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ABSTRACT
This paper presents a logic of knowledge, belief and certainty, which
allows us to explicitly express the knowledge, belief and certainty
of an agent. A computationally grounded model, called interpreted
KBC systems, is given for interpreting this logic. The relation-
ships between knowledge, belief and certainty are explored. In
particular, certainty entails belief; and to the agent what it is cer-
tain of appears to be the knowledge. To formalize those agents that
are able to introspect their own belief and certainty, we identify a
subclass of interpreted KBC systems, called introspective KBC

systems. We provide sound and complete axiomatizations for the
logics. We show that the validity problem for the interpreted KBC

systems is PSPACE-complete, and the same problem for introspec-
tive KBC systems is co-NP complete, thus no harder than that of
the propositional logic.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Ver-
ifying and Reasoning about Programs—Mechanical verification,
Specification techniques; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent agents, Multiagent systems

General Terms
Theory

Keywords
modal logic, interpreted system, computationally grounded model

1. INTRODUCTION
Philosophers have been interested in the notions of knowledge

and belief for a long time, and with the advent of agent oriented
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computing these notions are of paramount importance for the for-
malization of autonomous agents. Modal logic has proved to be a
suitable formalism for the understanding of the formal properties of
knowledge, belief and many other mental attitudes. Furthermore,
the formal study of these notions should involve the development of
semantics to give a proper and unambiguous meaning to the notions
involved, to compare different systems, and to evaluate different in-
tuitions about their interpretations.

There are two main semantic approaches to formalizing agent
systems via modal logics, the possible worlds semantics [10, 12]
and the interpreted system model [6, 9, 8]. The first approach is
very fruitful, including the well-known theory of intention [3] and
the formalism of the belief-desire-intension paradigm [18]. The
second, mainly due to Halpern and his colleagues [6, 9, 8], offers a
very natural interpretation, in terms of the states of computer pro-
cesses, to S5 epistemic logic. The advantage of the first approach is
that internal mental attitudes of an agent, such as beliefs and goals,
can be characterized conveniently with a model theoretic feature
in terms of the belief and goal accessibility relations. On the con-
trast, the salient point of second approach is that we are able to
associate the system with a computer program and formulas can be
understood as properties of program computations. In this sense,
the interpreted system model is computationally grounded [22].

An extension to the interpreted system model has been given by
the computationally grounded logic VSK [23], which enable us to
represent what is visible in the environment to individual agents,
what these agents actually perceive, and what the agents actually
know about the environment. The semantics of the logic is given in
terms of a general model of multi-agent systems called the agent-
environment system. Notice that all three modalities V , S and K
in the logic as well as knowledge operator in Halpern’s epistemic
logic can be regarded as external notions to the agent. Consider, for
example, formula Sϕ in VSK logic, which means that the percept
received by the agent carries the information ϕ; thus, an agent may
have no way to know whether Sϕ holds.

The aim of this paper is to develop a general formalism to rep-
resent and reason about the knowledge, belief and certainty of an
agent. The relationships between knowledge, belief and certainty
are explored. In particular, ‘certainty’ is a kind of belief and it
might be false, but the agent or human who feels certain of a propo-
sition is not aware that the proposition might be false. Also, ‘cer-
tainty’ is closely related to ‘knowledge’, and to the agent itself what
it is certain of appears to be knowledge.

Syntactically, the formalism we develop here is a propositional
multimodal logic, containing unary modal operators K, B, and C.
A formula Kϕ means that the agent knows the information ϕ; Bϕ
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means that the agent believes the information ϕ; and Cϕ means
that the agent is certain of the information ϕ. The semantics of the
logic is given with respect to a simple, natural, and computationally
grounded model of agents and their environments, which is called
interpreted KBC system model.

A key feature of the interpreted KBC system model is that it
extends the interpreted system model, and in particular the agent-
environment system of VSK [23], in the following two aspects:

² We assume that the sensors of an agent may become inaccu-
rate and the agent may not be aware of this. Thus, the visible
part of the environment may differ from the percept received
by the agent.

² We suppose that an agent can access some external informa-
tion sources and get its belief about those parts of environ-
ment that are invisible to the agent.

We believe that the interpreted KBC system model is not only ap-
propriate for our logic, but also useful in the design and analysis of
agent systems because of the modularity of both external and inter-
nal parts of an interpreted KBC system. In particular it is possible
to identify a subclass of interpreted KBC systems, called intro-
spective KBC systems, that represents agents’ ability to introspect
their own knowledge, belief, and certainty.

The significance of our logic is as follows. First, it extends epis-
temic logic with the belief modality B and the certainty modality
C and maintains the computational grounding of the original for-
malism. Secondly, the modal operators B and C in our logic need
not satisfy the S5 axioms as those in VSK logic do. Finally, we
shed light on the relationships between knowledge, belief and cer-
tainty by using the concrete model of extended interpreted systems
presented in this paper.

The paper is organized as follows. In the next section, we in-
troduce the computational model upon which our work is based.
Then, in Section 3 we present our computationally grounded logics
KBC and introspective KBC. In Section 4.1 we address the issue
of completeness of the two logics and we show the equivalence be-
tween appropriate Kripke semantics and interpreted (introspective)
KBC systems. Then in Section 4.2 we investigate the computa-
tional complexity of the logics and we prove by using the well-
known tableau method [13, 1], the validity problem in KBC is in
PSPACE, and the same problem for introspective KBC systems is
co-NP complete, which is no harder than that of the propositional
logic. Finally, in Section 5, we discuss some related work and iden-
tify future extensions.

2. A COMPUTATIONAL MODEL
The systems we are modelling, called KBC systems, consist of

an environment and an agent who has knowledge, belief and cer-
tainty about the environment. Both the environment and the agent
are in some states at any point of time, which are referred to as the
environment state and the agent’s internal state respectively, in or-
der to distinguish them from the state of the systems, i.e., the global
state. We divide the environment state into two parts: the visible
and invisible parts. As for the agent’s internal state, we distinguish
what the agent sees or perceives about the visible part of the en-
vironment, from what it conjectures or believes the invisible part
of the environment to be. We give a visual representation of this
framework in Figure 1.

Formally, an environment state Es is a pair (svis, sinv) of a vis-
ible part svis and an invisible part sinv . An internal state Is is a
pair (sper, Spls), where sper is the agent’s perception of the visible

see do

percept plausibility

visible invisible

Agent

Environment

Internal state

Figure 1: A Computational Model

part of the environment state, and Spls is a set of plausible invisi-
ble parts of the environment state that the agent thinks possible. A
global state is a pair of an environment state and an internal state;
in other words, it is a 4-tuple (svis, sinv, sper, Spls) of the visible
part of environment, the invisible part of environment, the agent’s
perception, and the plausible set.

Given a global state s = (svis, sinv, sper, Spls), we denote
svis, sinv, sper and Spls by V is(s), Inv(s), Per(s) and Pls(s),
respectively.

Let V denote the set of visible parts of environment states, and
I denote the set of invisible parts of environment states. We have
that any environment state is in V £ I , and any internal state is in
V £ 2I . Therefore, any global state is in V £ I £ V £ 2I . We
take G µ V £ I £ V £ 2I to be the set of reachable global states
of the system. A run over G is a function from the time domain–
the natural numbers in our case–to G. Thus, a run over G can be
identified with a sequence of global states in G. We refer to a pair
(r, m) consisting of a run r and time m as a point.

The idea of our computational model is that a run represents one
possible computation of a KBC system and a KBC system may
have a number of possible runs, so we say a KBC system is a set
of runs.

We may assume that changes in the global state are caused by
actions performed by the agent. Thus we can define the notion of
a KBC system in terms of actions, where an action is a function
from the set of global states into the set of global states, repre-
senting changes of the environment and changes in the belief of an
agent about the invisible part of the environment. Given an envi-
ronment state and internal state of the agent, there may be more
than one possible actions that can be executed by the agent; thus,
we may have multiple runs in a KBC system.

(0,1), clean (1,1), dirty

(0,0), clean (1,0), clean

Figure 2: Four Environment States with Both Visible and In-
visible Parts
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EXAMPLE 1. Let us consider the scenario depicted in Figure 2:
There are four squares in a 2x2 square, one of them, say, the top
right one is dirty. Suppose that a robot stands at one of the square,
and believes that the right two squares are dirty. The robot can
move horizontally or vertically and can move from one square to
another neighboring square. However, the robot’s moving-direction
sensors is broken, and the robot may get uncorrected perception
about its location. For instance, if the robot vertically move from
square (0, 0) into square (0, 1), it may think it horizontally moved
into square (1, 0); thus, the robot may confuse square (0, 1) with
square (1, 0). In the same way, the robot can not correctly dis-
tinguish square (0, 0) from square (1, 1). Generally speaking, a
global state can be represented as

((xe, ye), z, (xa, ya), Z)

where

² xe, ye, z, xa, ya are boolean value, (xe, ye) indicates which
square the robot located at, z expresses whether the square
is dirty, (xa, ya) is used for what the robot perceives about
its location;

² Z is a subset of {0, 1}, and we have that if Z = {1}, then the
robot believes that the square is dirty, if Z = {0}, then the
robot believes that the square is clean, if Z = {0, 1}, then
the robot has contradicting belief , and finally, if Z = {},
then the robot has no idea about whether the square is clean.

According to our discussion above, we have several constraints on
these variables:

² xe ∧ ye ⇔ z holds, which indicates that only square (1, 1)
is dirty;

² (xe ⇔ ye)⇔ (xa ⇔ ya) holds which means that the robot
is able to distinguish two neighboring squares;

² if ya is 1, then Z is {1}, this say that the robot believes that
the right two squares are dirty.

Now we define a KBC system as the set of those runs where, given
a global state g = ((xe, ye), z, (xa, ya), Z), the square (x′

e, y
′
e)

of next global state g′ = ((x′
e, y

′
e), z

′, (x′
a, y′

a), Z′) neighbours to
square (xe, ye) (that is, xe = x′

e and ye 6= y′
e, or xe 6= x′

e and
ye = y′

e) and the next global state still satisfies the constraints
above.

In our model, environment states consist of the visible and in-
visible parts; whatever is not invisible must be visible. Moreover,
the visible and invisible parts may be dependent on each other. In
the above example, for the environment state ((xe, ye), z), the re-
lationship between the visible part (xe, ye) and the invisible part z

is represented as xe ∧ ye ⇔ z.
Assume that we have a set © of primitive propositions, which we

can think of as describing basic facts about the system. An inter-
preted KBC system I consists of a pair (R, ¼), whereR is a set of
runs over a set of global states and ¼ is a valuation function, which
assigns truth values to primitive propositions at each environment
state Es in R. Thus, for every p ∈ © and every point (r, m)
in R, we have ¼(V is(r(m)), Inv(r(m)))(p) ∈ {true, false}.
For instance, for the KBC system in Example 1, we may take
{left , top, dirty} as the set © of primitive propositions, represent-
ing the location of the square where the robot stand in, and whether
the square is clean or dirty. Clearly, for the environment state
Es = ((0, 1), 0), we may naturally define ¼(Es)(left) = true,
¼(Es)(top) = true and ¼(Es)(dirty) = false.

To define knowledge in interpreted KBC systems, we introduce
an equivalence relation »vis over the set of points: (r, u) »vis

(r′, v) iff V is(r(u)) = V is(r′(v)).
If (r, u) »vis (r′, v), then we say that (r, u) and (r′, v) are

indistinguishable to the agent.
Interpreted KBC systems play the same role in our logic as what

interpreted systems play in epistemic logic. We also call interpreted
KBC systems generalized interpreted systems.

Finally, we remark that the states are used to define runs over
time, which form the basis of the semantics for the logic presented
in the next section. However, from the logical point of view, it is
enough to consider accessibility relations because there is no dy-
namic aspect in this logic. After all, a set of runs, can be mapped
in an accessibility relation, and vice versa. The main reasons we
do this is to demonstrate how this logic could model the agent per-
forming actions in the environment. Moreover, it is also interesting
to extend this logic by incorporating some modalities of temporal
logic.

3. A COMPUTATIONALLY GROUNDED
LOGIC

In this section, we introduce a multimodal logic of knowledge,
belief and certainty, called KBC logic, which enables us to rep-
resent the knowledge, belief, and certainty of an agent about some
environment. The semantics of KBC logic is given in terms of the
computational model presented above, and thus the logic is com-
putationally grounded in this sense.

3.1 Syntax
Given a set © of propositional atoms, the language of KBC

logic is defined by the following BNF grammar:

〈wff〉 ::= any element of © |
¬〈wff〉 | 〈wff〉 ∧ 〈wff〉 |
K〈wff〉 | B〈wff〉 | C〈wff〉

The modality K allows us to represent what is observable about
an environment state. Formula Kφ means that φ is observable
about the environment. Cφ means that the agent feels certain for
the property φ. Intuitive meaning behind ‘certainty’ is that, to the
agent, the facts of which he is certain appear to be knowledge [14].
Finally Bφ says that the agent believes the property φ.

3.2 Semantics
We now proceed to interpret the KBC logic formulas in terms

of interpreted KBC systems. In the following, we define the sat-
isfaction relation |= between a formula and a pair of interpreted
environment-agent system and a point. Given an interpreted sys-
tem I = (R, ¼) and a point (r, u) in I, we have that:

² (I, r, u) |= p iff ¼(V is(r(u)), Inv(r(u)))(p) = true,
where p is a primitive proposition in ©;

² (I, r, u) |= ¬ϕ iff (I, r, u) 6|= ϕ;

² (I, r, u) |= ϕ ∧ Ã iff (I, r, u) |= ϕ and (I, r, u) |= Ã;

² (I, r, u) |= Kϕ iff (I, r′, v) |= ϕ for those (r′, v) such
that (r, u) »vis (r′, v);

² (I, r, u) |= Bϕ iff (I, r′, v) |= ϕ for those (r′, v) such that
V is(r′(v)) = Per(r(u)) and Inv(r′(v)) ∈ Pls(r(u));

² (I, r, u) |= Cϕ iff (I, r′, v) |= ϕ for those (r′, v) such
that V is(r′(v)) = Per(r(u)).
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According to the definitions above, the agent knows ϕ at point
(r, u) if and only if ϕ holds at those points with the same visible
parts as that point. The agent is certain of ϕ means that ϕ holds at
those points with the agent’s current perception as the visible parts,
whereas the agent believes ϕ means that ϕ holds at those points
with the visible part equaling to the agent’s current perception and
with the invisible part plausible from the agent’s point of view.

We say that a formula ϕ is valid in an interpreted KBC system
I, denoted by I |= ϕ, if (I, r, u) |= ϕ holds for every point (r, u)
in I. We use |= ϕ to denote that ϕ is valid in every interpreted
KBC systems.

We notice that knowledge is an external notion–an agent is said
to know ϕ if an impartial, omniscient observer would say that the
agent’s state carries the information ϕ. Kϕ means that not only ϕ is
true of the environment, but also the agent would be able to perceive
ϕ if its sensor apparatus was good enough. Our interpretation of
Cϕ captures the intuition behind ‘certainty’ that, to the agent, the
fact of which it feels certain appears to be knowledge. Thus, ‘John
is certain that’ is equivalent to ‘John is certain that John knows’.
Certainty entails belief, but the agent gets its belief not only via
what it perceives about the visible part of the environment state but
also via what, it conjectures, the invisible part of the environment
to be like.

3.3 Valid formulas of KBC logic
Let us consider what formulas are valid for every interpreted

KBC systems.

PROPOSITION 2. The following formulas are valid:

² knowledge
K(ϕ⇒ Ã)⇒ (Kϕ⇒ KÃ)
Kϕ⇒ ϕ

Kϕ⇒ KKϕ

¬Kϕ⇒ K¬Kϕ

² belief
B(ϕ⇒ Ã)⇒ (Bϕ⇒ BÃ)

² certainty
C(ϕ⇒ Ã)⇒ (Cϕ⇒ CÃ)

² certainty and knowledge
Cϕ⇒ CKϕ

¬Cϕ⇒ C¬Kϕ

² certainty and belief
Cϕ⇒ Bϕ

Proof: We prove that |= Cϕ ⇒ CKϕ and |= ¬Cϕ ⇒ C¬Kϕ;
other cases are similar or easier. Given an interpreted system I =
(R, ¼) and a point (r, u) in I, suppose that (I, r, u) |= Cϕ. Then,
for every point (r′, v) with V is(r′(v)) = Per(r(u)), we have
that (I, r′, v) |= ϕ. To show (I, r, u) |= CKϕ, we must prove
that, for every point (r1, u1) with V is(r1(u1)) = Per(r(u)), we
have that (I, r1, u1) |= Kϕ. It suffices to prove that, for every
point (r2, u2) with V is(r1(u1)) = V is(r2(u2)), (I, r2, u2) |= ϕ

holds. However, we get V is(r2(v2)) = Per(r(u)) from both
V is(r1(u1)) = V is(r2(u2)) and V is(r1(u1)) = Per(r(u)).
Thus, (I, r2, u2) |= ϕ holds by the condition (I, r, u) |= Cϕ.
This proves that |= Cϕ⇒ CKϕ.

In order to prove that |= ¬Cϕ⇒ C¬Kϕ, we suppose (I, r, u) |=
¬Cϕ. Then, for some point (r′, v) with V is(r′(v)) = Per(r(u)),
we have that (I, r′, v) 6|= ϕ. To show (I, r, u) |= C¬Kϕ, we
must prove that, for every point (r1, u1) with V is(r1(u1)) = Per(r(u)),
we have that (I, r1, u1) |= ¬Kϕ. It suffices to prove that, there

exists some point (r2, u2) with V is(r1(u1)) = V is(r2(u2)) such
that (I, r2, u2) 6|= ϕ holds. However, we have that V is(r1(u1)) =
V is(r2(u2)) = Per(r(u)) and (I, r′, v) 6|= ϕ. Hence, (I, r, u) |=
C¬Kϕ. This completes the proof.

To formalize agents’ ability to introspect their own belief or cer-
tainty, we identify some subclasses of interpreted KBC systems
as follows:

² We say that I is a KC-introspective KBC system if for ev-
ery two points (r, u) and (r′, v) inR, V is(r(u)) = V is((r′(v))
implies Per(r(u)) = Per(r′(v)).

² We say that I is a C-introspective KBC system if for every
(r, u) in R and every (r′, v) in R such that V is(r′(v)) =
Per(r(u)), we have that Per(r(u)) = Per(r′(v)).

² We say that I is a CB-introspective KBC system if for ev-
ery two points (r, u) and (r′, v) inR such that V is(r′(v)) =
Per(r(u)), we have that Pls(r(u)) = Pls(r′(v)).

² We say that I is a B-introspective KBC system if for every
(r, u) in R and every (r′, v) in R such that V is(r′(v)) =
Per(r(u)) and Inv(r′(v)) ∈ Pls(r(u)), we have that
Pls(r(u)) = Pls(r′(v)).

² Finally, we say that I is an introspective KBC system if I is
a KC-introspective, C-introspective, and CB-introspective
KBC system.

We notice that for a KC-introspective KBC system, the per-
ception of an agent is determined by the visible part of the environ-
ment. The intuition behind the notion of the C-introspective KBC

system, on the other hand, is that the agent is confident about its
perception apparatus, that is, the agent believes that it has perfect
perception. For a CB-introspective KBC system, the agent thinks
its belief is determined by the visible part of the environment, and
the visible part of the environment in the agent’s mind is just its
perception. Finally, for a B-introspective KBC system, the agent
is aware of what it believes.

PROPOSITION 3. Let I be an interpreted KBC system.

² If I is KC-introspective, then

I |= (Cϕ⇒ KCϕ) ∧ (¬Cϕ⇒ K¬Cϕ) (1)

² If I is C-introspective, then

I |= (Cϕ⇒ CCϕ) ∧ (¬Cϕ⇒ C¬Cϕ) (2)

² If I is C-introspective and CB-introspective, then

I |= (Bϕ⇒ CBϕ) ∧ (¬Bϕ⇒ C¬Bϕ) (3)

² If I is C-introspective and B-introspective, then

I |= (Bϕ⇒ BBϕ) ∧ (¬Bϕ⇒ B¬Bϕ) (4)

Proof: Immediately by the satisfaction definition.

3.4 Proof systems
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3.4.1 The Basic KBC proof system:
The proof system contains the axioms of propositional calculus

plus those formulas in Proposition 2. The proof system is closed
under the propositional inference rules plus:

` ϕ

` Kϕ ∧ Cϕ

Note that we do not need to include the inference rule
` ϕ

` Bϕ

into our system because we have that ` Cϕ⇒ Bϕ.

PROPOSITION 4. The following holds in the basic KBC proof
system:

` Cϕ⇒ BKϕ and ` ¬Cϕ⇒ B¬Kϕ

Proof: We prove ` Cϕ ⇒ BKϕ by ` Cϕ ⇒ CKϕ and `
CKϕ ⇒ BKϕ, and get ` ¬Cϕ ⇒ B¬Kϕ by ` ¬Cϕ ⇒
C¬Kϕ and ` C¬Kϕ⇒ B¬Kϕ.

3.4.2 The introspective KBC proof system:
This proof system is the basic KBC proof system plus the for-

mulas (1), (2) and (3) in Proposition 3.

4. COMPLETENESS AND COMPLEXITY
RESULTS

In this section, we prove some fundamental results about the ba-
sic KBC proof system and the introspective KBC proof system.
Because possible-worlds semantics provides a good formal tool for
customizing a logic and has been well-studied for many years [20,
17, 11], we first build a bridge between interpreted KBC systems
and Kripke structures. In what follows, we assume the standard
definitions for Kripke structures. We refer the reader to [6, 11, 2]
for a detailed exposition of the subject.

DEFINITION 5. A Kripke structure M = (W, ¼, K, B, C) 1 is
called a basic KBC Kripke structure if

² K is an equivalence relation.

² For each w1 ∈ W , there is w2 ∈ W such that, for all w ∈
W , w1Cw iff w2Kw.

² B µ C.

DEFINITION 6. A Kripke structure M = (W, ¼, K, B, C) is
said to be an introspective KBC Kripke structure if it is a basic
KBC Kripke structure and satisfies the following:

² For all w1, w2 ∈ W , if w1Kw2, then, for all w ∈ W ,
w1Cw iff w2Kw.

² For all w1, w2, w3 ∈W , if w1Cw2, then w1Cw3 iff w2Cw3.

² For each w1, w2 ∈ W , if w1Cw2, then for all w ∈ W ,
w1Bw iff w2Bw.

The following lemma builds a bridge between interpreted KBC

systems and Kripke structures.

LEMMA 7. A formula ϕ is satisfiable by an interpreted KBC

system iff it is satisfiable by a basic KBC Kripke structure. More-
over, a formula ϕ is satisfiable by an introspective KBC system iff
it is satisfiable by an introspective KBC Kripke structure.
1For convenience, we use the symbols of modalities to denote the
corresponding relations in the Kripke structure

4.1 Completeness
Our first important result is the completeness of the basic KBC

proof system.

THEOREM 8. The basic KBC proof system is sound and com-
plete with respect to interpreted KBC systems.

Proof: The soundness part of the proof is simple and obvious; we
give only the proof for the completeness part, which is inspired by
the completeness proofs in [7]. We need only to prove that ev-
ery KBC-consistent formula is satisfiable in a basic KBC Kripke
structure.

First, we construct a special Kripke structure M c, called canoni-
cal Kripke structure, as follows. Consider the set W of all maximal
consistent sets of formulas. Given a w ∈W , define

w/X = {φ | Xφ ∈ w}

where X denotes one of the modalities K, B and C.
Let Mc = (W, ¼, K, B, C) be a Kripke structure, where

W = {w : w is a maximal consistent set}

¼(w)(p) =

{

true if p ∈ w

false if p /∈ w

X = {(w, w′) | w/X µ w′},

where X denotes one of K, B, and C.
We then show, by induction on the structure of φ, that for all w

we have that

(Mc
, w) |= φ iff φ ∈ w. (¤)

More precisely, assuming that the claim holds for all subformulas
of φ, we will show that it also holds for φ.

If φ is a primitive proposition p, this is immediate from the def-
inition of ¼(w)(p) above. The cases where φ is a conjunction or a
negation can follow easily since w is a maximal consistent set.

Then suppose that φ is of the form Xϕ and that φ ∈ w. So, ϕ ∈
w/X . By the definition of X in the canonical structure, if wXw′,
then w/X µ w′ and hence ϕ ∈ w′. Thus, using the induction
hypothesis, (M c, w′) |= ϕ for all w′ such that wXw′. So we can
get by the semantical definition of X that (M c, w) |= φ.

For the other direction, if (M c, w) |= Xϕ. Then the set (w/X)
∪ {¬ϕ} must be inconsistent; otherwise, we can construct a state
w′ in which (w/X) ∪ {¬ϕ} holds. By the definition of X in the
canonical structure, wXw′. It follows that (M c, w′) |= ¬ϕ by the
induction hypothesis, so (M c, w) |= ¬Xϕ which contradicts our
assumption.

Since the set of formulas (w/X) ∪ {¬ϕ} is inconsistent, some
finite subset {ϕ1, ϕ2, ..., ϕn,¬ϕ} of it must be inconsistent. Thus
by propositional reasoning, we can have

` ϕ1 ⇒ (ϕ2 ⇒ (...(ϕn ⇒ ϕ)...)).

By basic KBC proof rule `ϕ

`Xϕ
, we get,

` X(ϕ1 ⇒ (ϕ2 ⇒ (...(ϕn ⇒ ϕ)...))).

Because ` X(Ã′ ⇒ Ã) ⇒ (XÃ′ ⇒ XÃ) for any Ã and Ã′, we
have, by propositional reasonings, that

` (Xϕ1 ⇒ (Xϕ2 ⇒ (...(Xϕn ⇒ Xϕ)...)).

Thus the set {Xϕ1, Xϕ2, ..., Xϕn,¬Xϕ} is inconsistent. Since
{ϕ1, ϕ2, ..., ϕn} ∈ w/X , we have Xϕ1, Xϕ2, ..., Xϕn ∈ w.
Since w is a maximal consistent set, one of Xϕ or ¬Xϕ must
be in w. Then we immediately can conclude that Xϕ ∈ w.

So for any KBC-consistent formula φ, it must be in some w

such that (M c, w) |= φ.
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We now prove that the Kripke structure M c is a basic KBC

Kripke structure. First, by the usual arguments it follows that K

is an equivalence relation from the knowledge axioms and B ⊂ C

from the belief and certainty axioms. Thus, it suffices to prove that
for each w1 there is a w2 such that for all w, w1Cw iff w2Kw.

Given w1, let w2 be a maximal consistent set that w1/C ⊂ w2.
We need only to show that w1/C = w2/K. For each formula φ,
if φ ∈ w1/C, then by the axiom ` Cφ ⇒ CKφ we have that
CKφ ∈ w1, i.e., Kφ ∈ w1/C µ w2, thus φ ∈ w2/K. On the
other hand, if φ 6∈ w1/C, then ¬Cφ ∈ w1, and by the axiom
` ¬Cφ⇒ C¬Kφ we have that C¬Kφ ∈ w1, i.e. ¬Kφ ∈ w1 µ
w2, and hence φ 6∈ w2/K.

Thus, every consistent formula is satisfiable by a basic KBC

Kripke structure. By Lemma 7, we have that every consistent for-
mula is satisfiable by an interpreted KBC system. This completes
the proof.

As might be expected, the introspective KBC proof system char-
acterizes completely those KBC formulas that are valid for intro-
spective KBC systems.

THEOREM 9. The introspective KBC proof system is sound
and complete with respect to the class of introspective KBC sys-
tems.

Proof: Similar to Theorem 8.

4.2 Complexity
The soundness and completeness theorems above imply that the

valid problems for the both classes of interpreted KBC systems
are decidable. We show that the complexity of the valid problem
for general interpreted KBC systems is PSPACE-complete, but
for the introspective KBC systems the complexity is much easier,
indeed, it is co-NP-complete.

THEOREM 10. The complexity of satisfiability problem for in-
terpreted KBC systems is PSPACE-complete.

Proof: Consider the case where K and C do not appear in the
formula we want to test. Because the complexity of satisfiability
problem for the modal logic K is PSPACE-complete, we immedi-
ately have that the satisfiability problem for interpreted KBC sys-
tems is PSPACE-hard. On the other hand, to prove the satisfiability
problem is in PSPACE, we present a decision procedure by using
Ladner’s tableau method [13]. The key notion of our procedure is a
KBC tableau, which extends the notion of propositional tableau
[1].

A KBC tableau is a tuple T = (S, L,K,B, C), where S is
a set of states, K, B and C are possibility relations, and L is a
labelling function that associates with each states s ∈ S a set L(s)
of formulas such that

1. L(s) is a propositional tableau.

2. KÃ ∈ L(s) and (s, t) ∈ K, then Ã ∈ L(t); and the same
holds for modalities B and C.

3. ¬KÃ ∈ L(s) then there is a t with (s, t) ∈ K and ¬Ã ∈
L(t); and the same holds for modalities B and C.

4. (a) If KÃ ∈ L(s), then Ã ∈ L(s); and (b) if (s, t) ∈ K,
then KÃ ∈ L(s) iff KÃ ∈ L(t).

5. (a) If CÃ ∈ L(s) and (s, t) ∈ C, then KÃ ∈ L(t); (b) if
¬CÃ ∈ L(s) and (s, t) ∈ C, then ¬KÃ ∈ L(t).

6. If CÃ ∈ L(s), then BÃ ∈ L(s).

We say that T is a KBC tableau for ϕ if T is a KBC tableau and
ϕ ∈ L(s) for some state.

With the KBC tableaux, we can construct our decision proce-
dure, which runs in space polynomial in the size of the input for-
mula ϕ. We can trivially prove that for all formula ϕ with | ϕ |= n,
the height h of the tableau tree h · n2. Then roughly speaking, we
apply the depth-first search algorithm for it and we easily get that
the satisfiable tableau for ϕ can be computed in O(n3).

LEMMA 11. A formula ϕ is satisfiable by an introspective KBC

Kripke structure iff it is satisfiable by an introspective KBC Kripke
structure with at most 2 | ϕ | states.

Proof: Suppose M = (S, ¼, K, B, C) be an introspective KBC

Kripke structure, s0 is a state of M with (M, s0) |= ϕ. For each
X of K, B and C, let FX be the set of sub-formulas of ϕ of the
form Ã for which (M, s0) |= ¬XÃ. For each Ã ∈ FX , there
must be a state s

ψ
X ∈ S such that (M, s

ψ
X) |= ¬Ã. Let SX =

{sψ
X | Ã ∈ FX}. Let M ′ = (S′, ¼′, K′, B′, C′), where S′ =
{s0} ∪ SK ∪ SC , ¼′ is the restriction of ¼ to S′, K′ = {(s, t) |
s, t ∈ {s0} ∪ SK or s, t ∈ SC}, B′ = {(s, t) | s ∈ S′, t ∈ SB},
and C ′ = {(s, t) | s ∈ S′, t ∈ SC}. Since | FK |< |ϕ| and
| FC |< |ϕ|, it follows that S′ · 2|ϕ|.

We first show that the following claims hold.

1. SB µ SC

2. (a) For all s, t ∈ {s0} ∪ SK , (s, t) ∈ K; (b) For all s, t ∈
SC , (s, t) ∈ K.

3. For all s ∈ S′ and for all t ∈ SB , (s, t) ∈ B.

4. For all s ∈ S′ and for all t ∈ SC , (s, t) ∈ C.

The first claim is by the property B µ C of basic KBC Kripke
structures. Part (a) of the second claim follows by the construc-
tion SK and that K is an equivalence relation. Part (b) is because
M is also by the definition of basic KBC Kripke structures and
(s0, s), (s0, t) ∈ C. The last two hold for that M is an introspec-
tive Kripke structure.

We now show that for all states s′ ∈ S′ and for all sub-formulas
Ã of ϕ, (M, s′) |= Ã iff (M ′, s′) |= Ã. We proceed by induction
on the structure of Ã. The nontrivial cases are when Ã is of the
form KÃ′, BÃ′ or CÃ′. Suppose s′ ∈ S′.

² If (M, s′) |= KÃ′, then, (M, t) |= Ã′ for all t ∈ S with
(s′, t) ∈ K. Thus, by the induction hypothesis, (M ′, t) |=
Ã′ for all t ∈ S with (s′, t) ∈ K. Hence, by the second
claim, (M ′, t) |= Ã′ for all t ∈ S′ with (s′, t) ∈ K ′,
that is, (M ′, s′) |= KÃ′. And if (M, s′) 6|= KÃ′, then
(M, s′) |= ¬KÃ′. There are two cases: s′ ∈ {s0} ∪ SK or
s′ ∈ SC . If s′ ∈ {s0} ∪ SK , then (s0, s

′) ∈ K, and hence
(M, s0) |= ¬KÃ′. By the construction, s

ψ′

K ∈ SK and
(M, s

ψ′

K ) 6|= Ã′. By the induction hypothesis, (M ′, s
ψ′

K ) 6|=
Ã′, and hence (M ′, s′) 6|= KÃ′. On the other hand, if
s′ ∈ SC , then (M, s0) |= C¬KÃ′. Because M is a basic
KBC Kripke structure, we have (M, s0) |= ¬CÃ′. Thus,
s

ψ′

C ∈ SC and (M, s
ψ′

C ) |= ¬Ã′. By the induction hypothe-
sis, we have (M ′, s

ψ′

C ) |= ¬Ã′. By the second claim again,
we have that (M ′, s′) 6|= KÃ′.

² If (M, s′) |= CÃ′, then, (M, t) |= Ã′ for all t ∈ S with
(s′, t) ∈ C. Thus, by the induction hypothesis, (M ′, t) |=
Ã′ for all t ∈ S with (s′, t) ∈ C. Hence, by the fourth claim,
we have (M ′, t) |= Ã′ for all t ∈ S′ with (s′, t) ∈ C ′, that
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is (M ′, s′) |= CÃ′. And if (M, s′) 6|= CÃ′, then (M, s′) |=
¬CÃ′, because either (s0, s

′) ∈ K or (s0, s
′ ∈ C), we have

that (M, s0) |= ¬CÃ′. Thus, s
ψ′

C ∈ SC and (M, s
ψ′

C ) 6|=

Ã′. By the induction hypothesis, (M ′, s
ψ′

C ) 6|= Ã′. Hence,
(M ′, s′) 6|= CÃ′.

² By the same argument as above, we get that (M, s′) |= BÃ′

iff (M ′, s′) |= BÃ′.

THEOREM 12. The complexity of satisfiability problem for in-
trospective KBC systems is NP-complete.

Proof: Cook’s theorem [4] implies that the complexity of satisfi-
ability problem for introspective KBC systems is NP-hard. By
Lemma 11, it is easy to construct a nondeterministic polynomial
algorithm for deciding whether a formula ϕ is satisfiable.

5. RELATED WORK AND CONCLUSIONS

5.1 Logics of knowledge, belief and certainty
The notion of certainty used in this paper has been first intro-

duced by Lamarre and Shoham [14] and similar notions are Lenzen’s
strong belief [15] and Voorbraak’s rational belief [21]. Lenzen [15]
lists many of the syntactic properties of the notions of knowledge,
belief and certainty (i.e., strong belief), but it does not provide any
semantics. Lamarre and Shoham [14] provide a model theory of
knowledge, belief and certainty, with respect to which all Lenzen’s
collection of axioms are valid; however they reject S5 as the logic
describing the knowledge operator and their logic is not computa-
tionally grounded.

5.2 Computationally grounded logics
Perhaps closest to our work in this paper are some computa-

tionally grounded logics in the field of agent theory. In the mid
1980s, Halpern and his colleagues discovered that S5 epistemic
logics could be given a natural interpretation via interpreted sys-
tems model [6, 9, 8]. Interpreted systems are very close to our in-
terpreted KBC systems; interpreted systems play the role in epis-
temic logic just as interpreted KBC systems do in KBC logic.
However, our construction contains more elements than theirs. We
distinguish between what is visible of the environment and what an
agent is seeing or perceiving. Also, we distinguish between what
the agent perceives about the visible part of the environment and
what, the agent conjectures, the invisible part of the environment
could be like.

Another computationally grounded logic is VSK logic [23], which
enables us to represent what is visible of the environment to indi-
vidual agents, what these agents actually perceive (see), and what
the agents actually know about the environment. Wooldridge and
Lomuscio’s visibility operator V in VSK logic corresponds to our
knowledge operator K, and the perception operator S to our cer-
tainty operator C. The key differences are that they adopt S5 sys-
tem for the perception operator, while we adopt only the K (in the
basic KBC proof system) or K45 (in the introspective proof sys-
tem) system for the certainty operator. Intuitively, their interpreta-
tion of Sϕ is that the perception received by the agent carries the
information ϕ; while Cϕ in this paper means that, according to the
received perception, the agent feels certain of ϕ. Thus, Wooldridge
and Lomuscio’s notion of perception is an external one, while ours
is internal. In addition, they did not consider the notion of belief,
which we think is useful to formalize other notions of agent’s men-
tal state such as that of goal. Moreover, all modalities in VSK logic
satisfy the S5 axioms. Thus, it is interesting to investigate those

computationally grounded modal logics that not only formalize ex-
ternal notions via S5 axioms but also characterize an the internal
attitudes of an agent–its beliefs, desires, etc, beyond S5 axioms.

The deontic interpreted system model [16] can also be regarded
as computationally grounded one, which is closely related to the
agent-environment system [23] and the interpreted KBC system in
this paper, since the so-called red states may be thought of as those
states where the agent get the wrong perception and hence may
behave incorrectly.

5.3 Complexity of modal logics
The worst-case complexity of modal logics is a flouring research

activity, and it is impossible for us to list the literature here. A
good overview can be found in [19]. It is well-known that S5 or
K45 logic is NP-complete (no harder than that of the propositional
logic) for their satisfiability problem [13] and the complexity of
the satisfiability problem for multimodal logic with two or more
independent S5 or K45 operators becomes PSPACE-complete [7].
Thus, it is very interesting to build those multimodal logics with
NP-complete satisfiability problem. In [5], it is proved that if the
equivalence relations are ordered locally, then the multimodal logic
with n S5 modalities preserves NP-completeness of satisfiability
problem. This paper presents a new multimodal logic for which
the satisfiability problem is NP-complete.

5.4 Concluding remarks
We have developed a logic of knowledge, belief and certainty,

which allows us to explicitly mention an agent’s knowledge, belief
and certainty in multi-agent systems. A computationally grounded
model, called interpreted KBC systems, is given for interpreting
this logic. To characterize all valid formulas in our logic, we have
provided a sound and complete proof system. We also have pre-
sented a procedure deciding whether a formula is valid with the
computational complexity of PSPACE, by using the well-known
tableau method. We identify a subclass of interpreted KBC sys-
tems, called introspective KBC systems. The validity problem for
introspective KBC systems turns out to be co-NP complete, and is
no harder than that of the propositional logic. We have also given
a sound and complete proof system with respect to introspective
KBC systems.

We are currently working on the analysis and verification of se-
curity protocols by using the multiagent version of the KBC logic.
Our future work also includes the temporal extension to the logic,
the formalizations of the other notions of an agent’s mental state
such as ‘goal’, and proof theories for other classes of interpreted
KBC systems (for example, the class of C-introspective and CB-
introspective systems).
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