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ABSTRACT

Communication in multiagent systems (MASS) is usually goged
by agent communication languages (ACLs) and communication
protocols carrying a clear cut semantics. With an increpdegree
of opennesshowever, the need arises for more flexible models of
communication that can handle the uncertainty associattbctie
fact that adherence to a supposedly agreed specificatiarssiipe
conversations cannot be ensured on the side of other agents.

As one example for such a modeiteraction framedollow an
empirical semanticgiew of communication, where meaning is de-
fined in terms of expected consequences, and allow for a eombi
nation of existing expectations with empirical observatal how
communication is used in practice.

In this paper, we use methods from the fields of case-based rea
soning, inductive logic programming and cluster analysiddvise
a formal scheme for the acquisition and adaptation of ictea
frames from actual conversations, enabling agents to amionsly
(i.e. independent of users and system designers) createaine
tain a concise model of the different classes of convensatica
MAS on the basis of an initial set of ACL and protocol speciica
tions. This resembles the first rigorous attempt to solve phob-
lem that is decisive for building truly autonomous agents.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems, Languages and Structures
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1. INTRODUCTION

Traditional approaches to agent communication, with tiozits
in speech act theory [1], do not respect theonomy[10] of in-
dividual agents in that they suppose effects of commurdnadin
agent’s mental states [18, 2] or a normative quality of mijphis-
ible commitments [7, 19]. In environments involving someg e
of opennestike, for example, design heterogeneity or dynamically
changing populations, such a “normative” attitude is pta oues-
tion by the fact that adherence to supposedly agreed moaesmof
munication cannot be ensured on the side of other agentsleWhi
this problem stems from a fundamental conflict between agent
tonomy and the need for cooperation (and communicatiorf) wit
other agents towards a joint goal, there is also a practidalte it
that can be phrased in the form of two questions:

1. If strict adherence to communication languages and proto
cols cannot be taken for granted, how can meaningful and
coherent communication be ensured?

. Observing the course of conversations that take place in
a MAS, how can agents effectively organise this kind of
knowledge and relate it to existing specifications, so they t
can actually benefit from it?

What is obviously required to answer these questionpisba-
bilistic model of agent conversation. Generic “purely” probabdist
models, however, are not very well suited for this task, esisym-
bolic agent communication is not at all “random”, and we vabul
rather like to identify patterns and relational propertésommu-
nication (in the same way as communication protocols coimtgi
variables resemble patterns).

Interaction frames [16] are such a model of agent conversati
capturing both the surface structure of possible messagees-
sage sequences and logical conditions regarding the daftéaeir
execution. What distinguishes interaction frames frormtle¢hods
commonly used for the specification of ACL and protocol seman
tics is that they allow for an explicit representationesperience
regarding their practical use. Instead of being intergreterma-
tively, they are assigned aempirical communication semantics
[15], where the meaning of an utterance (or sequence theigeof
defined solely in terms of it's expected consequences, & diy
past experience with a frame (to say it in terms of speecthacry
[1], the meaning of illocutions are defined solely in termghair
expected perlocutions). Currently two different “flavduo$ em-
pirical communication semantics exist. While interactfeeimes
view empirical semantics from the perspective of symbalieriac-
tionism, expectation networks [11] take the point of viewsotial
systems theory.



As a matter of fact, empirical semantics derives from agtiat-
actions and hence has to be acquired and adapted dynanfioaily
these using empirical observation. In this paper, we uséodst
from the fields of case-based reasoning, inductive logigrao-
ming and cluster analysis to devise a forrframe learning scheme
FLeas for the acquisition and adaptation of interaction framesnfr
the actual conversations conducted in a MAS, enabling agent
autonomously (i.e. independent of users and system des)gne
create and maintain a concise model of the different clasfsesn-
versation on the basis of an initial set of ACL and protocacsp
ifications. This resembles the first rigorous attempt to esthis
problem, which is a crucial one for building agents that camim
cate and act in full appreciation of the autonomy of theipeesive
peer.

The remainder of this paper is structured as follows: In tte f
lowing section we give a formal definition of interaction rfras
and their semantics and identify desirable properties ahous
for their acquisition and adaptation. In section 3 we dgveloch
a method that views frames as clusters in the space of iti@mac
and aims at maximising the quality of the overall clusteriSgc-
tion 4 closes with some conclusions and a perspective oflgess
future work.

2. INTERACTION FRAMES

Before turning to the acquisition and adaptation of fraraedul
empirical semantics, we quote [4] for a formal definition qfa-
ticular instance of the interaction frame data structurhis Tefi-
nition uses a languag@/ of speech-act [1] like message and ac-
tion patterns of the fornperf(A,B,X) or do(A,Ac). In the case
of messages (i.e. exchanged textual signale}f is a performa-
tive symbol (e.grequest, inform), A andB are agent identifiers
or agent variables and is the content of the message taken from
a first-order language. In the case of physical actions (i.e. ac-
tions that manipulate the physical environment) with theug®-
performativedo, Acis the action executed b (a physical action
has no recipient as it is assumed to be observable by any Egent
the system). BottX and Ac may contain non-logical substitution
variables used for generalisation purposes (as opposemjial
“content” variables used by agents to indicate quantificatr to
ask for a valid binding) . We further usgf; C M to denote the
language of “concrete” messages that agents use in comatiamic
(and that do not contain variables other than content vi@sab

This said, frames are formally defined as follows:

Definition 1 (interaction frame) An interaction frames a tuple
F =(T,0,C,hr,hg), where

e T=(p1,pP2,---,Pn) is asequence of message and action pat-
terns p € M, thetrajectoryof the frame,

e ©=(81,...,9m) is an ordered list ofvariable substitutions

e C=(cy,...,Cm) is an ordered list ofcondition setssuch that
¢j € 2% is the condition set relevant under substitutidp

e hr e NITl is atrajectory occurrence countkst counting the
occurrence of each prefix of the trajectory T in previous con-
versations, and

e hg € N9 is a substitution occurrence countiist counting
the occurrence of each member of the substitution@ist
previous conversations.
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While the trajectoryT (F) models the surface structure of mes-
sage sequences that are admissible according to fiareach el-
ement of©(F) resembles a past binding of the variableF i),
and the corresponding elementGyfF) lists the conditions required
for or precipitated by the execution &f in this particular case.
hr (F) finally indicates how oftefr has been executed completely
orjustin parthg(F) is used to avoid duplicates ®&(F ) andC(F).

Example 1 Consider the following frame (for the sake of readabil-
ity, we write the k and hg values next to the corresponding trajec-
tory steps and substitutions):
F= << 5 request(A1,A2, X) 4 accept(Ag,A1,X)
2, contirm(Ag,Ag,X) > do(Az,X)),
<{se|f(Al),Other(Az),Car(Az,dO(Az,X)},
{owngAy ticketY,CPE))}),
([A1/a2],[Az/atl],
X /book(£1ight (MEX,CPE))]),

(%
= ([A/a3], [Az/a1],
X/book(hotel(CPE))])>>

[
[
[
[
According to F, a total number of six requests has been issued
four of which have been accepted by the respective peereTire
these were then followed by a confirmation and executionef th
designated action, and substitutions and conditions dristhe
cases in which the frame has been “executed” as a whole. \While
implicitly states how many conversations have ended pranist

or turned out differently, any further information wouldveato be
stored outside F (i.e. in another frame).

The semantics of frames has been defined accordingly asa prob
ability distribution over the possible continuations ofiateraction
that has started witlv € M. and is computed by summing up over
a set# of known frames:
>

P(W |w) =
FeF

ww =T (F)$

P(3|F,w)P(F|w)

To reduce the complexity associated with reasoning aboat-a p
ticular interaction, an agent can alternatively selecnglsiframe
as a (normative) model of this interaction and restrictoaasy to
this frame. For this hierarchical approach to be reasorebigell
as successful, however, it is required that the differearnfs con-
cisely capture the different classes of conversations dhattake
place. This requirement has to hold as well for frames usegkby
ternal observers to model, analyse or describe the intenascin a
MAS.

What is hence required is a method for the acquisition angd-ada
tation of interaction frames from the actual interactiam&iMAS,
such that the resulting set of frames corresponds to therdiit
classes of interactions as perceived by the agent or ektebra
server. We propose such a method in the following section.

3. ACQUISITION AND ADAPTATION OF
FRAMES

As we have said, the need for its acquisition and adaptatomn f
actual interactions is an inherent property of empiricahamtics.
Using a set of interaction frames for representation, we fiarther
argued that these frames need to model different classateoic-
tions within a MAS.



We will now present a method for the adaptation and acqorsiti
of empirical semantics using the previous section’s forsasibn
of interaction frames. For this, we will introduce a metrit the
spaceM; of finite-length message sequences and then extend it to
a metric between frames. This allows us to interpret a fraepes-
itory (i.e. a set of known frames) as a (possibly fuzzy) @tisg
in the “conversation space”, and hence to measure the yaélé
frame acquisition and adaptation method in terms of theityuafl
the clustering it produces (referred to as “cluster vafidit [8]).

According to this interpretation, adaptation from a newvash
sation either introduces a new cluster (viz frame) or it aiddan
existing one with or without modifying the trajectory of thespec-
tive frame. The different alternatives can be judged h&oaly in
terms of the corresponding cluster validities, which wd uéle to
devise an algorithm for the adaptation of frame reposisori® per-
form the necessary frame modifications in any of the aboves;as
we will also present a generic algorithm for merging two femm
into one.

3.1 A distance metric on message sequences

As a basis of our interpretation of interaction frames as-clu
ters, we will start by introducing a distance metric on the afe
possible messages and then extend it to finite-length messag

quences. Since messages as defined above are essentitlly firs

order objects, we could simply use a general purpose fidsror
distance like the one proposed in [17]. Instead, we intredufam-

ily of mappings on messages that are parametrised on twtidasc
ds andDs and allow us to add a “semantic” flavour in the form of
domain-specific knowledge. As we will see, the most basid (an
domain-independent) instance of this family is in fact annein
messages (i.e. it particularly satisfies the triangle iaéty), which
can easily be extended to message sequences.

Definition 2 Let ds : Sx S+ [0,1] a (normalised) metric on the
set S of primitive symbols (i.e. function and predicate regnoé
M and £. Let D: (Sx N)2 — [0,1] a (normalised) mapping on
pairs of symbols and their respective parameters. We théneda
mapping 6 : Mc x M parametrised on gland Ds with
1
dp(m,n) = T
p( ) 1+ZIJ Ds(m7|7n7j)
Im| ||

- (ds(m,n) +i;j;Ds(m,i,n, j)-dp(m,ny))

where x |x| and % denote the operator symbol (or “head”), number
of arguments (i.e. arity of the operator symbol) and ith argant of
X, respectively.

Hence, the distance of two messagesndn is computed from

We further define Ex,-,y,-) to be the identity matrix and assume
that D(x,i,y, j) = D(y, j,x,i). The following partial definitions of
D(x,i,y, j) establish a connection between the corresponding pa-
rameters ofdifferent predicates (e.g., the parameters of parents
denote mother, father and child, whereas those of child tectuld

and parent):

parents
| mother  father child
% child 0 0 1
G parent 1 1 0
parents
@ | mother father  child
% mother 1 0 0
g child 0 0 1
child
@ | child parent
% mother| O 1
£ child 1 0

For three individuals Al, Bo, and Zoe and using a trivial défon
of ds for these symbols,gfor example takes the following values:

m
child(Zoe,Al)
child(Zoe,Bo)

parents(Bo,Al,Zoe)

mother(Bo,Zoe)

n | dp(m,n)
child(Zoe,Bo) 1/3
parents(Bo,Al,Zog) 3/8
child(Zoe,Al) 3/8
child(Zoe,Al) 2/3

So what are the general requirementsdgiand D such thaidp
is a metric? Formally, to resemble a metric, a mappinmgeeds to
satisfy the following three conditions:

1. 3(m,n) > 0 with equality iff m=n

2. d(m,n) =&(n,m) (symmetry)

3. d(m,0) < &(m,n)+&(n,0) (triangle inequality)

If the latter part of the first condition is dropped, the ré¢isigl map-
ping is called a pseudometric. For example, this would be#se

for ds if it was to encode the fact that two symbols denote the same
individual. It could be argued, however, that such equeiand
more complex ones likiatherOf(Bert) = Craig) should be treated
on the knowledge (i.e. semantic) rather than symbol (i.etagy

tic) level. On the other hand, the above example showscthand

Ds can indeed be used to treat certain features of the applicati
domain at the symbolic levelds and Ds might even be adjusted
depending on the way different symbols are used in actual com
munication (hence learning how different symbols, premisand

the distances of both their heads and their arguments, wherefunctions relate to each other).

D(m,i,n, j) determines in how far the distance betwerrandn
depends on the distance betweenitheargument ofm and thejth
argument ofn.

Example 2 Consider a genealogy domain with predicates
parentg-,-,-), mothex-,-) and child-,-). The following (partial)
definition of d induces an intuitive (but otherwise arbitrary)
similarity between these concepts:

| parents mother child
parents 0 1/2 1/2
mother | 1/2 0 1/2
chid | 1/2 12 0
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Since we requirals to be a metric (i.e., it particularly satisfies
the first condition) d, trivially satisfies this condition as well. If
additionallyDs is symmetric, i.eD(m,i,n, j) = D(n, j,m,i) for all
mn,i,j, thend, can easily be shown to satisfy the second condi-
tion by means of structural induction (this is the reason e
above example values of D have only been given for one diexti
In [13], measures that satisfy the first two properties alled¢aim-
ilarity measures. When used in clustering, however, suuiiagity
measures tend to cause strange behaviour.

A formal treatment of the triangle inequality could agairdoae
by means of structural induction, imposing specific comstsaon
Ds. This is beyond the scope of this paper, though, and will be
omitted for lack of space. Instead, we will henceforth conie



on the following generic and domain-independent defingtiofids
andDs (observe thatls is indeed a metric of):

0 ifx=y
d —
5(.Y) { 1 otherwise
1 . . .
S g Fx=yandi= |
Ds(X,i,y,j) =4 X
s %) {O otherwise

This means that every two distinct elementsSdiave maximum
distance, only the distances of corresponding argumentheof
same predicate or function are taken into account, and taealv
distance is made up in equal parts by the distance of the topera
symbols and the average distance of the arguments. We will no
show thatdp, is indeed a metric for this definition d andDs.

Proposition 1 d = dp|dSADS with ds and Ds as defined above is a
metric onM.

Proof: For the above definitions @k andDs, dp can be written in
simplified form as

d(m,n) = {

In order to prove that this resembles a metric, we have to show
that the three conditions given above hold formalh,0 € M. The
first two conditions are trivially satisfied ifh £ n or m= n and
|m| = |n| = 0 and can be show to hold for all andn by means of
structural induction.

As for the triangle inequality, we only need to consider theec
m # o, since otherwisa&l(m,0) = 0 and the condition is trivially
satisfied. Sincel(x,y) <1 for all x,y € M. (which is due to the
fact thatd is normalised and can again be shown by means of in-
duction), so that the inequality holds if either n or n # o, we
can restrict the proof to the cage= n = 0. Thus, we have

mj
i=1

1
m+i2

1

dm,n) it m=n

otherwise.

m|

d(m,0) = 1/(Im+1) _Zid(m70i)7

Im|

d(mn) =1/(Jm|+1) ;d(m,ni), and

In|

d(n,0) = 1/(|n| +1)_;d(ni70i)7

such that the inequality is trivially satisfied fom| = 0 and we can
again use structural induction to show that it holds fomalh, o €
M. O

Example 3 The distance of the two messages
M= request(a2,al,book(flight(MEX,CPE))) and
n = request(a3,al,book(hotel(CPE)))
is given by
d(m,n) =1/3- (d(a2,23) +d(al,al)+
+d(book(...),book(...))) =
=1/3-(1+40+1/2) =1/2.

To finally obtain a metrid, : Mg x M — [0,1] on message
sequences, we simply compute the mean pairwise distande of t
corresponding elements for sequences of equal length.
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Definition 3 (distance between message sequencést |v| and
v; denote the length and ith element of sequence v. We define
1M W
d.(uw) = {T Zima AW, W)
1

it [Vl = w
otherwise.

Proposition 2 d, is a metric on the sel/" of finite-length message
sequences.

Proof: Again, we have to show thdl satisfies the three conditions
for being a metric. The first two conditions follow directlpfm the
definition ofd, and proposition 1.

As for the triangle inequality

d. (u,w) < di(u,Vv) +dy (V, W),

we again use the fact thei is normalised and. (v,w) < 1 for all
v,w e MZ. We distinguish three different cases.

If Jul # |v| or |v|] # |w|, then the r.h.s. i$> 1, while the Lh.s. is
< 1, which satisfies the condition.

If Ju] # |w|, the Lh.s. equals 1, but for the r.h.s. to kel we
would require thafu| = |v| and |v| = |w|, which violates the as-
sumption.

If finally |u] = |v| = |w]|, the inequality can be written as

|ul |ul M

_;d(“ivwi) < _;d(uhvi) +_;d(Vi,Wi).

Sinced is a metric oM and hence
d(ui,wi) < d(ui,vi)+d(vi,w)

holds for alli, this is satisfied as well.

3.2 A metric between frames

Having defined a metrid, on the set of finite-length message
sequences, we will now extend this metric (a metriqpomts so
to speak) to a metric on frames by interpreting these as $#tg o
message sequences they represent (i.e., petat

[13] proposes a general formalism to define a distance mmgric
tween finite sets of points in a metric space. The distancedsst
two setsA andB is computed as the weight of the maximal flow
minimal weight flow through a special distance network betwe
the elements of the two sets. Additionally, one can assigghe
to the elements oA andB in order to alleviate the difference in
cardinalities between the two sets. Interpreting (infegeights as
element counts yields a metric anultisets which is ideally suited
to measure the distance between interaction frames in whigh
tiple instances of a particular message sequence have twed s
(corresponding to a substitution count larger than one). wille
briefly outline the general idea behind this metric and qubee
relevant definitions. First recall some basic definitiongareing
transport networks.

Definition 4 (integer flow network) Let (V,E) a loop-free con-
nected finite directed graph withts= V and|{x e V|(x,s) e E}| =
{x e V|(wt) € E}| =0. Let cap a function capE — N. Letw a
function w: E — N. Then NV, E,cap,s,t,w) is called aninteger
flow network

Definition 5 (flow) Let N(V,E,cap,s,t,w) an integer flow net-
work. Then a function fE — N is a flow for N iff

e f(e) <cap(e) forallee E and



® Suev F(vu) = ey f(uyv) for all v e V\{st} (and
f(wu) =0if (vu) Z E).

For a flow f, val(f) = Syey f(S,V) = Tyey f(Wt) is called the
valueof f and W(f) =Yg W(e)- f(e) is called theweightof f.

Definition 6 (maximal flow minimal weight flow) Let f a flow
for N(V,E,caps,t,w). f is called a maximal flow for N iff for all
flows f for N, val(f') <val(f). f is called a maximal flow minimal
weight flow for N iff for all maximal flows’ffor N, w(f’) > w(f).

The following definition is used to assign integer weightshe
elements of a set.

Definition 7 (integer weighting function) Let X a set. Then a
function W: 2X — (X — N) is an integer weighting functioron
X. sizgy : 2% — N denotes the size of a set under weighting func-
tion W, i.e. siz@ (A) = SacaW(A)(a).

For given X and W, we further defin€fQ= maxcox sizay (A)
as the tight upper bound for the size of any subset of X under W.

Based on that, a special distance network is defined thrchegh t
elements oA andB.

Definition 8 (distance network) Let X a set with metric d and
weighting function W, M a constant. Then for all finiteBAc 2X,
a distance networlN[X,d,M,W, A /B] = N(V,E,cap,s,t,w) is de-
fined as follows:

e V isaset of vertices, given by AUBU{s,t,a_,b_} (such
thatst,a_,b_ ¢ AUB);

E is a set of edges given by=E({s} x (Au{a_}))U((BU
{b-})x{thu((Au{a-}) x (Bu{b-}));

cap assigns a capacity to each edge, such that for arbitrary
ac Aand be B: cap(s,a) =W(A)(a), cap(b,t) =W(B)(b),
cap(s,a_) = Q¥ —sizay(A), cap(b_,t) = QY —sizay(B),

and cafda,b) = cap(a_,b) = cap(a,b_) = cap(a_,b_) =
oo; and

w assigns a weight to each edge, such that for arbitragy/a
and be B: w(a,b) = d(a,b), w(s,a) =w(b,t) =w(s,a_) =
w(b_,t) =w(a_,b_) =0, and Wa_,b) =w(a,b_) =M/2.

Figure 1 shows an example of such a distance network and the ca
pacities and weights assigned to the different edges.

Now, sincecap(s,a-) > 0, cap(b_,t) > 0, andcap(s,a_) +
sM cap(s,a)=capb_,t)+ 3™, cap(bi,t) = QY, the flow of the
maximal flow minimal weight flow frorms to t of a distance net-
work equaldg\{(". [13] uses this fact for the following definition of
a distance between sets of points in a metric space.

Definition 9 (netflow distance) Let X a set with metric d and
weighting function W, M a constant. Then for allB\e 2X the
netflow distancdetween A and B in X, denoteq) g,y (A,B), is
defined as the weight of the maximal flow minimal weight flom fro
stotin NX,d,M,W,A B].

[13] further shows thatl}f ;)\, (A,B) is a metric on 2 and can
be computed in polynomial time (isizgy(A) andsizey(B) and
in the time needed to compute the distance between two pdints
all weights are integers. Also, this metric is claimed to h&cm
better suited for applications where there is likely a poiith a
high distance to any other point than, for example, the Hadisd
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8 (oo,d(ag,by)) by

Q o)
\9\ ll:; %
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Figure 1: Distance network for two setsA = {a,...,as} and
B = {by,...,bs} (adopted from [13]). Edge labels are given in
the form (cap(a,b),w(a,b)) for an edge betweera and b.

metric (which only regards the maximum distance of any piint
one set to the closest point in the other set).

Mapping each frame to the set of messages it represents and
weighting each element with the respective substitutiamtowe
directly obtain a metrid; on frames.

Definition 10 (distance between frames)_et
m¢(F) ={me M |38 € ©(F). m=T(F)3}
the set of message sequences stored in frame F. Let
W(ms (F))(m) =he(F)[i] iff m=T(F)O(F)i]

a weighting function for elements ofs(ir). Then, the distance
between two frames F and G, denotedF G), is defined as the
maximal flow minimal weight flow from s to t in the transport-net
work N[MZ, dy, 1, W, ms (F), ms (G)].

Proposition 3 d¢ is a metric on the set of frames. (@,G
can be computed in polynomial time ;o) he(F)I]
Yi<lo(e) e (G)i] and the time required to compute.d

)

Proof: The former follows directly from proposition 2 and from
theorem 7 of [13]. The latter follows directly form the defion of
W and from theorem 8 of [13]. O

Observe that sincd, is normalised, we can safely set = 1.
Further, viewing a particular frame repositofy and assigning a
weight of zero to each message sequence not stored in ang of th
frames in¥, we obta|rQVmV{c* = Yrn7 Yi<lor | Do (F)li]-

3.3 \Validity of frame modifications

Based on the metrics defined in the previous sections, wenean i
terpret interaction frames as clusters of points in the spémes-
sage sequences, which in particular allows us to define taktyu
of a set of frames as a model for actual interactions in terfntiseo
quality of the corresponding clustering.

[8] refers to this quality a€luster validityand defines the va-
lidity of a particular cluster as the ratio between its conipass,



i.e. average distance between points within this clustet,its iso-
lation, i.e. minimum distance to any other cluster. Accogty, we
define the compactness and isolation of a frame using theasmetr
d. andd; on message sequences and frames, respectively.

Definition 11 (frame compactness and isolation).et ¥ a set
(repository) of frames, F& F a single frame. The&ompactness
of F is then defined as the (normalised) average distancedstw
the individual messages stored in it, weighed by their retpe
occurrence counts:

o(F) = (1/‘

O(F)|[o(F)|

> hhy)

j=1+1

[o(F)[|o(F)|

Z z hi-hj-d*(T(F)ﬁi,T(F)Sj)
i=1 j=1+1

whered; = ©(F)[i] and h = hg|i] denote the ith substitution of F
and the corresponding count. Tieolationof F in ¥ is defined as
the minimal distance to any other frame

i(F,F) Gren}rQFdf(F,G)

Sincec(F) usedd, for distances within a single franfeonly, there
exists a more efficient way of computing it. If we writév,m) to

denote theweightof a variablev in a message pattem (i.e. the

sum of coefficients ofi(v,-) in d.(m,md) for some substitution
9), then we can precompute(v, T (F)) for any variablev in the

trajectory off, and rewritec(F) to

lo(F)|[e(F)|
c(F)O Z > hi-hj - w(vT(F))-d (Wi, v9))
i=1 j=1+1 v

According to definition 11¢(F) is zero for frames with only one
distinct substitution, so defining overall validity as thersor prod-
uct of individual validities (F, F)/c(F) is not a good idea. Instead,
we define the validity of a frame repositoffy as the ratio between
average isolation and average compactness for all the &ramie,
taking special care of situations where only frames withralsi
substitution exist.

Definition 12 (frame validity) Let F a set (repository) of frames.
Thevalidity of ¥ is then defined as

Yeeri(F.7) ;
v(F) = W if IF e.f. |O(F)| >1
7] ZFeF i(F,¥) otherwise
In analogy to cluster analysis we conjecture that the higher
validity v(F) of a frame repositoryF built from a particular set
of concrete interactions, the better it models the diffectasses of
conversation in a MAS. Facing different alternatives fa thcor-
poration of an interaction that has just been perceived ebihiem
corresponding to a specific modification $f we can judge their
quality simply by measuring(¥ ) before and after this modifica-

tion and hence devise an algorithm that tries to maintairamér
repository with the highest possible validity.

3.4 Frame abstraction and merging

Before we can apply the results of the previous section to an
algorithm for the acquisition and adaptation of interactiames
from actual interactions, we will first have to make explibié ac-
tual modifications that can be performed on interaction é&suend
sets thereof in order to adapt them to newly observed irtieresc
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We do so by providing a general algorithm for merging tworate
tion frames into one. This algorithm can then be used to sirmagd
a new message to an existing frame (by interpreting the rgessa
a “singular” frame with ground trajectory and only the emgtyo-
stitution) or to reorganise a whole repository. In orderigtidguish
these two activities, and according to the point in time theyper-
formed relative to the actual interactions, we might rebahem as
online and offline merging.

Starting with frame trajectories and following Occam’s Biaz
the trajectory of the frame obtained from mergif@ndG should
be the least general message pattern sequence that carfied uni
with both T(F) and T(G) using standard first-order unification,
i.e. theleast general generalisatiofigg) [12] of the two, denoted
lgg(T(F),T(G)). The following inductive definition of least gen-
eral generalisation for message sequences can be turpeaisimh-
ple algorithm for its computation.

Definition 13 (least general generalisation)The
generalisation (Igg) of two terms is given by

{

where X is a new variable (i.e. does not occur in angrst;) such
that Igg(s,t) is unique for any subterms s and t throughout the Igg
(i.e. equal terms are replaced with the same variable).

The Igg of two messages is only defined for messages with equal
performatives and is given by

least general

if f =gand k=1

X otherwise,

lgg(p(a b, X)7 p(C7 dvy)) =
p(lgg(a,c),lgg(b,d),lgg(x,y)).

The Igg of two message sequences with the same length is given
by

lgg((my,...,my), (Ng,...,

As before, it has to be ensured that (gg) is unique throughout
the Igg for any two subterms s and t.

In an algorithm, uniqueness of the Igg is usually achievethbgns
of a table that holds the Iggs computed so far for any pair gd-ar
ments.

Along with the Igg, definition 13 also yields two substitu-
tions, namely the most general unifier (mgu) of the Igg with
each of its arguments, and we use the abbreviafigtm,n)

mgum,lgg(m, n)).

Example 4 The Igg of the two messages m and n of example 3
yields

Igg(m,n) = request(A,al,book(X))
Im(m,n) = [A/a2,X/f1light(MEX,CPE)]
Bm(n,m) = [A/a3,X/hotel(CPE)]

To obtain the substitutions and conditions of the mergeahéra
the 9, have to be applied to the substitutions and conditions of
the respective frame. For this, [Etone of the frames to merge,
lett denote the trajectory of the resulting frame anpdindd; the
condition and substitution of the resulting frame that espond to
C(F)[j] and®©(F)[j]. If the new frame is to hold all the conversa-
tions of F, thentd; = T(F)©(F)]i] has to hold for I< i < |©(F)]|.



The definition ofSy, implies thatT (F) = t8w(T(F),-) and thus
t9m(T (F).)O(F)[i] = 9.

If accordinglyd; is computed a8 = 9Im(T (F),-)O(F)]i], how-
ever, information might be lost about correlations betwaeitiple
conversations originating from the same frame. To retaskimd
of information, substitutions should be concatenateceratian ap-
plied unless the right side d&fn(T(F),-) is a variable (which is
quite common, as it results from the introduction of a newalse
for a variable in the course of computing the Igg). The folluyy
definition formalises this concept of selective applicatid a sub-
stitution.

Definition 14 Letd = [v1/t1,...,Vn/tn] a single variable substitu-
tion and® = (s, ..., Sm) a list of substitutions. Ther} x © de-
notes the list of substitutions that results framlectively prepend-
ing § to each element @ and is given by

Ix0O=

(r1,...,fm)

where

ri = [Va/ri1,---,Vn/fin] - S

o

Example 5 Recall message pattern:g: Igg(m,n) and substitu-
tions 91 := Om(m,n) and 85 := Im(n,m) of example 4. Further
generalisation to a message pattere-gequest(B,C,Y) (observe

and

tis
tj

if tj is a variable
otherwise

that Igg(p, q) = q) yields the intermediary result
9m(p,q) = [B/A,C/alY /book X)]
and
Im(p,a) % (81,92) =

= ([B/a2,C/al,Y /book(X),X/flight(MEX,CPE)],
[B/a3,C/al,Y /book(X), X /hotel(CPE)])

as the list of substitutions corresponding to g.

As for the conditions of the merged fran®d; = C(F)O(F)][i]
has to hold analogously. Replacifigwith the above result yields
Gi¥mO(F)[i] = C(F)O(F)[i] and thusgi¥m = C(F). Writing 91
for the “inverse” of a substitutioft (replacing terms by variables),
ci can hence be defined gs= C(F)9;1.

This finally leads us to the following definition of a merging-o
eration on frames:

Definition 15 (frame merging) Let F and G two interaction
frames with|T(F)| = |T(G)|. Then, the result ofmergingF and
G, denoted by NF,G), is given by

M(F,G) =
<'99( F),T(G)),
Im(T(F).T(G)) *-C(G)9m(T(G).T(F)) ™,
( (F).T(G )) O(F)-9m(T(G), T(F)) » ©(G),
hmaxF, G),
ho(F)-he(G)),
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where hmagf, G) = (hy, hp,...) with
max{ hr (F)[i], hr (G)[i], N
n=y  YheFe)K}  T=TE)
max{hr (F)[i],hr (G)[i],hisa}  ifi <[T(F)].

The rather complex definition of the step counter values lfier t
merged frame stems from the fact that it is impossible tordete
the valuehr (mergdF,G)) would have taken imergéF,G) had
been in the repository during all the conversations stand€el and
G just from the information provided bl andG. On the other
hand, it is also impossible to determine which additionaives-
sations would have been storednirergeF, G) if this had been the
case, so it seems fair to approximdte based on the following
observations: Obviously, méxr (F),hr (G)) is a lower bound for
ht (mergéF,G)). In addition to that, the sum of the valuestef

is a lower bound for the value ofr [|T|], since it resembles the ex-
act number of past conversations stored in the frame. HKijrfall
eachi, hr|i] is a lower bound fohr[j] with j <i. Hence, as we
cannot infer any upper bounds from the counter values aloee,
simply choose the values bf (mergéF, G)) such that the bounds
are tight. If only online merging is used, this approximataways
yields accurate values fou; .

3.5 An algorithm for learning frames

Based on the formal notion of validity of a set of frames pre-
sented in section 3.3, which extends cluster validity toghace
of multi-agent conversations, and on the frame merginggquore
given in section 3.4, the following simple algorithm comgmithe
best way to incorporate a newly observed message seqoente
a frame repositoryr :

function flea( #,m) returns a frame repository

inputs: frame repositoryf, message sequenge
[* compute the singular frante for m*/
F:=(mCm{},(1,...,1),(1)
/* compute the séf of alternatives for inclusion ah*/
Fi={F7 U{F}}UUrcq {F\F'UM(F',F)}
[* return the most valid frame repositoty
return argmaxgcp V(')

While the surface structure of a particular message sequenc
equals the message sequence itself, identification of & geif
logical conditions that held during a conversation (actaydo the
observer’s world model) and that werdevantor crucial is clearly
a nontrivial task. If frames exist, however, the executibmhbich
was hindered due to reasons of context (especially if peeifipd
“protocol” frames are used), these can be used to identifgico
tions other than those (physically) required for the execoubf the
individual messages.

Since the above algorithm only considers a single frameiate t
for inclusion into the repository, it is unable to detecustures in
the space of interactions that develop over time. This spoeds
to a more general problem ofder dependenci incremental un-
supervised learning and might in practice result in sevieaahes
actually modelling the same class of interactions. Thisjem
can be handled, though, by supplementing the above onling-me
ing algorithm with one that periodically checks if two frasia the
repository can be merged to increase its overall validity.

4. CONCLUSIONS

In this paper, we have presented a novel approach for build-
ing and maintaining a probabilistic model of agent conviosa



from an initial set of communication primitives and prottecand
from the actual conversations that take place in a MAS. Agant
open environments that communicate according to high-lene
specified conversational patterns can use this approaaigtoent
these patterns with empirical observation of actual caaténs,
such that they can be attributed an empirical semantics.

A formal schemé-Leas has been provided which uses a particu-
lar instance of the interaction frame data structure foreggnting
the probabilistic model. This allows for an integration bétre-
sults presented here with previous work on interaction é&gymar-
ticularly an architecture for reasoning about communicatiithin
the framework of empirical semantics [5, 4] and an applaatf
hierarchical reinforcement learning to the task of leagriommu-
nication strategies [14, 6]. The basic principles of ourrapph,
however, could also be applied to other, possibly more cexapl
forms of representation.

The scheme itself uses distance metrics between message se-

quences and between frames to interpret a set of frames as-a cl
tering in the space of possible conversations and tries fotaia

a good quality of this clustering as new conversations areedt

It is thus properly grounded in the theory of clustering ahgster
analysis.

Our current work focuses on an experimental exploratioref t
benefits and limitations of our approach in real-world “coonmin
cation learning” tasks (some initial results are reportadno[3]).
Depending on the perspective from which empirical obsemat
are taken, different applications of interaction frames@wssible.
As shown in [5, 4], individual agents can put them into relatio
their private goals and use them to derive their communnieatc-
tions in order to “communicate optimally” towards theseorArthe
perspective of an external observer, on the other handautten
frames can be interpreted as a global model of the commiumricat

in a MAS and hence used to measure the performance of the MAS

or of individual agents w.r.t. communication, to design rewn-
munication protocols or to devise open ontologies [9] thyeataani-
cally capture concepts and how communications refer to them
An open issue that has to be dealt with in future work to allow

for the creation of interaction frames from scratch is thecav-
ery of conditions that were relevant or crucial for the exmcuof
a specific conversation. While inductive logic programmiegh-
nigues may again be the appropriate means to attack thigepnpb
a transition to relative least general generalisation ¢ivinnight be
required to handle background knowledge already availtvla
particular class of conversation) would make this one dispr-
tionately harder to solve.
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