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ABSTRACT
In many multi-agent learning problems, it is difficult to de-
termine, a priori, the agent reward structure that will lead
to good performance. This problem is particularly pro-
nounced in continuous, noisy domains ill-suited to simple
table backup schemes commonly used in TD(λ)/Q-learning.
In this paper, we present a new reward evaluation method
that provides a visualization of the tradeoff between coor-
dination among the agents and the difficulty of the learning
problem each agent faces. This method is independent of
the learning algorithm and is only a function of the prob-
lem domain and the agents’ reward structure. We then use
this reward property visualization method to determine an
effective reward without performing extensive simulations.
We test this method in both a static and a dynamic multi-
rover learning domain where the agents have continuous
state spaces and where their actions are noisy (e.g., the
agents’ movement decisions are not always carried out prop-
erly). Our results show that in the more difficult dynamic
domain, the reward efficiency visualization method provides
a two order of magnitude speedup in selecting a good re-
ward. Most importantly it allows one to quickly create and
verify rewards tailored to the observational limitations of
the domain.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance
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1. INTRODUCTION
Recent advances in distributed learning methods have ad-

dressed how to best create rewards that promote coordina-
tion in a multi-agent system [11, 12, 15, 21]. This is a funda-
mental challenge that applies to most multi-agent learning
problems, but particularly to learning in dynamic environ-
ments. Indeed, most coordination methods that perform
well in static environments often perform poorly in dynamic
environments [7]. In this paper, we present a reward evalu-
ation method that directly addresses this issue by explicitly
visualizing the coordination properties of a reward in both
static and dynamic environments. This reward evaluation
method is based on two important properties in multi-agent
coordination:

1. how well the reward promotes coordination among agents
in different parts of a domain’s state-space; and

2. how easy it is for an agent to learn to maximize that
reward.

These reward visualization methods provide the ability to
predict the reward performance in a given domain with-
out the need for lengthy learning trials. Furthermore, this
method can be used to create either new sets of coordination
mechanisms or new reward structures based on the specific
needs of the domain.

We explore the agent reward design and visualization in a
continuous rover problem where a set of rovers learn to nav-
igate and collect information in an unknown environment
based on their noisy sensor inputs [1]. Reinforcement learn-
ing and credit assignment is particulary challenging in this
case because traditional table-based reinforcement learning
methods such as Q-learing, TD(λ) and Sarsa learners are
ill-suited to this domain [13]. Instead, we select a direct
policy search method where the full control policy is eval-
uated after each learning episode. Note that this domain
is not only more realistic but also significantly more diffi-
cult than previous multi-rover coordination problems where
agents learned to take discrete actions in a static grid-world
setting [15]. Therefore, having well tailored and computa-
tionally tractable agent rewards is particularly important in
this domain.

Though in this paper we focus on the rover domain, both
the reward design and the visualization approach have broad
applicability. Indeed, the reward design framework has been
applied to many domains, including data routing over a
telecommuncation network [18, 20], multi-agent gridworld [15]
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congestion games (e.g., El Farol bar problem or traffic toll
lanes) [21, 16, 17] and optimization problems such as bin
packing [22] or faulty device selection [14]. The strength of
the visualization approach stems projections from the state
space of the agents’ sensors instead of using projections into
two-dimensional represenations of the physical domain. For
example, though we present a projection of the agent re-
wards on the domain specific (x, y) plane in Figure 4 to
demonstrate how and why some rewards are preferable to
others, the more useful visualizations for reward design are
in Figures 3 and 5. As such, this visualization method is not
dependent on the domain having a natural projection to a
2-d plane, but on the designer finding a suitable axis from
the agents’ state space which do not need to correspond to
any physical space in the domain.

In this paper we provide evaluation and visualization meth-
ods for multi-agent coordination problems in noisy domains
with continuous state spaces. We discuss three types of
agent rewards that vary in how well they promote coordina-
tion and how easy it is for the agents to learn them. A new
visualization method is then used to determine which reward
is best suited in the Continuous Rover Problem. In addi-
tion, the visualization is used to provide new agent rewards
that take the rovers’ partial observation limitations into ac-
count while retaining much of the salient features (e.g., co-
ordination) of the full reward. Section 2 describes the key
reward properties required for evaluating agent rewards and
discusses three types of rewards. Section 3 presents the Con-
tinuous Rover Problem, and provides the simulation details.
Section 4 presents the visualization results that allow the
evaluation of the rewards, and Section 5 presents the simu-
lation results.

2. AGENT COORDINATION REWARDS
In this work, we focus on cooperative multi-agent systems

where each agent i is taking actions to maximize its own
agent reward gi, and where the performance of the full sys-
tem is measured by the global reward G. The system state z
is decomposed into a component that depends on the state
of agent i, denoted by zi, and a component that does not
depend on the state of agent i, denoted by z−i. (We will use
the notation z = zi + z−i to concatenate the state vectors.)
Note that though agent i may or may not influence the full
state z, both G and gi are functions of z, the full state of
the system.

2.1 Factoredness and Learnability
There are two properties that are crucial to producing

cooperative multi-agent systems in which agents acting to
optimize their own agent rewards will also optimize the pro-
vided global reward. The first, concerns “aligning” the agent
rewards of the agents with the global reward. For an agent i,
let us define the degree of factoredness (a generalization
of factoredness presented in [21, 16]) between the rewards
gi and G at point z as:

Fgi =

P
z′ u[((gi(z)− gi(z

′))(G(z)−G(z′))]P
z′ 1

(1)

where the states z and z′ only differ in the states of agent
i, and u[x] is the unit step function, equal to 1 if x > 0.
Intuitively, the degree of factoredness gives the percentage
of states in which a change in the action of agent i has the

same impact on gi and G. A high degree of factoredness
means that the agent reward gi is aligned with the global
reward G. As a trivial example, any system in which all the
agent rewards equal G has a degree of factoredness of 1.

The second property measures the dependence of a reward
on the actions of a particular agent as opposed to all the
other agents. Let us first define the point learnability of
reward gi, between state z and z′ as the ratio of the change
in gi due to a change in the states of agent i over the change
in gi due to a change in the states of other agents:

L(gi, z, z′) =
‖gi(z)− gi(z − zi + z′i)‖
‖gi(z)− gi(z′ − z′i + zi)‖

(2)

where z′ is an alternate to state z (e.g., in the numerator of
Eq 2, agent i’s state is changed from z to z′, whereas in the
denominator, the state of all other agents is changed from z
to z′). The learnability of a reward gi is then given by:

L(gi, z) =

P
z′ L(gi, z, z′)P

z′ 1
(3)

Intuitively, the higher the learnability, the more gi depends
on the move of agent i, i.e., the better the associated signal-
to-noise ratio for i. Therefore, higher learnability means it
is easier for i to receive large values of its reward. Note
that both learnability and factoredness are computed local
to a particular state. Later we analyze how these properties
change through the state space.

2.2 Multi-Agent Rewards
The selection of a reward that provides the best perfor-

mance hinges on balancing the degree of factoredness and
learnability for each agent. In general, a highly factored
reward will have low learnability and a highly learnable re-
ward will have low factoredness [21]. In this work, we ana-
lyze three different rewards that provide different trade-offs
between learnability and factoredness: Ti, the team game
reward (Eq. 4), Pi, the perfectly learnable reward (Eq. 5)
and Di, the difference reward (Eq. 6) given by:

Ti ≡ G(z) (4)

Pi ≡ G(zi) (5)

Di ≡ G(z)−G(z−i). (6)

Ti provides the full global reward to each agent. It is
fully factored by definition and has been used successfully
on multi-agent problems with few agents [6]. However, since
each agent’s reward depends on the states of all the other
agents, it generally has poor learnability, a problem that
get progressively worse as the size of the system grows. Pi

provides the component of the global reward that depends
on the states of agent i. Because it does not depend on
the states of other agents, Pi is “perfectly learnable” having
infinite learnability. However, depending on the domain, it
may have a low degree of factoredness.

Di provides rewards that have high factoredness, because
the second term of Eq. 6 does not depend on i’s states [21].
Furthermore, Di usually has better learnability than does
Ti, because the second term of Di removes some of the ef-
fects of other agents (i.e., noise) from i’s reward. The reward
Di has been successfully used in multiple domains including
packet routing over a data network [20], the congestion game
known as Arthur’s El Farol Bar problem [23] and multi-
agent gridworlds [15]. In particular, in the routing domain,
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the COIN approach achieved performance improvements of
a factor of three over the conventional Shortest Path Algo-
rithm (SPA) routing algorithms currently running on the in-
ternet [20], and avoided the Braess’ routing paradox which
plagues the SPA-based systems [18]. While having good
properties, this reward can be impractical to compute be-
cause it requires a lot of knowledge about z to compute
G(z−i). In practice either of the three rewards may be the
best choice depending on their properties in a particular do-
main.

3. CONTINUOUS ROVER PROBLEM
In this section, we define the “Continuous Rover Prob-

lem,” which will be used illustrate the importance of visu-
alization and proper reward selection in a difficult, noisy,
continuous, multi-agent domain. In this problem, multiple
rovers try to observer points of interest (POIs) on a two di-
mensional plane. A POI has a fixed position on the plane
and has a value associated with it. The value of the in-
formation from observing a POI is inversely related to the
distance the rover is from the POI. In this paper the dis-
tance metric will be the squared Euclidean norm, bounded
by a minimum observation distance, d:1

δ(x, y) = min{‖x− y‖2, d2} . (7)

While any rover can observe any POI, as far as the global
reward is concerned, only the closest observation counts2.
The full system, or global reward for an episode is given by:

G =
X

j

Vj

mini δ(Lj , Li)
, (8)

where Vj is the value of POI j, Lj is the location of POI j
and Li is the location of rover i.

At every time step, the rovers sense the world through
eight continuous sensors. From a rover’s point of view, the
world is divided up into four quadrants relative to the rover’s
orientation, with two sensors per quadrant (see Figure 1).
For each quadrant, the first sensor returns a function of
the POIs in the quadrant. Specifically the first sensor for
quadrant q returns the sum of the values of the POIs divided
by their squared distance to the rover:

s1,q,i =
X
j∈Iq

Vj

δ(Lj , Li)
(9)

where Iq is the set of observable POIs in quadrant q. The
second sensor returns the sum of square distances from a
rover to all the other rovers in the quadrant:

s2,q,i =
X

i′∈Nq

1

δ(Li′ , Li)
(10)

where Nq is the set of rovers in quadrant q.

1The square Euclidean norm is appropriate for many natural
phenomenon, such as light and signal attenuation. However
any other type of distance metric could also be used as re-
quired by the problem domain. The minimum distance is
included to prevent singularities when a rover is very close
to a POI
2Similar rewards could also be made where there are many
different levels of information gain depending on the position
of the rover. For example 3-D imaging may utilize different
images of the same object, taken by two different rovers.

Rover Sensor

POI Sensor

Figure 1: Diagram of a Rover’s Sensor Inputs. The
world is broken up into four quadrants relative to
rover’s position. In each quadrant one sensor senses
points of interests, while the other sensor senses
other rovers.

3.1 Simulation Set-up
With four quadrants and two sensors per quadrant, there

are a total of eight continuous inputs. This eight dimen-
sional sensor vector constitutes the state space for a rover.
At each time step the rover uses its state to compute a
two dimensional action. The action represents an x,y move-
ment relative to the rover’s location and orientation. The
mapping from state to action is done with a multi-layer-
perceptron (MLP), with 8 input units, 10 hidden units and
2 output units. The MLP uses a sigmoid activation func-
tion, therefore the outputs are limited to the range (0, 1).
The actions, dx and dy, are determined from subtracting
0.5 from the output and multiplying by the maximum dis-
tance the rover can move in one time step: dx = d(o1− 0.5)
and dy = d(o2 − 0.5) where d is the maximum distance the
rover can move in one time step, o1 is the value of the first
output unit, and o2 is the value of the second output unit.
To better simulate the inaccuracies and imperfections of a
rover operating in the real world, ten percent noise is added
to each action. The MLP for a rover is chosen through simu-
lated annealing, where its weights are modified and selected
with preset probabilities. Note, this is a form of direct policy
search, where the MLPs are the policy [3].

In these simulations, there are thirty rovers, and each
episode consists of 15 time steps. The world is 100 units
long and 115 units wide. All of the rovers start the episode
near the center (60 units from the left boundary and 50
units from the top boundary). The maximum distance the
rovers can move in one direction during a time step, d, is
set to 10. The minimum distance, d, used to compute δ is
equal to 5. System performance is measured by how well
the rovers are able to maximize the sum of global rewards
for an episode, though each rover is trying to maximize its
own agent reward, discussed below.

3.2 Rover Rewards
In this paper three different types of agent rewards are

tested in the Rover Problem. The first reward is the team
game reward (Ti) where the agent reward is set to the global
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reward given in equation 8. The second reward is the “per-
fectly learnable” reward (Pi):

Pi =
X

j

Vj

δ(Lj , Li)
(11)

Note that Pi is equivalent to Ti when there is only one rover.
It also has infinite learnability as defined in Section 2 (de-
nominator is equal to zero since for Pi, g(z

′−z′i+zi) = gi(z)).
However, Pi is not factored. Intuitively Pi and Ti offer oppo-
site benefits, since Ti is by definition factored, but has poor
learnability. The third reward is the difference reward. It
does not have as high learnability as Pi, but is still factored
like Ti . For the rover problem, the difference reward, Di, is
defined as:

Di =
X

j

Vj

mini′ δ(Lj , Li′)
−

X
j

Vj

mini′ 6=i δ(Lj , Li′)

=
X

j

Ij,i(z)
Vj

δ(Lj , Li)

where Ij,i(z) is an indicator function, returning one if and
only if POI j is the closest rover to Lj . The second term of
the Di is equal to the value of all the information collected
if rover i is not in the system. Note that in practice it may
be difficult to compute this reward since each rover needs to
know the locations of all of the other rovers. It may even be
more difficult to compute than the team game reward, Ti,
since Ti is the same for all the rovers. In many cases Ti can
be computed once and then broadcast to all the agents.

3.3 Static and Dynamic Environments
In the static environment, the set of POIs remained fixed

for all learning episodes. The POI distributions ranged from
randomly distributed across the state to checkerboard pat-
terns of uniform POIs. The results and insights gained from
visualization were qualitatively similar in all cases. To il-
lustrate the impact of visualization, we selected the POI
distribution depicted in Figure 2, which required a moder-
ate amount of coordination. The 15 POIs to the left have
value 3.0, and the lone POI to the right has of 10.0.

High Valued
POI

Low Valued
POIs

Rovers

Figure 2: Diagram of Static Environment. Points of
interests are at fixed locations for every episode.

In dynamic environments, the POI distribution changed
every 15 time steps, and the rovers faced a different con-
figuration at each episode. In each episode, there were one
hundred POIs of equal value, distributed randomly within
a 70 by 70 unit squared centered on the rovers’ starting lo-
cation. In the static environment, the rovers could learn
specific control policies for a given configuration of POIs.
This type of learning is most useful when the rovers learn
on a simulated environment that closely matches the envi-
ronment in which they will be deployed. However, in gen-
eral it is more desirable for the rovers to directly learn the
sensor/action mapping independently from the specific POI
configuration, so that they can generalize to POI configu-
rations that may be significantly different than the ones in
which they were trained. The dynamic environment exper-
iment tests the rovers’ ability to generalize in constantly
changing environmental conditions.

This type of problem is common in real world domains,
where the rovers typically learn in a simulator and later
have to apply their learning to the environment in which
they are deployed. Note that this is a fundamentally diffi-
cult learning problem because: 1) the environment changes
every episode, 2) noise is added to the actions of the rovers,
3) the state space is continuous, and 4) thirty rovers must
coordinate. Therefore, the selection of the agent reward is
critical to success and many rewards that can be used in
more benign domains (e.g., grid world rovers) are unlikely
to provide satisfactory results.

4. REWARD VISUALIZATION
Visualization is an important part of understanding the

inner workings of many systems, but particularly those of
learning systems [9, 4, 19, 8, 2, 10]. This paper focuses on
visualizing reward properties to aid in both agent reward
evaluation and design. To analyze the rewards in a specific
domain, we plot the learnability and factoredness of a reward
measured at a set of states in the domain. This visualization
helps determine which of the many possible rewards one
expects to perform well in a particular domain.

The analysis starts by recording the states observed by
agents taking a random set of actions 3. For each reward,
we compute the learnability and factoredness by sampling
Equations 1-3. The learnability and factoredness values for
each state are projected onto a two-dimensional plane, us-
ing a domain dependent projection. The projection is then
broken up into fixed sized squares and all the values within
a square are averaged. As with many visualization tech-
niques using the appropriate projection method is impor-
tant to achieving good results. While this paper presents
results on simple projections, more advanced methods can
be used such as principle component analysis or even non-
linear projections [5]. In addition the visualization can be
an interactive process where the users switches between sets
of projections to achieve the desired visualization.

In a learnability visualization, points where an agent’s ac-
tion influences its reward more than the actions of other
agents are represented with a “+” symbol. The lighter the

3States could also be recorded during learning, which could
lead to different visualizations when the action distributions
are significantly different than random and when an agent’s
factoredness strongly depends on the actions of other agents.
However preliminary analysis in the rover domain has shown
little difference.
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Figure 3: Factoredness and Learnability Visualization in Static Environment. First row shows factoredness
of four rewards and second row shows their learnability. The visualization is a projection of an agent’s state
space, with increasing x values corresponding to states closer to POIs and increasing y values corresponding
to states where the agent is closer to other agents. Pi has low factoredness and is anti-factored for much
of region 1. Di under partial observability (Di(PO)) is much more factored. Di(PO) has higher learnability
than Di, especially in region 2. Ti generally has low learnability, but is sufficient in region 3, corresponding
to regions close to POIs.

“+” symbol, the more an agent influences its own reward.
Points where an agent’s actions influence its reward less than
the actions of other agents are represented with a “-” sym-
bol. The lighter the “-” symbol, the less an agent influences
its reward. In factoredness visualization, points where an
agent’s reward is aligned with the global reward more of-
ten than random are represented with a “+” symbol. The
lighter the “+” symbol the more factored the reward is.
Points where an agent’s reward is aligned with the global re-
ward less often than random (anti-aligned) are represented
with a “-” symbol. The lighter the “-” symbol the more
anti-factored the reward is.

In this domain, the projection axes are formed using the
eight sensor values used by the rovers. The x axis of the
projection corresponds to the sum of the four sensor values
corresponding to POI distance, and the y axis corresponds
to the sum of the four sensor values corresponding to other
rover distance. Therefore values at the left side of the vi-
sualizations correspond to states where a rover is far away
from the POIs, and values at the right side of the visual-
izations correspond to states where the rover is close to the
POIs. Similarly, values at the bottom of a visualizations
correspond to states where a rover is not close to any other
rover, and areas towards the top of the visualizations corre-
spond to states where the rover is close to other rovers.

4.1 Visualization in Static Environments
Figure 3 shows the learnability and factoredness visual-

izations for the static environment. Pi is highly factored in

some parts of the state space, particularly the lower right
corner. That space corresponds to conditions where there
are many POIs but few other rovers in the rover’s vicinity. It
is not surprising that in such conditions where coordination
is not relevant this reward provides the right incentives. It
is important to note that Pi has high learnability across the
board, a result that is expected from how the reward is con-
structed. While Pi has high learnability across the board,
and is therefore easy for the agents to learn. This visual-
ization implies that in many states it results in the agent
learning to take the wrong actions due to low factoredness.
However, since Pi has better factoredness than random, for
most states, we expect agents using Pi in this environment
to reach a reasonable level of proficiency.

The situation is almost entirely reversed for Ti in this envi-
ronment. It is by definition fully factored (except for states
that have not been sampled, which show up as black in Fig-
ure 3), but has low learnability almost across the board. Ti

has good learnability only on the right side of the visualiza-
tion, corresponding to states where the rover is close to the
POIs. This is an important part of the state space so we
expect that agents using Ti to learn in this domain, though
learning will be slow since the agents receive proper rein-
forcement signals only after they stumble upon regions with
POIs.

Di on the other hand is both fully factored and highly
learnable. However, to compute Di, a rover needs to be able
to observe all of the other rovers which may be impractical
in many domains (note, Ti also requires this). Instead we
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Pi Di (PO)

Figure 4: Factoredness Projected onto Domain Coordinates. Factoredness of Pi and Di(PO) is projected
onto the x,y coordinates of the domain environment instead of onto the feature space used by rovers. “+”
represents factoredness and “-” represents anti-factoredness. Pi has an anti-factored boundary preventing
agents from moving from one region to the other.

compute the partially observable Di, where only the rovers
within a radius equal to the maximum distance a rover can
move in one time step are observed. This is a severe re-
striction that forces the agents to focus on less than 3% of
the state space at any time in search of other rovers. While
this reward is no longer fully factored, the factoredness vi-
sualization (labeled Di(PO)) shows that the reward is still
reasonably factored. In addition if we look at the right side
of the learnability visualization for Di and Di(PO) (vertical
rectangle marked 2 in Figure 3), we see that Di(PO) is more
learnable in this part of the state space. Considering this
part of the state corresponds to the important area where
a rover is close to a POI, we expect agents using Di(PO)
to perform even better than agents using Di in this static
environment domain.

For the static domain, we can gain additional insight into
the differences between the rewards by displaying the fac-
toredness visualization projected directly on the x, y domain
in which the rovers move (note that this projection will not
usually be effective in a changing environment where impor-
tant regions keep shifting). This visualization shows how the
rewards map to actions directly taken by the rovers. Figure
4 shows the factoredness for Di(PO) and Pi (on this pro-
jection, Ti and Di are fully factored, meaning each square
is a light “+”). Note that around the POIs, both rewards
are factored. However, there is an anti-factored boundary
for Pi between the two regions. That means that agents are
restricted to the right or left hand side of the x, y grid, and
will not cross that boundary if doing so would benefit the
global reward. This means the performance of Pi will be
particularly sensitive to the initial random actions taken by
the rovers. Notice that though not highly factored in that
region, Di(PO) has two “bridges” to cross this region and
furthermore is lightly factored rather than anti-factored in
the rest of that region. This implies that Di(PO) will not
have factoredness problems in this domain.

4.2 Visualization in Dynamic Environments
Figure 5 shows the factoredness and learnability visual-

izations for dynamic environments. They show that in this

more difficult environment, neither Pi nor Ti are acceptable.
The factoredness deficiencies of Pi are amplified in this en-
vironment as are the learnability deficiencies of Ti. In fact
the learnability is so low that there is reason to expect Ti to
perform marginally better than a random algorithm. Pi is
only consistently factored in the bottom left part of the vi-
sualizations, corresponding to unimportant locations where
the rover is not close to any POIs or close to any other rover.
In fact, in more important areas of the state space, Pi is of-
ten anti-factored, leading one to expect agents using Pi to
perform very poorly in this environment.

In contrast, Di is both highly learnable and highly fac-
tored in this domain. In fact, there is little difference be-
tween the learnability/factoredness charts of Di in this dy-
namic domain and in the static domain. Given that Di

is fully factored we would expect rovers using Di to per-
form very well. However, again Di is difficult to compute in
practice, as it requires a rover to know the locations of all
of the other rovers. As in the static domain we can com-
pute Di(PO) where the rover can only observe other rovers
within a radius equal to the maximum distance it can move
at one time step. Though not as high as that of Di, the
factoredness of Di(PO) is still consistently high. Therefore
we expect rovers using Di(PO) to significantly outperform
both Ti and Pi.

5. REWARD PERFORMANCE
In this section we show the results from a set of experi-

ments in both the static environment and dynamic environ-
ment to evaluate the effectiveness of the rewards in these do-
mains. The experiments confirm the expectation obtained
from the factoredness and learnability visualizations.

Figure 6 shows results from the static environment. The
rovers using Pi learned quickly, but did not converge to good
solutions. This is consistent with the high learnability/low
factoredness properties of Pi that were apparent in the visu-
alizations. In contrast agents using Ti were able to keep im-
proving their performance through learning, and were able
to surpass the performance of Pi. However as predicted
from the learnability visualization, these rovers learn slowly,
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Figure 5: Factoredness and Learnability Visualization in Dynamic Environments. First row shows factored-
ness the four rewards and second row shows their learnability. The visualization is a projection of an agent’s
state space. The visualizations show that Pi has very low factoredness and Ti has very low learnability. Di(PO)
(computed with partial observability) still has high factoredness.

so Ti may be a poor choice of reward in quick learning is
needed. As expected, rovers using Di with full observability
performed very well, since Di is both highly learnable and
fully factored. More interestingly, the rovers using Di(PO)
performed even better though Di(PO) is not fully factored.
This confirms that the gains in learnability more than off-
set the slight loss in factoredness shown in the visualizations.
Note this is remarkable, since Di(PO) is in fact significantly
easier to compute than Di.
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Figure 6: System performance in Static Environ-
ment. As predicted by the visualizations, agents
using Pi have mediocre performance, agents Ti learn
slowly and, Di(PO) retains enough factoredness to
perform well.
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Figure 7: Results in Dynamic Environment. As pre-
dicted from the visualization, agents using Ti per-
form poorly, agents using Pi perform even worse
as they learn the wrong actions, agents using Di

perform the best, and agents using Di(PO) perform
quite well.

Figure 7 shows that rovers using Ti or Pi perform very
poorly in the dynamic environments as predicted from the
learnability and factoredness visualizations. The perfor-
mance of rovers using Pi actually declines with learning,
highlighting the fact that Pi leads the rovers to learn the
wrong thing. This results confirms the intuition that highly
learnable but poorly factored rewards can in fact be worse
than random actions in difficult environments requiring co-
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ordination. Rovers using Di with full observability per-
formed the best and rovers using Di(PO) performed well. In
this more difficult domain, Di(PO) did not have significant
learnability gains over Di, and therefore, did not overcome
the drop in factoredness. The Di(PO) results are still im-
pressive though as they are obtained by using only about
3% of the information about the location of others rovers
Di has.

6. CONCLUSION
The effectiveness of agent rewards in promoting coordi-

nation in a complex multi-agent system is heavily domain
dependent. In many cases, rewards or coordination mecha-
nisms that work well in static environments perform poorly
in dynamic environments. This paper shows that the visual-
ization of two critical reward properties can dramatically ac-
celerate and reduce the difficulties associated with choosing
good agent rewards and coordination mechanism in difficult
multi-agent problems. In addition the rewards can be mod-
ified to meet the computational and informational demands
of a domain and then quickly validated. We demonstrate
this capability by predicting the performance characteris-
tics of a set of rewards in a noisy, continuous multi-rover
domain, and show that some rewards that do work reason-
ably well in the static environment fall apart in the dynamic
environment. This visualization method is one to two orders
of magnitude faster than running a full learning simulation
to validate the agent rewards. We used this visualization
method to design and validate a reward based on a more
computationally expensive reward. This reward only needed
3% of the observational capability of the full reward, but as
predicted by the visualization performed nearly as well as
the full reward in the dynamic environment.
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