatically 0. Deterministic algorithms are
simply the special case in which one of pl, pr, 1− pr − pp is 1 and
the others zero.
4Following standard notation, we will use s2 ◦ s1 to denote com-
position of semantics with s1 first, followed by s2. The notation
s◦k indicates the k-times composition of s with itself.

184

(time)

Figure 2: Illustration of the operation of F1(3) in a rep-
resentative case. Timesteps proceed from top row to
bottom row.

Figure 3: Illustration of the operation of F2(3) in a rep-
resentative case.

2. Suppose a 6= le(X) and a is part of a contiguous group of
size at least p. Then F2(p)(a,X) = F1(p)(a,X).

3. Suppose a, b 6= le(X), re(X) are consecutive agents, with
dist(a, b) ≥ 5. Then if possible, both a and b move left,
[F2(p)({a, b, }, X)] = L.

4. Suppose a, b 6= le(x), re(x) are consecutive agents with
dist(a, b) ≤ 2. Then [F2(p){a, b}] = L, while ensuring that,
unless part of a p-group, a and b remain within distance 2
of each other. If one is part of a p group, then a and b are
allowed to separate.

5. Suppose a, b are as above with 3 ≤ dist(a, b) ≤ 4. Then
unless to the left of a group of size p, [F2(p)({a, b, }, X)] =
R.

6. Suppose a, b are as above with 3 ≤ dist(a, b) ≤ 4, to locally
to the left of a group of size p. Then F2(p)({a, b}), X)
compresses {a, b} toward each other.

7. In all other cases, [F2(p)(a,X)] = L

To visualize the operation of the first algorithm F1(p), let p =
3, m = 2 and consider the initial configuration X = •4 ◦2 •2.
Under the semantic generated by reading off agents repeatedly
from left to right, F1(3) converges to a solution in 7 steps (figure
2). Via the obvious “mirror algorithm” construction it is easy to
define a “rightward version” of which mirrors F1(p) is the mirror.

To visualize F2(p), let’s consider the case in which p = 3,
m = 3 and the initial configuration X is • ◦ •3 ◦5 • ◦3 • ◦6 •3.
Under the same semantic as for algorithm F1(3), X evolves under
F2(3) as illustrated in figure 3. In this particular situation, all
the agents are initially stationary with the exception of the 5th
and 6th agents. This group of two initially moves to the right as
per to rule 5; eventually interacts with the right-end 3-group and
compresses into a left-moving 2-group as per rule 6; moves left as
per rule 3; and then interacts with the left-end agents, entering an
equigrouped state as per rules 1 and 2. The information radius is
p+7 exactly so that the left-most agent in a 2-group can evaluate
rules 5 and 6.

F1 and F2 differ from each other in that while under F1 agents
are either stationary or left-moving, F2 can sometimes have agents
moving to the right. In solving the initial condition X, F1 would
much more efficiently move the 5th and 6th agents to the left,
instead of first having them move to the right before interact-
ing with the right-end agents as F2 did. Intuitively, F2 thereby

differs in an important way from F1. The exact extent of this
difference will be explored in the next few sections. In fact, we
will characterize this difference with respect to an equivalence
relation on the set of solutions; F1 and F2 will turn out to be in
different equivalence classes.

Notice that in both algorithms the information radius r(F (p)) ≥
p. Also, notice that the behavior of (at least one of) the end-
most agents is different from the rest – that is, the left-most agent
must know that it is an end-agent. It turns out that these are
not coincidences:

Proposition 1 Let f ∈ Fp. Then r(f) ≥ p.

Proposition 2 There are no f ∈ Fp such that fl = f = fr.

These establish that the right or left end agent (or both) must
know that it is an end-agent. In other words, some kind of ex-
tra information – requiring the ability to communicate (with ex-
tremely minimal low information content) across the infinitely
long line – is required. Propositions 1 and 2, originally proved
in [30], are simple examples of more general statements that can
be made about deterministic solutions to equigrouping.

2. GROUP BEHAVIOR AND EQUIVALENCE
Intuitively, just as individual agents can (and must) have one

of three “behaviors” under any given algorithm f – namely L, R
or S – we will show that groups of agents can somtimes be said
to as well. In this section, we will define a reasonable concept
of “group behavior”, and quote results that show this concept is
well-behaved and applicable. We will then define an equivalence
relation between two deterministic algorithms f and g, in which
f ∼ g whenever f and g induce the same group behaviors. In
the next section, we will characterize the quotient of Fp up to
this equivalence relation.

Definition 1 [Generalized Group Behaviors] Let g be an
isolated set of agents and f a deterministic algorithm in A. Then,
for a given s ∈ SEM,

1. Define (f, s) as moving g to the left if for any positive integer
n, there exists mn, another positive integer, such that the
left-end agent after action of (f, s) for mn steps (that is,
le(fs

mn
(g))) has been translated to the left of its original

configuration (that is, le(g)) by more than n places, i.e.

pos(le(fs
mn

(g))) − pos(le(g)) < −n;

and similarly for the right-end agents. If this situation ob-
tains then we write [g, f, s] = L.

2. Define (f, s) as moving g to the right analogously, with

pos(le(fs
mn

(g)))− pos(le(g)) > n;

and similarly for the right-end agents. If this situation ob-
tains then we write [g, f, s] = R.

3. Define (f, s) as staying g if there exists n such that for all

m there is an m′ > m for which the end-points of fm′

s have
moved no further than distance n from initial points. If
this is the case, we write [g, f, s] = S.

Analogous definitions can made for left- and right-end agent
groups, using fl or fr in place of f ; notation for behaviors are
[g, f, s]l and [g, f, s]r respectively. There is a natural order-
ing of behaviors with respect to the direction along the line L,
L < S < R.

Though L, R,S are mutually exclusive and exhaustive behav-
iors for a single isolated agent, it is not a priori clear whether
this remains true for groups of more than one agent. It turns out
that for the right kind of group, it is.

185

Definition 2 Let g be a set of agents on the line L and f ∈ A
be a deterministic algorithm. Then g is an (f, s)-prekernel for
a given semantic string s if there is an integer l ∈ N such that
when isolated, given any m ∈ N, there is an integer n ≥ m such
that for all a, dist(a, a+) < l in fn

s (g).

In [30], we showed:

Proposition 3 [Pre-kernels Carry Behavior] Suppose that

g is an (f, s)-prekernel for s ∈ bS. Then the ω-limit set Ω =
limn→∞{fs

n(g)} is a periodic cycle with well-defined displacement
m[g, f, s] ∈ Z and speed n[g, f, s] ∈ Q defined by

m[g, f, s] = pos(a, t + τ) − pos(a, t)

and

n[g, f, s] =
pos(a, t + τ) − pos(a, t)

τ/|g|

in which τ = |bs| is the length of the minimal period of Ω and
a ∈ g is any agent.

A positive speed indicates motion to the right, a negative speed
indicates motion to the left, and zero speed indications that the
pre-kernel is stationary. Analagous results are true for [g, f, s]l
and [g, f, s]r.

A prekernel is a unit that “remains” together, and thereby
acts as a carrier of group behavior. A natural question to ask
to aid further analysis is what the minimal such units are. To
this end we seek a formulation for decomposition of prekernels
into minimal sub-prekernels such that the behavior of the whole
is a “trivial” combination of the behavior of the subunits. A
naive attempt at such a definition is: for a pre-kernel g, to say
that it “decomposes” into g = g1 ⊕ g2 if and only if fs

n(g) =

f
s|g1

n (g1) ⊕ g
s|g2

n (g2) for all n. However, for various reasons this
definition fails to be consistent. Because of this, we formulate
the following (unfortunately less concise) technical definition:

Let g be an (f, s)-prekernel and let g = g1⊕g2 be a consecutive
decomposition of g.5 For each n, let an = re(fs

n(g)|g1
) and bn =

le(fs
n(g)|g2

). Let s′ be the semantic created from s by removing
calls to an whenever dist(an, bn) = 1 and [f(an, X 	 g2)] = R

and to bn whenever [f(bn, X 	 g1))] = L. Define g′
1 = fs′|g1(g1),

g′
2 = fs′|g2(g2). Obviously {fs′

n (g)} = {fs
n(g)} as trajectories,

the latter being a delayed version of the former.

Definition 3 [Minimal Decomposition] The consecutive de-

composition g = g1 ⊕ g2 of the (f, s)-prekernel g for s ∈ Ŝ, is a
kernel decomposition if

1. s′ ∈ SEM, and g1, g2 are prekernels for (f, s′|g1
) and (f, s′|g2

)
respectively.

2. Ω(g, f, s′) = Ω(g1, f, s′|g1
) ⊕ Ω(g2, f, s′|g2

).

3. At any timestep n, f
s′|g1

n (g1) and f
s′|g2

n (g2) are accessible

to and from the trajectories fs|g1 (g1) and fs|g2(g2) respec-
tively.6

We say g is an (f, s)-kernel if no consecutive decomposition g =
g1 ⊕ g2 is a kernel decomposition.

In other words, an interaction kernel is a group which, when
isolated, “stays together” and which cannot be written as the
direct sum of two subgroups which act equivalently under the
consecutive decomposition. Similar definitions are made for left-
kernels (with agents at the left-end of the line, using fl in place

5That is, g ∈ g1 � g2.
6Following standard terminology, we say that a configuration y
is accessible from x if there is a finite string of calls s for which
y = fs(x).

of f) and right-kernels, (with agents at the right-end of the line,
using fr in place of f). Let Ker(f, s) denote the set of config-
urations which are (f, s) kernels; and Kerl(f, s) and Kerr(f, s)
be analagous notations for left- and right-kernels.

We now need to ensure that kernels exist. To understand the
existence result, we need to consider the interaction of prekernels.
Suppose g and g′ are two (f, s)-pre-kernels. We can form various
consecutive sums in g � g′. If g is placed sufficiently far to the
left of g′ and

n[g, f, s] ≤ n(g′, f, s)

then g will never come into contact with g′.7 On the other hand,
if

n[g, f, s] > n(g′, f, s)

then the two groups will come into contact – that is, there will
be a time such that le(g′) and re(g) will be within distance r(f)
of each other, and after which

fs
t (g � g′) * fs

t (g) � fs
t (g′).

The resulting conglomerate might become one larger pre-kernel,
break down into several others, or perhaps somehow not gener-
ate any pre-kernels at all. Similar, but more complicated sce-
narios are imaginable with more than two starting pre-kernels.
Hence, whenever pre-kernels exist, we can track the “interaction
pattern” of pre-kernel formation and break-up. Formally, a con-
secutive sum g1 ⊕ . . . ⊕ gn of prekernels (gi, f, s) is said to be
good if for all i, n[gi, f, s] ≤ n[gi+1, f, s]; a good decomposition
is one in which the ordering of the behaviors is consistent with
the ordering of the lattice. A temporary kernel decomposition is
one in which all gi survive as independent kernels for at least
l = maxi{p(gi, f, s)} timesteps, where p(gi, f, s) is the prekernel-
period of Ω(gi)

We showed in [30] that an interaction pattern always exists:

Proposition 4 [Kernels Exist] For any configuration g, there
is a time t and temporary kernel decomposition gt

1 ⊕ . . .⊕ gt
m for

which

fs
t (g) = gt

1 ⊕ . . . ⊕ gt
m

such that for 1 ≤ i ≤ j ≤ m, gt
i ⊕ gt

i+1 ⊕ . . . ⊕ gt
j is a (perma-

nent) kernel decomposition whenever it is good. If s ∈ bS, the
maximal (finest) such decompositions are periodic, and the max-
imal such decompositions which are good are (permanent) kernel
decompositions.

The existence of one such t implies the existence of an infinite
sequence ti of future such times (periodically if s ∈ Ŝ). Survival
times li = maxj{p(gti

j , f, s)} can be defined analogously. In the li
timesteps after each ti, interaction occurs only within the tempo-
rary kernels; between ti + li and ti+1, interaction occurs between
the temporary kernels, eventually setting up a new decomposi-
tion of temporary kernels. The entire evolution of states under
f can be thought of a series of such kernel interaction patterns.

The existence and well-behaved properties of kernels require
the assumption of eventually periodic semantics. This, however
is a justified assumption because of the following lemma, proved
in the appendix:

Lemma 1 If an algorithm f solves p-equigrouping on all periodic
UNITY semantics, then it is a solution for all UNITY semantics;
that is, f ∈ Fp

Hence, associated with any algorithm f , then is the record of
its kernel sizes and their well-defined behaviors, information we
will use to define the group-behavior equivalence relation on the
space of local algorithms A.

7Of course, if they are placed close to each other, they might
interact.

186

Definition 4 [Group Behavior Equivalence] Let

K(f) = {(|X|, [X, f, s])|X ∈ C, ∃s ∈ S|X ∈ Ker(f, s)}.

If we define

Wk = {(j, B)|1 ≤ j ≤ k, B ∈ {L, S, R}},

then obviously K(f) ⊂ W∞ for any f . K(f) is the kernel
structure of f . Define left- and right-kernel structures, denoted
Kl(f) = K(fl) and Kr(f) = K(fr), analogously.

Two algorithms f, g ∈ A are kernel-equivalent when

(Kl(f), K(f), Kr(f)) = (Kl(g),K(g), Kr(g)).

We write f ∼=K g, and [f] for the class of f in the quotient

Ã = A/ ∼=K .

Example 1 To fix ideas, let’s look at the kernel-structure of
algorithm 1. Let a represent an arbitrary agent, and let g(k) be
an isolated group of k consecutive agents. It is easily shown that:

K(F1(p)) = {(1, L), (p, S)} = Kr(F1(p)),

and

Kl(F1(p)) = {(k, S)|k ≤ p}.

This calculation intuitively corresponds to the fact that an indi-
vidual agent travels to the left; 2-groups, . . ., up to p− 1-groups
decompose into consecutive ⊕ sums of independent 1-groups; p-
groups are stationary; and groups larger than p “break off” to the
left. The left-most agent behaves differently, as a kind of “stop-
per” which prevents agents from translating to the left indefi-
nitely. Sub-portions of a group join up to make a whole p-group
by collecting at the left end together.

In a sense, for each p, [F1(p)] is a “trivial element” in Ã: all the
kernels go in the same direction. However, the equivalence rela-
tion ∼=K is able to distinguish the F1(p) from F2(p) as elements of
Fp/ ∼=K . This captures the inherent difference between the two
algorithms noticed above. K(F1(p)) 6= K(F2), because whereas
K(F1(p)) is as calculated above with no right-moving kernels, we
obviously have (2, R) ∈ K(F2(p)), the kernel structure carried by
the configurations {(• ◦ ◦ ◦ •), (• ◦ ◦ ◦ ◦•)}.

Hence the quotient space F̃p = F̃p/ ∼=K contains at least two

different elements of Ã.

2.1 Classifying Fp up to Behavioral Equivalence
The ideas of the previous section indicate several fundamen-

tal questions: How many inequivalent solutions are there to p-
equigrouping? What sets arise as Kl(f), K(f) and Kr(f) for
some solution f ∈ Fp? Can tractable necessary and/or sufficient
conditions on K(f) or K(f) be formulated for f to be in Fp?
Knowing the answers to these questions would go a long way
to a systematic understanding of the deterministic solutions to
equigrouping. Indeed, it was the formulation of the first ques-
tion that lead to the discovery of (the admittedly unintuitive)
Algorithm 2.8

To proceed, we first answer a more basic question: What sets
arise as K(f) for a well-defined algorithm f ∈ A? Any triple
(Kl, K, Kr) ∈ 2W∞ ×2W∞ ×2W∞ is a potential kernel structure.
But which of these actually occur?

Theorem 1 [Well-Defined Algorithms] K is the kernel struc-
ture of a well-defined algorithm only if

1. ∃!(1, B) ∈ K. Similarly for Kl and Kr.

8Our hope was that F1 and its mirror would be, up to kernel
equivalence, the unique solutions to equigrouping. Failure to
find a proof of this fact lead to the formulation of F2 as a coun-
terexample.

2. If (2, L) or (2, R) ∈ K then ∃(j, B) ∈ K for j > 2 or
B = S.

Furthermore, there are finite conditions on the relationship be-
tween Kl, Kr and K such that all finite potential kernel struc-
tures satisfying these conditions arise.

The full statement and proof of Theorem 1 is given in the ap-
pendix; one relevant fact from the proof to proceed here is that
the construction of the f [Kl, K, Kr] can be made so that all ker-
nels with size divisible by p are p-equigrouped states.

We now use theorem 1, which applies to all algorithms, to
understand the solutions to the equigrouping problem in specific.
To this end, consider the following conditions one could place on
the kernel structure of f :

A For all (kl, Bl) ∈ Kl, (k, B) ∈ K, and (kr, Br) ∈ Kr, such
that

kl + kr ≡ 0 mod(gcf(k, p))

and one of kl, kr, k is /∈ p ∗ N, we have either Bl > B or
B > Br.

B For any (kl, Bl) ∈ Kl, Bl > L and for any (kr, Br) ∈ Kr,
Br < R.

Call these the p-equigrouping kernel conditions; let Tp denote
the set of all algorithms whose kernel structures satisfy these
conditions. Let T ′

p denote the set of algorithms in Tp whose
kernel structures are finite sets in W∞.

The key result is the following, giving a characterization Fp

for finite kernel structures:

Theorem 2 [Equigrouping Classification] For all p, F̃p ⊂ T̃p

and T̃ ′
p ⊂ F̃p.

Proof. [Theorem 2] We will prove the “only if” direction by
contradiction. Let f /∈ Tp; we will construct an initial condition
X and a semantic s such that fs

n(X) does not converge to Cp.
So suppose first that f violates the first p-equigrouping kernel

condition. Let (kl, Bl) ∈ Kl(f), (k, B) ∈ K(f) and (kr, Br) ∈
Kr(f) be such that kl + kr ≡ 0 mod(gcf(k, p)) and Bl ≤ B
and B ≤ Br. Let gl, g, gr be carriers of these behaviors, i.e.
[gl, f, sl] = Bl, [g, f, s] = B, [gr, f, sr] = Br for some semantics
sl, s, sr, and with |gl| = kl, |g| = k, and |gr| = kr. Now, there
must be an m such that kl + kr + mk = np for some n. Let
XM,N,O = gl ⊕ g�m ⊕ gr be a consecutive sum such that

dist(re(gl), le(g
⊕m)) > M, dist(re(g�m), le(gr)) > N

and distances between copes of g in g�m are greater than O. Let
S = sl ◦ s ◦ sr. When M, N, O are sufficiently large, the kernels
present in the initial state never interact and therefore remain
separated with their original behavior, that is

fS
n (X) = (gl, Bl) ⊕ (g,B)⊕m ⊕ (gr, Br)

is a consecutive kernel decomposition for all n. Now, if one of
kl, k or kr is not a multiple of p then
limn→∞{fS

n (X)} either does not exist or is * Cp. But |X| is
a multiple of p so, this contradicts the assumption that f is a
solution to p-equigrouping.

Suppose now that f violates the second p-equigrouping ker-
nel condition, and wlog that (kl, L) ∈ Kl(f). Let (kl, K) be
carried by gl under semantic sl. Then denote by y any con-
figuration in C such that |y| ∈ pZ and let y′ = gl � y where
dist(re(g), le(y)) > r(f). Let b denote the minimum of speeds of
kernel decompositions of y under f , for some arbitrary semantic
s and let k ∈ N be such that k|n(gl, fl, sl)| > b. Let s̃ = s◦k

l ◦ s.
The point is that Lim(f s̃(y′)) /∈ Cp, a contradiction to the sup-
position that f is a solution to equigrouping. The analogous
argument works to show that (kr, R) /∈ Kr(f).

187

For the “if” direction, let (Kl, K, Kr) be a triple of finite sub-
sets of W∞ satisfying the p-equigrouping kernel conditions. We
must show that if there is any algorithm f with this kernel struc-
ture, then we can produce a solution f ∈ Fp with this kernel
structure. Hence by theorem 1, given a finite potential kernel
structure (Kl, K, Kr) satisfying the two p-equigrouping kernel
conditions and the five conditions from theorem 1, we have to
construct an algorithm with the given kernel structure. The con-
struction f = f [Kl, K, Kr] from the proof of Theorem 1 does this
for us. The question is whether f thereby constructed is actually
a solution. But:

Lemma 2 If f ∈ Tp, then for all periodic semantics s,

lim
n→∞

{fs
n(X)} =

kM

i=1

gi

is a consecutive kernel decomposition, where for each i gi is an
(f, s)-kernel with |gi| ∈ p ∗ N and [gi, f, s] = S.

Combining this (proof given in the appendix) with lemma 1,
to complete the proof of theorem 2 we must only show that
f [Kl, K, Kr] equigroups its stationary kernels whose size are a
multiple of p. But recall that we can make the construction in
theorem 1 with this property: one can see from the construction
(in the appendix) that the only fixed kernels with size m× p are
Smp – which are already in Cp.

Unfolding the statement of the theorem, what we have shown
is that for all k, a triple

(Kl, K, Kr) ∈ 2Wk × 2Wk × 2Wk

can be written as (Kl(f), K(f), Kr(f)) for an f ∈ FP if and only
if the triple satisfies the p-equigrouping kernel conditions and is
the kernel structure of a well-defined algorithm.9 This result
largely answers the questions posed at the beginning of the sec-
tion. Its basic import is that any combination of group behavior
that are not immediately ruled out by the p-equigrouping kernel
conditions is a valid combination for at least one actual solution.
The theorem provides the existence of a spectrum of infinitely
many solutions to equigrouping all of which are qualitatively dif-
ferent with respect to the group behavior they induce on groups
of agents of various sizes. We therefore have the following:

Corollary 1 For each p ≥ 2, |Fp| ≥ |F̃p| = ∞.

The theorem has several useful corollaries for analyzing can-
didate solutions to equigrouping. For example, Proposition 2
follows immediately from the theorem:

Proof. [Proposition 2] Suppose fl = f = fr for a deter-
ministic solution. Then (1, B) ∈ Kl(f)∩K(f)∩Kr(f) for some
B. But obviously 1 + 1 ≡ 0 mod(1, p); which then triggers the
first p-equigrouping condition, which contradicts the existence of
the identical behavior for the (unique) size-1 kernel in Kl, K, and
Kr.

The notion of group behavior equivalence and characterization
of solutions may be useful in helping to understand a variety of
basic properties of distributed algorithms. For example, one can
define the kernel complexity of f ,

KC(f) =
X

g∈K(f)

|g|,

as a potential complexity measure. We conjecture that F1(p)
and its mirror algorithm minimize KC among solutions of p-
equigrouping. F1(p) also minimizes r(f) among p-equigrouping

9Actually, we show more than this: the “only if” part applies to
all kernel structures, finite or otherwise.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Figure 4: Average time-to-solution for F1(4) plotted vs.
density of agents in the initial conditions.

solutions. For these reasons, we believe that the simplest solution
is perhaps an optimal solution.

Another notion of optimality is that of time-efficiency, the
time-to-solution averaged over semantics and initial conditions.
There is evidence that the effiency profile – that is, efficiency as
a function of agent-density in initial conditions – of a given f is
a function of the equivalence class [f], and that effiency degrades
with KC([f]). The effiency profile of F1(p) is shown in figure 4.

In future work, we intend to characterize in much greater depth
these other relevant questions about Fp, including its scaling
with r(f), the information radius, and the structure of its non-
deterministic part. A key question, however, is whether the mod-
eling approach that made the kind of analysis done in this paper
possible can be used for systems other than equigrouping. The
next paper in this series addresses that question.

3. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson., G. Homsy,

T. F. Knight, R. Nagpal, E. Rauch, G. J. Sussman, and
R. Weiss. Amorphous computing. Comm. ACM, 43(5),
2001.

[2] M. Brenner, L. Levitov, and E. Budrene. Biophys. J., 74,
1998.

[3] S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau. Self-Organizing Biological
Systems. Princeton Univ. Press, 2001.

[4] J. Conway. Scientific American, March 1970.

[5] M. Dorigo. ACM Dig. Lib., 1999.

[6] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. In
Proc. IEEE Symp. RSP, 1994.

[7] D. M. Gordon. Ants at Work. Free Press, 1999.

[8] A. Jadbabaie, J. Lin, and A. Morse. In Proc. CDC03, 2003.

[9] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century
challenges: Mobile networking. In Proc. 5th ACM/IEEE
CMCN, 1999.

[10] E. F. Keller and L. A. Segel. Traveling bands of chemtatic
bacteria. J. Theor. Bio., 30, 1971.

[11] E. Klavins. In Proc. CDC03, 2003.

[12] C. Langton and K. Shimohara. Artificial Life. ACM Dig.
Lib., 1989.

[13] J. McLurkin. The ants. Master’s thesis, MIT, 1996.

[14] M. Minsky. Perceptrons. MIT Press, 1988.
188

[15] R. M. Murray. Euro. J. Control, 2003.

[16] R. Nagpal. MIT CSAIL AI Memo, 1999.

[17] P. Ogren, E. Fiorelli, and N. E. Leonard. In Proc. MTNS,
2002.

[18] R. Olfati-Saber and R. M. Murray. In Proc. CDC03, 2003.

[19] J. Pearl. Probabilistic Reasoning. Morgan Kaufmann, 1988.

[20] C. Reynolds. Flocks, herds, and schools: A distributed
behavioral model. In Proc. SIGGRAPH, 1987.

[21] S. Sastry and M. Bodson. Adaptive Control: Stability,
Converges and Robustness. Prentice Hall, 1989.

[22] A. Stevens. SIAM J. Appl. Math., 61(1), 2000.

[23] P. Stone and M. Veloso. Autonomous Robots.
Kluweronline, 2000.

[24] J. Toner and Y. Tu. Flocks, herds, and schools. Phys. Rev.
E, 58(4), 1998.

[25] A. M. Turing. Phil. Trans. Roy. Soc. B, 1952.

[26] J. von Neumann. UIUC Press, 1966.

[27] S. Wolfram. Rev. Mod. Phys., 55, 1983.

[28] L. Wolpert. J. Theor. Bio., 25(1), 1969.

[29] D. Yamins and N. Khaneja. In Submitted to Proc. ACC05,
2005.

[30] D. Yamins, S. Waydo, and N. Khaneja. In Proc. CDC04,
2004.

[31] F. Zhang and P. Krishnaprasad. In Proc. CDC02, 2002.

4. APPENDIX
Suppose X, Y ⊂ W∞. Let X]Y denote the set {x+y|∃(x,B1) ∈

X, (y,B2) ∈ Y,B1 ≤ B2}. Let]nK be the n-times] of K with
itself and]NK =

S
n∈N

]nK. The full statement of theorem 1
is:

Theorem 1 (Kl, K, Kr) is the kernel structure of a well-defined
algorithm only if

1 ∃!(1, B) ∈ K. Similarly for Kl and Kr.

2 If (2, L) or (2, R) ∈ K then ∃(j, B) ∈ K for j > 2 or B = S.

3 The following equation holds:

N =]NK = Kl] (]NK) = (]NK)] Kr

= [Kl] (]NK)] Kr] ∪ [Kl ∩ Kr].
(1)

4 If (j, B) ∈ Kl (resp Kr) and @(j′, B′) ∈ K with 1 < j′ ≤ j,
then either (1, B) ∈ K or (1, L) ∈ K (resp (1, R) ∈ K) and
B = S.

5 Suppose (1, S) /∈ K and let

jB = max{l|(@(l′, B′) ∈ K|1 < l′ < l, B′ < B

∧ (∃(j, B′′) ∈ K|1 < j ≤ l)}.
(2)

Then ∃(i, C) ∈ Kr with either i = l or C ≥ B. Analagous
conditions apply for Kl.

Conversely, all finite potential kernel structures satisfying these
conditions arise.

Proof. [Theorem 1] (⇒) We will procede by contradiction.
Consider the first assumption, and define for any r the configu-
ration

Vr = ◦ ◦ . . . ◦ • ◦ . . . ◦ = ◦r • ◦r

in which ◦ is repeated r times on either side. Under any f ∈ Ar,
Vr must be a kernel, for note that [f(f(•, Vr))] = [f(•, Vr)] and
therefore

[©mf(•, Vr)] = [f(•, Vr)]

for all m. Hence (1, [f(•, Vr)]) ∈ K(f). Further more, it is the
unique element (1, B) ∈ K(f), since any configuration of size one
is simply a single copy of • itself, and of course when “isolated”

a single • is exactly Vr, and so therefore has the same behavior.
This proves the first condition.

Now consider the second condition and suppose it were oth-
erwise. Let y be any configuration with |y| > 4r. Now, for all
periodic s, from proposition 4 and the assumption that S is not
a behavior of f ,

lim
n→∞

{fn
s (y)} =

m1M

i=1

ki ⊕

m2M

m1+1

ki

is a permanent decomposition in which |ki| ≤ 2 for all i, in which

[ki, f, s] =

(
L for 1 ≤ i ≤ m1

R for m1 + 1 ≤ i ≤ m2
.

Let xl =
Lm1

i=1 ki and xr =
Lm2

m1+1 ki. Since |y| > 4r, either |xl|

or |xr| is greater than 2r. Suppose wlog that |xl| > 2r. The set
limn→∞{fn

s (xl)} must admit a function ρ : Br(a, X) → {1, 2} ×
{1, 2}, such that ρ(a) = (m, |ki|), where m is the number in the
unique ki containing a as read from the left. ρ must be invariant
under changes in dist(le(ki), re(ki−1)) and dist(re(ki), le(ki+1))
for all i. But now consider two consecutive agents a, b in xl with
more than r agents on either side in xl. It is always possible to
find a periodic s′ such that the resulting xl has the two properties:
1) if |ki| = 1 then |ki−1| = |ki+1| = 2 if they exist and 2) there

are n, m such that br(a, fs′

n (xl)) = br(b, f
s′

m (xl)). But this is
impossible. The first condition implies that ρ(a) 6= ρ(b) when no
3-kernels or larger exist; and the second requires ρ(a) = ρ(b); a
contradiction.

The third condition follows easily from proposition 4; any ini-
tial configuration under a periodic semantic s eventually has a
consecutive decomposition

Lk

i gi where Bi = [gi, f, s] ≤ [gi+1, f, s].
But initial configurations can be made of any size n ∈ N. Hence
any n must be able to be written as

P
i
|gi|. By allowing the

initial condition to contain re(X), le(X), or both, we get the
three equalities; in the first case, gk is in Kr(f); in the second,
g1 ∈ Kl(f); in the third case, both care – and they could be
identical, which gives the Kl ∩ Kr term. With this same argu-
ment applied to initial conditions not containing end-agents, we
also get N =]NK. But this is already obvious from the fact that
(1, B) ∈ K – any n can be written as 1+ . . . 1, repeated n times,
where the 1s are carried by (1, B).

Consider the fourth condition and suppose it were otherwise.
Let (j′, B) ∈ Kl be carried by a kernel g under periodic semantic
s with j′ < j. Let s′ be the semantic created from s by removing
calls to le(g) whenever dist(le(g), g	 le(g)) = 1 and [f(le(g), g	
le(g))] = R and to b = le(g 	 le(g)) whenever [f(b, g 	 le(g)))] =
L. s′ is eventually periodic. Now there are two cases. If s′ ∈
SEM, then the behavior of agents g \ le(g) be that unique B′

such that (1, B′) ∈ K (otherwise there would have to be a non-
trivial kernel to which these agent belonged). So therefore the
whole kernel has that behavior as well, i.e. B = B′ and (1, B) is
the unique 1-kernel in K. If on the other hand s′ /∈ SEM, then
it must be that B = S and B′ = L.

Finally, suppose the fifth condition did not hold, and wlog
that it doesn’t hold for Kr. Then there is a configuration z all
of whose limiting decompositions in]NK] Kr are of the form
x ⊕ y = (1, B)⊕m ⊕ (j, B′) in which B ≤ B′; and for which

m ≥ min{l|(@(l′, B′′) ∈ K|1 < l′ ≤ l, B′′ ≤ B)

∧ (∃(j, C) ∈ K|1 < j ≤ l)}.
(3)

But then there would be an s′ under which x = (1, B)⊕m → x′⊕
(j, C) in which C > B′. But therefore any kernel decomposition
x⊕y can be disturbed and is not a limiting decomposition; hence
not all limiting decompositions are of the form supposed above,
contradicting the assumption.

(⇐) – (Proof sketch). Now let (Kl, K, Kr) ∈ 2Wk × 2Wk ×
2Wk for a minimal k that satisfies conditions i) - v). We need

189

to construct an algorithm f [Kl, K, Kr] with this as its kernel
structure. Let r(f) = 2(17k + 20).

For each n ≥ 2, define configurations Ln, Rn, and Sn of n
agents such that if x, y ∈ X =

S
n
{Ln, Sn, Rn}, then x ∩ y 6= ∅

IFF x = y. This can be done with r(f) = 2(17k + 20) and with

Snp ⊂ Cp for a fixed p. Furthermore, define f̃ so that it traces
out trajectories Tn(L) on Ln that cycle back to Ln in relative
position, but translated to the left; Tn(R) similarly for Rn, to
the right; and Tn(S) which leave Sn stationary (but fixed IFF
n is a multiple of p). This can be achieved with the properties
that 1) if x, y ∈ T =

S
n

Tn(L) ∪ Tn(R) ∪ Tn(S) then x ∩ y 6= ∅
iff x = y and 2) the various Tn are mutually disjoint, given that

r(f) = 2(17k + 20). Define f̃ ′
L,R,S trajectories for Kl and Kr

similarly, but making allowances for the kernel structure imposed
by conditions 4 and 5.

Suppose a ∈ X in which br(a, X) is isolated single Rn, Sn or
Ln, and in which a 6= le(br(a, X)), re(br(a, X)), and let j =
min{l|∃(l, B) ∈ K, @(l′, B′) ∈ K, 1 < l′ ≤ l}. Then define f by

(|g|, n[g]) ∈ K ⇒ f(a, X) = f̃(g); and similarly for (g, n[g]) ∈
Kl ∪ Kr when |g| ≥ j and a 6= le(X), re(X).

Finally, define

(l, B) ∈ Kl ⇒ fl(le(X), X) =

8
>>><
>>>:

f̃ for l ≥ j

f̃ ′
L for l < j, B = L

f̃ ′
R for l < j, B = R

f̃ ′
S for l < j, B = S

and analogously for Kr. These definitions are possible given that
r(f) = 2(17k +20), larger than the length of any possible kernel.

For the map f as defined, Kl ⊂ Kl(f), K ⊂ K(f), Kr ⊂
Kr(f). We have ensured that the required potential kernel struc-
ture is a subset of the kernel structure of f . However, we to en-
sure that no other kernels exist for f that arise via unexpected
interactions of the kernels defined thus far. To prevent unwanted
kernels from arising, we define several kernel interaction and tran-
sition rules so that in the limit a good decomposition of elements
in the specified Ks always occurs. An interaction rule specifies
what happens when two distinct kernels come into contact with
each other; to this end we need to ensure that there is a unique
partitioning of any given configuration into constitutent Lns, Rns
and Sns. The following rule is used:

For any a ∈ X: let k′(a, X) be the largest Ln, Rn or Sn that
a is contained in; if a = le(g1) = re(g2) for two equally-sized
Ln, Rn, Sn, then let

k′(a, X) =

(
g1 if [g1] ≤ B1

g2 if [g1] > B1
.

Finally, let

k(a,X) =
(

k′(a, X), k′(le(k′(a))) = k′(a) = k′(re(k′(a)))

(1, B1) otherwise

(4)

where we’ve dropped the X from the notation k(a, X) for sim-
plicity. Again, these definitions are possible given that r(f) =
2(17k +20) is in fact more than two times larger than the legnth
of any possible kernel.

Now, consider the following transition rules, in which we’ve
used the partition given by k(a, X):

1) First, for all x, y, n, m ≥ 2,

x ⊕ Rn ⊕ Lm ⊕ y
f

−→ x ⊕ Lm ⊕ Rn ⊕ y.

That is, the “conflict” of having a left-moving kernel to the right
of a right-moving kernel is resolved by having the kernels “switch
places” (though no agent ever physically goes past another). Sim-
ilarly for the other “conflicting” kernel combinations.

2) Suppose (2, R) ∈ K, then let m = min{l|(l, B) ∈ K, l >
2 or B = S} and let g be the carrier of such a kernel. (Guaranteed
by condition 2) Then

(2, R)⊕dm
2

e → (1, B1)
odd(m) ⊕ g.

in which the notation odd(m) denotes 1 if m is odd and 0 if it is
even. Analagously for (2, L).

3) Similarly, if (1, S) /∈ K, left-isolated groups of 1-kernels of
the form X = (1, B)⊕j transition to the kernels guaranteed by
condition 4; and analagously for right-isolated groups (1, B)⊕j .
We say that such a group is left-isolated if

dist(le(X)−, re(X)) > 2(17k + 40) − α

or le(X)− is not in a 1-kernel; and α is just large enough to
ensure re(X) can determine whether le(X)− is in a 1-kernel.
Right-isolated defined analagously.

4) Consider

X = Rn ⊕ K1 ⊕

jM

i=1

Ki ⊕ s

where the Rn is a right or stay kernel containing the left-most
agent le(X) and Kj is the right-most kernel that le(X) can “see”
entirely. The transition rule is: when possible, X →

Lm

i=1 gi, a
good decomposition, where [gl] = Sl or Ll for some l; when not
possible, X transitions to a good decomposition, but with as few
1-kernels as possible and le(X) translated to the right, if space
between Kj and s allows. Analagous rules apply to right end
configurations.

5) Finally, for all n when (n, L) ∈ Kl but not in K, then

Ln
f
→ M where M is an allowed good decomposition of n agents

in K⊕N alone, with the fewest 1-kernels. Similarly, for all n when

(n, L) ∈ K but not it Kl, then Ln
fl→ M where M is an allowed

good decomposition of n agents in Kl ⊕ K⊕N. The same holds
for the right-end kernels and the other behaviors S and R.

That these transitions rules can be made consistent is shown
with simply but somewhat tedious arguments not given here.

Proof. [Lemma 1] Suppose s is an aperiodic semantic and
x0 an initial condition such that {fs

n(x0)} does not converge
to a fixed element in Cp. Suppose that the sequence dn =
dist(le(fs

n(x0)), re(f
s
n(x0))) is bounded. Then the relative po-

sitions {fs
n(x0)} form a finite set; hence there is an xm = fs

m(x0)
which is not in Cp, such that for some m′ > m, the relative
positions of xm and fs

m′ (x) are the same, and such that ŝ =
(sm, . . . , sm′) mentions every agent at least once. But then under
the periodic semantic s∗ = (ŝ, ŝ, . . .), f does not solve x, a contra-
diction. Now suppose on the other hand that dn is not a bounded
sequence. If lim(g, f, s) is a good decomposition

Lm

i=1 gi then
for dn to be unbounded, then there is a finite subsequence t ⊂ s
for which either g1 or gm is a (f, t◦∞)-kernel with [g1, f, t] = L
or [gm, f, t] = R. But this was shown in the arguments of the
proof of the first part of Theorem 2 to be impossible for any
f ∈ Fp, a contradiction. Similar (though slightly more compli-
cated) arguments apply to the case that lim(g, f, s) is not a good
decomposition.

Proof. [Lemma 2] Appealing to proposition 4 we see that
limn→∞{fs

n(x)} has a unique permanent consecutive kernel de-

composition
Lk

1(gi, Bi) with Bi ≤ Bi+1. But since f ∈ Tp,
B1 = Bk = S. Hence Bi = S for all i. But then suppose that
|gi| 6= mp for any m ∈ N. In this case, we violate the second of
the p-equigrouping kernel conditions, so f /∈ Tp as presumed, a
contradiction.

190

