
Using a Performative Subsumption Lattice to Support
Commitment-based Conversations

Rob Kremer
University of Calgary

Department of Computer Science
Calgary, CANADA

kremer@cpsc.ucalgary.ca

Roberto Flores
Christopher Newport University

Department of Physics, Computer Science and
Engineering

Newport News, VA

flores@pcs.cnu.edu

ABSTRACT
In this paper, we arrange FIPA’s ACL performatives to form a sub-
sumption lattice (ontology) and apply a theory of social commit-
ments to achieve a simplified and observable model of agent be-
haviour. Using this model, it is straight forward to model agents’
social commitments (obligations) based solely on observation of
messages passed between the agents (such observation is supported
by our agent infrastructure system). Furthermore, owing to the per-
formatives being in a subsumption lattice, it is relatively easy for
an observer to infer social commitment relationships even if the
observer does not understand the details of messages or even the
exact performatives used (so long as the observer has access to the
performatives ontology).

Although social commitment modelling of agent behaviour does
not demand that agents areimplementedusing the social commit-
ment model, our model nonetheless can be used in agent imple-
mentation to simplify the specification of agent behaviour through
the use of ”commitment operators” attached to the performatives
(as policies) in the subsumption lattice.

The primary contribution of this paper is to show how FIPA’s per-
formatives can be mapped onto a theory of social commitment to al-
low observable social behaviour and conformance to social norms.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Coherence and coordination

General Terms
Design, Experimentation, Standardization, Theory

Keywords
social commitments, FIPA, CASA, agent communications languages,
ACL, protocols, policies, performatives

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
The FIPA standard SC00061G [8] has defined inter-agent mes-

sages in the envelope/letter pattern, where the ”envelope” contains
several fields which should be understandable by all agents in the
community, and the ”letter” part may or may not be understood by
other agents. FIPA further defines several envelope fields such as
performative(the type of the communicative act),sender, receiver,
content, ontology, reply-with, in-reply-to, reply-byand others.

This paper focuses primarily on the performative field as the
main means by which agents can choose their behaviour in reac-
tion to a particular message. Furthermore, we only focus on the
behaviour relative to communication acts (speech acts) in conver-
sation and do not delve into physical acts or domain- specific acts.

1.1 Performatives
The FIPA standard SC00037J [9] defines 22 ”Communicative

Act” names as values for the performative field (see Table 1).
In implementing our agent infrastructure, CASA [12], we have

found that the FIPA performatives were very useful in that they in-
clude communicative acts that we would not have initially thought
of ourselves. However, it became obvious that they do not form
a computationally useful set for our agents to decide on an ac-
tion when they receive a message. When our agents used FIPA’s
flat classification, they had to switch behaviour in an ad-hoc man-
ner for (almost) each of the 22 performatives. Our agents needed
to perform a list of actions for each performative, and these ac-
tions were often duplicated among several of the performative be-
haviours. This lead to a complex and error-prone specification.

We found that if we arrange the same performatives in a sub-
sumption lattice (see Figure 2), we can succinctly glean the seman-
tic information we need to classify the message and decide on a
course of action. Because certain performatives are subtypes of
others, we need only specify individual actions once for the parent
performative type, and those actions are ”inherited” by the child
performative types. Thus, we eliminate the redundancies and sim-
plify the specification significantly.

1.2 The CASA Architecture
The CASA architecture [12] is an experimental infrastructure on

which agents can be implemented. CASA agents work by exchang-
ing messages (via TCP/IP or by local method calls) which consist
of key/value pairs. The keys in the messages are the various FIPA
message field names, but may also include other, extended keys, as
appropriate.

The CASA architecture is a general purpose agent agent environ-
ment, but defines several specialized agents (see Figure 1). CASA

114

Performative Description
accept-proposal accepting a previous proposal
agree agreeing to perform some action
cancel inform another agent that the agent no

longer need perform some action
call-for-proposal call for proposals to perform an action
confirm informs a given proposition is true
disconfirm informs a given proposition is false
failure an action was attempted but failed
inform a given proposition is true
inform-if inform whether a proposition is true
inform-ref inform the object which corresponds to

a descriptor
not-understood did not understand what the receiver just

did
propagate pass a message on
propose submit a proposal to perform an action
proxy pass on an embedded message
query-if asking whether a proposition is true
query-ref asking for the object referred to
refuse refusing to perform an action
reject-proposal rejecting a proposal during negotiation
request request to perform some action
request-when request to perform some action when

some proposition becomes true
request-whenever request to perform some action each

time the proposition becomes true
subscribe requesting to notify of the value of a ref-

erence whenever the object changes

Table 1: FIPA performatives

defines computationalareas(usually a single computer), and each
area has exactly oneLocal Area Coordinator(LAC) agent. A LAC
agent is a registry of agents for it’s area, and is responsible to act as
a ”white pages directory” for its area, run agents on behalf of agents
in its or other areas, as well as several other duties. Another impor-
tant type of agent is aCooperation Domain(CD), which acts like
a ”meeting room” for agents. Agents mayjoin and then send mes-
sages to a CD which, by default, re-broadcasts the message to all of
its members. CDs are particularly useful for third-party observers
of agent conversations. These observer agents can analyze agent
behaviour on the behalf of the larger society of agents for various
purposes such as analysis, possible sanctioning of rogue agents, or
merely reporting unacceptable, malicious, or erroneous behaviour.

CASA is particularly concerned with agent behaviour and the
observability of agents’ behaviour. Unfortunately, the semantics
behind FIPA’s model is based on the BDI (Beliefs, Desired, In-
tensions) model, which has long been criticized as requiring ”om-
niscient” knowledge of the internal workings of all agents in the
environment [14]. Since the inner workings of agents is not typi-
cally available to an outside observer, the observer cannot predict
expected behaviour of agents. Therefore, an observer has no formal
bases on which to judge agent behaviour as ”acceptable”, ”harm-
ful”, ”malicious”, ”useful”, etc. to the overall society of agents.

An alternate agent model is the commitment-based model [1].
Communicative acts between agents generate social commitments,
which form a social ”contract” among the agents. Assuming the
communicative acts can be observed (as CASA is careful to sup-
port), an outside observer can infer social commitments among
the observed agents. Our model is formally specified [3, 4, 5]
and forms a clean formal basis on which an observercan decide

Area (Computer)Area (Computer)

Local Area
Coordinator

(LAC)

Cooperation
Domain (CD)

Agent C

Agent BAgent A

Local Area
Coordinator

(LAC)

Other Agents

Other Cooperation
Domains

Cooperation
Domain

Observer Agent

Figure 1: The CASA architecture

whether or not a particular agent is fulfilling its social commit-
ments, and therefore has a sound foundation on which to judge
agents’ behaviour.

2. MESSAGES AND PERFORMATIVES
As stated in the introduction, we wish to simplify the specifica-

tion of possible agent behaviour. As a step in that direction, we
arrange our communicative acts, which we base on the FIPA stan-
dard, in a subsumption lattice of performatives as described in Fig-
ure 2. In the lattice, every child performative inherits the attributes
of all of its ancestor performatives. In particular, we can associate
policieswith any performative, which will be inherited by all chil-
dren of that performative. This is described in detail in Section 3.

Note that the performatives in Figure 2 are actually a superset of
the performatives defined by FIPA. Some of the new performatives
are classes of performative types which do not add any real seman-
tic information to their children, but serve to enable our agents (and
their observers) to more easily classify performatives into broader
categories; thus allowing for more ”superficial” specification where
appropriate. For example, an observer, Carol, may note that an
agent, Bob, sent arequestto agent Alice, and that Alice replied
with a failure performative. If Carol is tracking only social com-
mitments, then he would not care if Alice had replied with afail-
ure, a non-understood, a reject-proposal, a refuse, or some other
descendent ofnackandreply; in any of these cases, there is no so-
cial commitment entailed. Indeed, Carol need not understand the
performative in the reply send by Alice, as long as she is aware (by
looking it up in the appropriate ontology) that the performative in
Alice’s reply is subsumed by anack(negative acknowledge).

Other extensions to the FIPA performatives include the addition
of anack (acknowledge) performative, which, in CASA, serves as
an optional top-level method of checking receipt of messages. The
use ofack will be be further explained in the light of social com-
mitments in Section 3.

3. COMMITMENTS
As mentioned in the introduction, we model agent communica-

tion as generating (or deleting) social commitments, thus allowing
observation of the state of social commitments within a society of
agents. More specifically, the performatives in agent communica-
tion acts (messages), are translated (by a set ofpolices) to a set of
social commitment operators, which either add or delete a specific

115

performative

inform

cancelrequest

query-ref call-for-participation

inform-ref query-if request-when request-whenever propose

ack

notifyagreesubscribe

affirmative-reply

nackconfirm reply

timeout failure not-understood reject-proposal refuse

disconfirm

negative-replyaccept-proposal

proxy propagate

Figure 2: The CASA performative subsumption lattice

Policy Description
P-inform commits the addressee to acknowledge
P-ack releases informed agents of the commit-

ment to acknowledge
P-request commits the proposed agents to reply
P-counteroffer commits addressees to reply
P-reply releases proposed agents of the commit-

ment to reply and releases counteroffered
agents of the commitment to reply

P-agree an acceptance realizes the shared uptake of
proposed/counteroffered commitments

P-done releases accepted agents of the commit-
ment earlier agree

Table 2: An informal description of the conversation policies
as defined by Flores and Kremer. (The names of some of the
policies have changed since the original work.)

class of social commitments. We model asocial commitmentas the
promise by adebtoragent to acreditoragent(s) to do someaction:

(debtor, creditor, action)

and we model asocial commitment operatoras either anaddor
deleteof a social commitment:

(add|delete, socialCommitment)

We have defined severalpolices (eg: propose, accept, reject,
counter, and inform) [5] which can beapplied to an agent’s out-
going and incoming messages and set of social commitment oper-
ators:

apply : message×Ppolicy × ontology
→ PsocialCommitmentOperator

Here, we mean that if we observe an agent’s incoming or outgo-
ing message, we can interpret it in the context of the agent’s (or the
society of agent’s) policies and ontology. (The ontology is neces-
sary to provide a semantics for the performatives.) Of course, not
all the policies areapplicableto a particular message; a matching
function (see Section 4.1) is used to choose the subset of applicable
policies. The applicable polices are thenexecutedto produce the

set of social commitment operators.
Furthermore, we cancommitthis set of social commitment oper-

ators to an existing set of policies:

commit :
PsocialCommitment×PsocialCommitmentOperator

→ PsocialCommitment

Thus, it is easy to build up a set of social commitments based on
observed messages. Note that this is just as easy for an individual
agent to track its own social commitments (as in our implementa-
tion) or for a 3rd party observer to track all of the social commit-
ments of a society of agents (as in [11]).

Table 2 informally describes some of the fundamental polices we
have defined so far. The policies are meant to be used by a commu-
nity of agents as a description of ”social norms”. The policies are
used to map our FIPA-based performatives to social commitments.

4. USING COMMITMENTS WITH PERFOR-
MATIVES

As already alluded to, we effectively use policies to annotate
the performative lattice with social commitment operators to form
expectations about agent behaviour (the ”normative” behaviour of
agents in a society of agents). Figure 3 illustrates some of the po-
lices by describing the relationship between (part of) the performa-
tive lattice and commitments through policies and commitment op-
erators. The performative lattice on the left, and the curved arrows
originating on the performatives represent the policies that indicate
the associated social commitment operators (center right column).
The arrows originating in the commitment operators illustrate the
type of the commitments’ third parameter (anaction) and terminate
on the action subtype of the action. Since these particular policies
are about conversational acts, all of these arrows (except the last
two) terminate on subtypes ofcommunication-act.

The curved arrows between the performatives and the social com-
mitment operators in Figure 3 represent some of the policies de-
scribed in [5] and informally described in Table 2. For example, the
P-inform policy associated with theinform perforative would read
”if Bob receives a message with an inform performative from Alice,
then there exists a social commitment for Bob to send an acknowl-

116

Performative

Ack

Reply

Inform

Request

action

reply

ack

Commitment-operator
Operator: add
Commitment: (receiver,sender,ack)

Commitment-operator
Operator: delete
Commitment: (receiver,sender,reply)

Commitment-operator
Operator: delete
Commitment: (sender,receiver,ack)

Commitment-operator
Operator: add
Commitment: (reciever,sender,reply)

Agree

communication-act

Commitment-operator
Operator: add
Commitment: (receiver,sender,content)

Unspecified action

P-inform

P-ack

P-request

P-reply

P-agree

Commitment-operator
Operator: delete
Commitment: (receiver,sender,content)

Confirm

P-confirm

Performatives Policies Commitment Operators Social Commitments

Figure 3: Part of the CASA performative and action subsumption lattices together with their relationship via performative operator
objects. Thepoliciesare labelled with the policy names from Table 2.

edgement to Alice (∃sc : socialCommitment, x : ack • sc =
(Bob, Alice, x))”.

The reading of therequestperformative’s P-request policy is a
bit more complex. Becauserequestis a subtype ofinform, not only
do we have to apply the P-request policy, but also the P-inform
policy as well (and likewise up the lattice for every ancestor perfor-
mative). So we would read the P-request policy as ”if Bob receives
a message with arequestperformative from Alice, then there exists
a social commitment for Bob to send an acknowledgement to Alice
and another social commitment for Bob to send a reply to Alice,
(∃sc1, sc2 : socialCommitment, x1 : ack, x2 : reply • sc1 =
(Bob, Alice, x1) ∧ sc2 = (Bob, Alice, x2))”.

This may seem somewhat redundant since a single conversa-
tional act (request) makes two (very similar) social commitments.
But it makes sense and yields needed flexibility. If Alice were re-
questing Bob attend a meeting, Bob might not have his calendar
with him, so might not be able toreply to Alice, but couldac-
knowledgethat he had received the request (”I’ll check my calen-
dar”). Alice would then know that Bob had received the request
and the social commitment to acknowledge would be deleted (by
policy P-ack), but the social commitment for Bob to reply to Al-
ice would remain. Later, Bob would reply (affirmatively [agree]
or negatively [by some reply that is subsumed bynack]), and that
would remove the second social commitment (by policy P-reply).
And that would end the conversation because there would exist no
more conversational social commitments between the two. (Well,
not quite: if Bob had replied affirmatively [using anagreeperfor-
mative], then Bob and Alice would uptake the social commitments
for Bob to attend the meeting and to tell Alice about it [by policy
P-agree] – but we will get into those details later in Section 5.)

On the other hand, if Bobdid have his calendar with him when
Alice requested he attend the meeting, then does Bob have to send
an acknowledgement to Alice, andthensend a reply to Alice? That
wouldn’t be very efficient. Fortunately, Bob doesn’t have to re-
spond twice: If Bob immediately sends areply to Alice, then the so-
cial commitment to reply will be removed (by policy P-reply),and
so will the social commitment to acknowledge. Why? Because the
replywill generate two social commitment operators (∃Reply, Ack :

socialCommitmentOperator • ∃r : reply, a : ack • Reply =
(delete, (Bob, Alice, r)) ∧ Ack = (delete, (Bob, Alice, a)))
which will remove both of the social commitments set up by the
original request.

4.1 Implementation with Social Commitments
Thus, agents can be implemented by dealing with incoming mes-

sages by merely applying all the policies associated with the per-
formative in the message and also those policies associated with all
of the ancestors of the performatives in the message. These polices
will either add or delete social commitments. It is important to note
that this is also exactly what an observer does as well: The social
commitments are in the context of the entire community of agents,
so an observer’s record of social commitments should always be
consistent with (be a superset of) any observed agent’s record of
social commitments.

It is also important to note that agents do not have to beimple-
mentedusing social commitments (as may have been implied by the
previous paragraph). Observers can still use social commitments to
formulate a model of agent behaviour regardless ofhow the agent
is implemented. The policies merely form a codification of social
norms. An agent that is not implemented using social commitments
(who is well behaved) would still be regarded as not breaking any
commitments by an observer using reasonable social commitment
policies (like the ones in Table 2).

CASA implements its agents as either social commitment agents
as listed above, or asreactiveagents. Both kinds of agents use the
same set of named policies, but the difference is that the policyim-
plementationis different. When a social commitment-based agent
”sees” an incoming or outgoing message, it merely applies it’s poli-
cies to add or delete social commitments; later (during otherwise
idle time) it will attempt to discharge any social commitments (for
which it is the debtor) by executing them when it can. On the other
hand, reactive agents will respond to a message immediately (with-
out ”thinking”) whenever it ”sees” an incoming message. Reactive
agents do nothing in idle time, and do nothing with outgoing mes-
sages. Both agents follow the same normative protocols, but the se-
quence of messages is usually quite different. For example, social

117

commitment agents may easily and naturally choose to prioritize
their tasks; reactive agents can’t handle prioritized tasks easily.

4.2 Formalizing the Application
It only remains to more formally describe how to apply social

commitment operators to an agent’s record of social commitments.
If we assume an agent’s record of social commitments is a set, SC,
the operator op is applied as follows:

∀op : socialCommitmentOperator, sc : socialCommitment•
op = (add, sc) → SC′ = SC ∪ sc∧
op = (delete, sc) → SC′ = SC\match(sc, SC)

(In the above, we use SC′ to represent the value of SCafter the
operation has taken place,á la Z [2].) That is, an add operator
just inserts a new social commitment into the record, and a delete
operator just removes any matching social commitments from the
record. Thematchfunction takes a social commitment and a set of
social commitments and returns a subset of the second argument as
follows:

∀sc : socialCommitment, SC : PsocialCommitment •
match(sc, SC) ≡

{i ∈ SC| sc.debtor = i.debtor∧
sc.creditor = i.creditor∧
typeOf(sc.action) v typeOf(i.action)}

The reader may have noticed that there is no order specified on
the application of several operators in response to a message, and,
as a result, it is therefore possible that a delete operation may not re-
move any social commitments at all. In fact, this could be the case
in Alice and Bob’s meeting. If Bob were to reply to Alice (with-
out first sending an acknowledgement) and the observer first ap-
plied the (delete,(Bob,Alice,reply)) operator, it would removeboth
the (Bob,Alice,reply) and the (Bob,Alice,ack) social commitments
from the social commitments record. Then, when the observer ap-
plied the second operator, (delete,(Bob,Alice,ack)), there would be
no change to the social commitments record. Our choice is not
to worry about such null deletions, but other implementations may
wish to avoid such empty applications either by applying only the
most specific deletions if there is a subsumption relationship among
operators, or by changing the match() function to only match on the
most specific social commitment in the argument set.

Space limitations prohibit a detailed account of the formalization
here, but a detailed formalization may be found in [3].

5. AN EXAMPLE
As a more formal example, we repeat the example of Bob and

Alice’s meeting using the more formal framework and tracking the
conversation through to the end (signaled by there being no more
social commitments left from the conversation). Figure 4 shows an
interaction diagram of the conversation: Alice first asks Bob to at-
tend a meeting, ”x”1, by sending a message to Bob with arequest
performative and a contents describing the request, (attend(Bob,
x)). Bob immediately confirms his acceptance to attend the meet-
ing, by sending a message back to Alice with an agree performative
and the same descriptive content. Alice acknowledges by sending
an ack message back to Bob.

Later, Bob sends another message to Alice, informing him that
the predicate,attend(Bob, x), is true, that he is currently attending
the meeting. Alice acknowledges. Alice then responds by sending
a message to Bob with a confirm-complete performative, and the

1The meeting is normally described by an expression, but we omit
the details here for the sake of brevity.

AliceAlice BobBob

(performative: inform, content: attend(Bob,x))

(performative: request, content: attend(Bob,x))

(performative: agree, content: attend(Bob,x))

(performative: confirm, content: attend(Bob,x))

m1. Can you
attend this
meeting? m2. Sure...

m4. I�m here

m6. Thanks
for coming.

(performative: ack, content: attend(Bob,x))

(performative: ack, content: attend(Bob,x))

(performative: ack, content: attend(Bob,x))

m3. (nod)

m7. (nod)

m5. (nod)

Figure 4: Alice and Bob’s conversation about a meeting

same contents. Bob acknowledges.
Does Alice and Bob’s conversation conform to the social norms

implied by the policies? Figure 5 describes the conversation in
terms of the messages, policies, social commitment operators, and
the constantly changing set of social commitments held by both
Bob and Alice, and that would be held by an observer listening to
the conversation.

Each row in Figure 5 represents the same message passing be-
tween the conversational participants as the corresponding cartoon
balloons in Figure 4. In row m1, Alice sends a message with a
request performative to Bob and containing the content predicate
attend(Bob, x). Then Bob, Alice, and the observer can look up
request in the policies in Figure 3 and see that there are two appli-
cable policies (by searching up the lattice from therequest node)
representing policy P-inform and P-propose. To apply these poli-
cies, we need only apply the operators, which are(add, (receiver,
sender, reply)) and(add, (receiver, sender, ack)). So we add
these two social commitments to our set of social commitments.

Note that we have a slight notational difficulty here. We need to
contextualize the reply and theack social commitments withwhat
to reply/acknoweldge to. In the software, this is just done by at-
taching a copy of the message, which allows us to take advantage
of FIPA’s reply-with field and unambiguously mark the message
as specifically in the context of the original inform/request mes-
sage. However, here, we use the notation ”reply(messagei)” to
succinctly show the same thing.

Them2 row of Figure 5 shows Bob immediately agreeing to go
to the meeting. (He could have acknowledged receipt of the mes-
sage first, which would have deleted the(Bob, Alice, ack(m1))
commitment.) He replied with anagreeperformative, which isn’t
listed in Figure 3, but is a subtype ofaffirmative-reply(see Figure
2). Looking up the policies foraffirmative-replyin Figure 3 shows
that four policies are applicable (representing policies P-reply, P-
ack, P-agree, and P-inform). These four policies can be applied in
any order, but all sequences will yield the same end result (although
intermediate results may differ). Applying these policies in the or-
der given,(delete, (Bob, Alice, reply(m1))) will deletebothso-
cial commitments(Bob, Alice, reply(m1)) and(Bob, Alice, ack
(m1)). (delete, (Bob, Alice, ack(m1))) will find nothing to delete
(because the ”target” has just been deleted), but this is fine. The
(add, (Bob, Alice, attend(Bob, x))) operator is parameterized

118

m7

m6

m5

m4

m3

m2

m1

Id

(Bob, Alice,
attend(Bob,x))

(Alice,Bob,r-p-d(Bob,x)
(Alice, Bob, ack(m4))(delete,(Alice, Bob, ack(m4)))P-ack

attend(
Bob, x)

BobAliceack

(Bob, Alice, ack(m6))(delete,(Bob, Alice, ack(m6)))P-ackattend(
Bob, x)

AliceBoback

(Bob, Alice,
attend(Bob,x))

(Bob, Alice,p-d(Bob,x))
(Alice, Bob, ack(m2))(delete,(Alice, Bob, ack(m2)))P-ack

attend(
Bob, x)

BobAliceack

(Bob, Alice,
attend(Bob,x))

(Alice,Bob,r-p-d(Bob,x)
(Bob, Alice, ack(m6))

(delete,(Bob, Alice,
attend(Bob,x))

(delete, (Alice,Bob,r-p-d(Bob,x))
(add,(Bob, Alice, ack(m6)))

P-confirm

P-reply-p-d
P-inform

attend(
Bob, x)

BobAliceconfirm

(Bob, Alice,
attend(Bob,x))

(Bob, Alice,p-d(Bob,x))
(Alice,Bob,r-p-d(Bob,x)
(Alice, Bob, ack(m4))

(delete,(Bob,Alice,p-d(Bob,x))
(add,(Alice,Bob,r-p-d(Bob,x))
(add,(Alice, Bob, ack(m4)))

P-prop-dis
�

P-inform

attend(
Bob, x)

AliceBobpropose-
discharge

Bob

Alice
sender

Alice

Bob
rec�r Social CommitmentsOperatorPolicy

Message

(Bob, Alice, reply(m1))
(Bob, Alice, ack(m1))
(Bob, Alice,

attend(Bob,x))
(Bob, Alice,p-d(Bob,x))
(Alice, Bob, ack(m2))

(delete,(Bob, Alice, reply(m1)))
(delete,(Bob, Alice, ack(m1)))
(add,(Bob, Alice,

attend(Bob,x)))
(add,(Bob, Alice, p-d(Bob,x)))
(add,(Alice, Bob, ack(m2)))

P-reply
P-ack
P-agree

�
P-inform

attend(
Bob, x)

agree

(Bob, Alice, reply(m1))
(Bob, Alice, ack(m1))

(add,(Bob, Alice, reply(m1)))
(add,(Bob, Alice, ack(m1)))

P-request
P-inform

attend(
Bob, x)

request
contentperformative

Figure 5: Alice and Bob’s conversation about a meeting

with the action predicate in the contents of them2 message, and
adds the(Bob, Alice, attend(Bob, x)) social commitment to the
set of social commitments. Finally, the(add, (Alice, Bob,
ack(m2))) operator adds the required commitment for Bob to ac-
knowledge.

Them3 row shows Bob acknowledging the previousagree mes-
sage, and removing the social commitment for that acknowledge-
ment.

Time passes, and the meeting commences. In rowm4, Bob
informs Alice that he has fulfilled his commitment,(Bob, Alice,
attend(Bob, x)), to attend the meeting, which invokes two poli-
cies, P-inform and P-propose-discharge. This message doesnot re-
move the(Bob, Alice, attend(Bob, x)) commitment. Intuitively,
this is because Alice has not yet confirmed that Bob has attended
the meeting and has satisfactorily fulfilled his commitment. If Al-
ice were an agent that could sense her environment, and could ”see”
that Bob were in attendance, Bob would not have to send this mes-
sage and we wouldn’t have to include rowsm4 andm5 in the table.

Rowm5 shows Alice acknowledging Bob’s inform.
In row m6, Alice has ”seen” that Bob is in attendance at the

meeting and sends a message with the confirm performative. This
invokes three policies (P-done, P-reply-propose-discharge, and P-
inform) which delete Bob’s outstanding commitments to attend the
meeting and to tell Alice about it and adds a commitment for Bob
to acknowledge the confirm message.

Finally, in row m7, Bob acknowledges Alice’s last message,
which removes the last of the social commitments. There being
no more social commitments left, the conversation is over.

Just so the reader is not left with the impression that this work
only applies to hypothetical human examples, we include a snap-

shot of the CASA system in the process of a actual agent conversa-
tion (see Figure 7). Here, we show a Cooperation Domain that has
just fulfilled its obligations in a request-to-join-CD conversation.
The lower pane in the snapshot shows the message just received
from other agent acknowledging successful completion of the re-
quest (adoneperformative). The central pane is a dynamic display
of the agent’s social commitments showing the fulfilled (crossed-
out) commitments of the request-to-join conversation. The central
pane also displays some of the social commitments arising from a
request-get-members conversation that the same agent has started
concurrently.

5.1 Variations: Flexibility and Efficiency
As already mentioned, if Alice could sense her environment, she

could notice on her own that Bob was attending the meeting, and
messages m4 and m5 (rows m4 and m5 in Figure 5) could be omit-
ted. If this were the case, and Bob sent the inform message anyway,
the conversation would still not be harmed. The number of the mes-
sages in the conversation would drop from 7 to 5.

Our protocols, as defined in Table 2 and Figure 3, call for ev-
ery message to be acknowledged. This is an option in our system,
and can easily be ”turned off” by merely deleting the policies in
Figure 3 associated with P-inform and P-ack. If we do remove the
P-inform policy, then messages m3, m5 and m7 disappear and the
number of messages drops from 7 to 4.

By combining both strategies in the previous two paragraphs, we
can reduce the number of messages in the conversation from 7 to 3.
The resulting conversation appears in Figure 6.

Figure 8 shows the conversational ”schema” that arises from the
polices involved in a typicalrequestconversation, like the one be-

119

m6

m2

m1

Id

(Alice,Bob,r-p-d(Bob,x))(delete,(Alice,Bob,r-p-d(Bob,x))P-reply-p-dattend(
Bob, x)

BobAliceconfirm

Bob

Alice
sender

Alice

Bob
rec�r Social CommitmentsOperatorPolicy

Message

(Bob, Alice, reply(m1))
(Alice,Bob,r-p-d(Bob,x))

(delete,(Bob, Alice, reply(m1)))
(add,(Alice,Bob,r-p-d(Bob,x))

P-reply
P-prop-dis

attend(
Bob, x)

done

(Bob, Alice, reply(m1))(add,(Bob, Alice, reply(m1))) P-requestattend(
Bob, x)

request
contentperformative

Figure 6: Alice and Bob’s conversation about a meeting, without Bob’s inform to Alice, and without policy P-inform

tween Alice and Bob or between the CD and another agent in Sec-
tion 5. This figure is from the viewpoint of the actual implemen-
tation in CASA. The heavy vertical lines represent the two agents
over time. The heavy horizontal arrows indicate messages, and the
reader will no doubt notice that there areeightmessages exchanged
in this seemingly simple conversation. The reader should not be put
off by this: this is only the worst case, and we have shown how this
conversation can be dramatically simplified (optimized) earlier in
this section. CASA can do this optimization.

Each of Figure 8’s messages are labelled above with their possi-
ble performatives and their supertype sublattice. Arrows emerging
from the performative names represent the applicable policies and
social commitment operators (solid indicatesadd, and dashed indi-
catesdelete). The policy arrows terminate on shared (underscored)
and private (grayed) social commitments. Some interesting details
of the theory and implementation are shown in this diagram that
aren’t explicit elsewhere in this paper:

The lighter-colored (non-underscored) private social commitments
in the figure form the method we use to attach agent executable
code (usually a method call) to the policies: one needs to reference
some bit of the agent’s code to ”wake” the agent to a particular
event. These private social commitments are always bound to an
inform, but are usually referenced from some subtype of ofinform
á la the template methoddesign pattern [10]. These template ref-
erences are represented in the figure by the light-colored curved
arrows among the performatives in the sub-lattices at center.

The curved arrow on the extreme left and right of the diagram
connecting social commitments aredependenciesbetween social
commitments. This is a powerful concept that is easily imple-
mented by theobserverdesign pattern [10], and arises naturally in
the system. For example, naturally, one needs to actuallyperform
an action before proposing to discharge it.

6. RELATED WORK
Conversations and commitments have been studied in argumen-

tation [15], where the evolution of conversations is motivated by
the commitments they imply, and which are not necessarily made
explicit. Others have looked into the mechanics of conversations
using operations advancing the state of commitments, which is a
view independent of the intentional motives behind their advance-
ment [6] [7] [13] [16]. We share these views, and aim at identifying
public elements binding the evolution of conversations.

7. CONCLUSION
The main contribution of this paper is to show how the FIPA per-

formatives can be mapped onto a social commitment theory frame-
work to allow observable social behaviour. ”Rules” (or policies),
like those described in this paper, act as a codification of social
norms, so can be easily used by an observer to judge whether an

Figure 7: A CASA CD showing a conversation with another
agent requesting to join the CD

agent is well behaved relative to the social norms. Social commit-
ments, and the ontology of performatives can be used to imple-
ment agents, but agents do not have be to implemented as social
commitment-style agents to be observed and monitored by an ob-
serving agent using social commitments as described here.

8. ACKNOWLEDGMENTS
The authors thank the Canadian Natural Science and Engineer-

ing Research Council (NSERC) for their support.

9. REFERENCES
[1] C. Castelfranchi. Commitments: From individual intentions

to groups and organizations. InProceedings of the First
International Conference on Multi-Agent Systems, pages
41–48, San Francisco, CA, June 1995.

120

reply(Bob,Alice,x)

act(Bob,Alice,x)

reply-propose-discharge(Alice,Bob,x)
propose-discharge(Bob,Alice,x)

Alice Bob

evaluate(Alice,Bob,x)

reply

nack

[�]

request

agree

propose-discharge

[�] done

reply-propose-discharge

[�] confirm

reply

reply

decide(Bob,Alice,x)
inform

inform

informconsider(Alice,Bob,x)

accept(Bob,Alice,x)inform

ack

ack

ack

ack(Bob,Alice,x)

ack

ack(Bob,Alice,x)

ack

ack(Alice,Bob,x)

ack

ack(Alice,Bob,x)

ack

Figure 8: An implementation view of the policies associated with a typical client-serverrequestconversation

[2] A. Diller. Z: An Introduction to Formal Methods. John Wiley
& Sons, Inc., Sussex, England, 1990.

[3] R. Flores.Modelling agent conversations for action. PhD
thesis, Department of Computer Science, University of
Calgary, June 2002.

[4] R. Flores and R. Kremer. Formal conversations for the
contract net protocol. In V. Marik, O. Stepankova,
H. Krautwurmova, and M. Luck, editors,Multi-Agent
Systems and Applications II, volume 2322 ofLecture Notes
in Artificial Intelligence, pages 169–179. Springer Verlag,
2002.

[5] R. Flores and R. Kremer. To commit or not to commit:
Modelling agent conversations for action.Computational
Intelligence, 18(2):120–173, 2003.

[6] R. Flores and R. Kremer. Principled approach to construct
complex conversation protocols. InThe 17th Canadian
Conference on Artificial Intelligence, Submitted.

[7] N. Fornara and M. Colombetti. Operational specification of a
commitment-based agent communication. pages 535–542.

[8] Foundation for Intelligent Physical Agents (FIPA). FIPA
ACL message structure specification. document number
SC00061G, FIPA TC communication.
http://www.fipa.org/specs/fipa00061/SC00061G.html, Dec.
2003.

[9] Foundation for Intelligent Physical Agents (FIPA). FIPA
communicative act library specification. document number
SC00037J, FIPA TC communication.
http://www.fipa.org/specs/fipa00037/SC00037J.html, Dec.
2003.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series.
Addison-Wesley, Reading, Mass., 1994.

[11] J. Heard and R. Kremer. Detecting broken social
commitments. InWorkshop on Agent Communication,
AAMAS’2005, Utrecht, The Netherlands, July 2005.
AAMAS’2005.

[12] R. Kremer, R. Flores, and C. LaFournie.Advances in Agent
Communication, chapter A Performative Type Hierarchy and
Other Interesting Considerations in the Design of the CASA
Agent Architecture. LNAI. Springer Verlag, 2003. Available:
http://sern.ucalgary.ca/ kremer/papers/-
AdvancesInAgentCommunicationKremerFlores-
LaFournie.pdf.

[13] P. Pasquier, M. Bergeron, and B. Chaib-draa. Diagal: A
generic acl for open systems. In M.-P. Gleizes, A. Omicini,
and F. Zambonelli, editors,ESAW, volume 3451 ofLecture
Notes in Artificial Intelligence, pages 139–152. Springer
Verlag, 2004.

[14] M. Singh. Agent communication languages: Rethinking the
principles.IEEE Computer, 31(12):40–47, 1998.

[15] D. Walton and E. Krabbe.Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. State University of
New York Press, 1995.

[16] P. Yolum and M. Singh. Flexible protocol specification and
execution: Applying event calculus planning using
commitments. In C. Castelfranchi and W. Johnson, editors,
Proceedings of the 1st International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 527–534,
Bologna, Italy, July 2002.

121

