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ABSTRACT

Robust sequence prediction is an essential component oteln i
ligent agent acting in a dynamic world. We consider the cdse o
near-future event prediction by an online learning ageeraing

in a non-stationary environment. The challenge for a leayagent
under these conditions is to exploit the relevant expedadram a
limited environmental event history while preserving flahty.

We propose a novel time/space efficient method for learming t
poral sequences and making short-term predictions. Ounadet
operates on-line, requires few exemplars, and adaptsy easil
quickly to changes in the underlying stochastic world motksing
a short-term memory of recent observations, the methodtaiam
a dynamic space of candidate hypotheses in which the grofvth o
the space is systematically and dynamically pruned usingran
tropy measure over the observed predictive quality of eactdie
date hypothesis.

The method compares well against Markov-chain predictions
and adapts faster than learned Markov-chain models to elsaing
the underlying distribution of events. We demonstrate tle¢hod
using both synthetic data and empirical experience fromraega
playing scenario with human opponents.

Categories and Subject Descriptors
1.2 [Artificial Intelligence ]: Learning

General Terms
Algorithms
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Rapid Learning, sequence prediction, n-gram, Markov Detis
Process

1. INTRODUCTION

Robust sequence prediction is an essential capabilityrfana
telligent agent interacting in a dynamic environment. Byking
accurate predictions, the agent is able to reduce the sgdce o
ture events which, in turn, facilitates better decision mgland
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reduced planning, and permits multi-agent coordinatiotheit
communication.

In this paper we consider the case of an agent that must learn t
make predictions on the fly while acting in a non-stationaryi-e
ronment. Making predictions under these conditions iseqetital-
lenging. Agents mudearn rapidlyin order to adapt to changes in
event generating processes, limiting the amount of hisabdata
that can be considered. Because the agent is operating leduile
ing, the learning process must also be online and time/spffice
cient.

Existing sequence prediction methods like HMMs are not de-
signed for this problem. Most methods require the procelss &ta-
tionary, with an abundance of data. Many learning methogsh(s
as the EM algorithm) are better suited to offline learningu§hhe
challenge for a learning agent in a rapidly changing envirent is
to exploit the relevant experience while preserving flditibi

We propose a solution that employs short-term memory talhapi
store regularly occurring patterns in sequences of obseng These
sub-sequences (representing candidate predictors) smedilby
finding those that produce high and reliable predictiongrenfince.
This solution is qualitatively similar to the human sequeipce-
diction strategy suggested by recent research [6], in thatams
appear to use a combination of short-term memory and the-dete
tion of apparentnon-randomness in sensory inputrépidly learn
regularly occurring patterns in sequences of observations

One of the key aspects of the proposed solution is to expéeit b
sic, low-level predictability in temporal sequences. Liawel pre-
dictability can be modelled via a variable-length ordekarkov
chain, wheren is the number of consecutive observations needed
to predict the next observation. Recall that the joint plolits dis-

tribution of a sequence of observatiams, = 01,02, ...,0, Can
always be factored as
P(o1,02,...,0,) :P(01)HP(Ot‘01:t71) (1)
t=2

The full joint distribution becomes intractable as the same length
increases, however a fixed finite lengtitMarkov model

T

P(0T7n+1, ey OT) P(Ot‘OT—n:Tfl)

t=T—n+1

is poorly suited to capture regularities with variable lagsl mul-
tiple time scales. Our short-term memory approach extrauts
sequences with variable lags, overcoming some of the prable
of fixed length Markov chains. The results of this paper ssgge
that a machine learning approach that exploits basic, &wstipre-
dictability may overcome the problems introduced by onlésn-
ing in a non-stationary environment.



2. AMOTIVATING EXAMPLE

Consider the following situation in which a learning agent e
counters the following sequence of observations: (for Huitp
we denote an observation with a single upper case letter):

ABACABACI[A]?

If an order-1 Markov assumption is made, then the model, when
presented with the given sequence up to the final gdrshould
predict the subsequent occurrence of the event ‘B’ or ‘Chweiqjual
probability. If we arbitrate with the flip of a coin, we can eqgh no
better than 50% success at predicting the succeeding edent-
ever, this is clearly not what a human observer would imnteltjia
induce from the same sequence.

A human observer recognizes that events ‘B’ and ‘C’ alternat
with regularity and are completely predictable. If we siynplig-
ment our definition of ‘state’ to include 2 consecutive esgotrder-

2 Markov chain), we have increased the number of possiblessta
from 3 (A, B, or C)to 9 (AA AB. .. CC), but now we have a model
that can accurately sort out the context and learn that (Gréy)
dicts ‘B’ with probability 1 and (B, A) predicts ‘C’ with prodbility

1.

Increasing the order of the Markov chain is a common method
for augmenting the definition of state in order to uncovedjotable
relationships in temporal sequences, however the drawtoattits
approach lies in the combinatorial explosion in the statee@nd
in the large number of training samples needed for the agent t
learn. This is problematic for an agent operating in a highly
namic environment that must learn quickly with limited esipace.

3. ELPH: ENTROPY LEARNING PRUNED
HYPOTHESIS SPACE

We propose an alternate method, using the notion of an §ctive
pruned “hypothesis” space that is able to sort out highldiore
tive patterns regardless of the Markov order and do so witz re
tively few examples. The method avoids some of the pitfalls o
current methods such as the need for long training sequemckes
uncontrollable combinatorial explosion, and providesdapnline
learning. Furthermore, it is capable of quickly adaptingadtern
changes. We refer to the algorithm using the acronym ELPH{"E
tropy Learning Pruned Hypothesis space”)

Unlike ordern Markov chain methods, in which learning occurs
over a space of uniform-grams, this algorithm learns over a space
of hypothesegeferred to as thElypothesis Spadg@iSpace). Given
a short-term memorgonsisting of the: most recent temporally-
ordered observations, an individuaypothesisconsists of a sub-
set of the ordered contents of the short-term memory of teaten
servations and an associated prediction-set of eventhévat in
the past, immediately followed the pattern contained irrtstesm
memory.

Consider some event occurring at timet which is immedi-
ately preceded by a finite series of temporally ordered ebsens
(0t—n, ... ,0e—1). Our task is to determine if some subset of those
observations consistently precedes the ewenif such a subset ex-
ists, then it can be subsequently used to predict futurercaaces
of e; from a temporally ordered set of observations. The question
then becomes, “is this event consistently preceded by spetfE
pattern of observations?”

In general, if the observed system takes the form of a Markov
chain of order-1, then the single observatign, will predict the
probability of the event;. However, given an arbitrary series of
observations, itis not necessarily true that the sequesstats from
a Markov process of order-1. For example, it may be that tiglei
observatiorn,_4 accurately predicts the observed event while the
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observatiorv,_1 is irrelevant. Or perhaps the two specific observa-
tions{o:—s, 0:—4 } predict the observed event with high probability,
and so on.

Assuming, without loss of generality, that we fix the length o
the histories stored in the short-term memoryte: 7, we may ei-
ther select or ignore each of the= 7 observations in each history.
This leads t®™ = 128 possible subsets of the recent event history
that can be used to form hypotheses, equivalent to the pseter-
formed from the 7-gram short-term memory. If we disregam th
trivial hypothesis (consisting only of the empty-4gf), then for
any specific short-term memory configuration, we can form 127
individual hypotheses, each of which “may” have predictezldb-
served event at timeé The choice ofn = 7 is arbitrary, and we
could have selected a different value. The inspiration caoma
the work by Miller [7].

At each time step, the system attempts to learn which of tke po
sible subsets is consistently good at predicting the ctieeant
e:. It does this by adding a potential hypothesis for each possi
ble subset of the observation history corresponding touhesntly
observed event;:

{Otfl} = e

{Ot—z} = €

{015437 0t74} = et
{Ot—770t—67~~~ ,Of,_1} = €t

wheree; is the observation at timethat this rule is trying to pre-
dict. The exact process by which the HSpace is filled withehes
hypotheses is thiearning processutlined next.

By forming these hypotheses in real-time, we are able tmlear
those that, over time, predict specific events with highbphility
and utilize them to make predictions of future events.

3.1 Learning

The HSpace is used to store the hypotheses encounteredrand ge
erated from previous time steps. Associated with each Ingsig
is its set of predictions together with counts for each mtai in-
dicating how many times it has been encountered in the past.

As each observation (or percept),is sensed, it is entered into
a n-element short-term memory containing the recently olesbrv
history. The short-term memory is implemented as a fifo gk
is organized in a fixed temporal sequen¢e;_7, 0t—¢, ..., 0¢t—1).
At each discrete time step,a new set of 127 hypotheses is formed
from the stored observations in the short-term memory,cloith
the currently observed event at timeEach of the 127 individual
hypotheses are then inserted into the hypothesis spacecsubj
the following rules:

1. If the hypothesis is not in the HSpace, it is added with an
associated prediction-set containing only the currenhieve
(prediction) and an event count set to 1.

2. If the hypothesis already resides in the HSpace, thenlthe o
served event is matched with the stored predictions in the
associated prediction-set. If found, the proposed hysighe
is consistentvith past observations and the event count cor-
responding te; is simply incremented.

3. If the hypothesis already resides in the HSpace but the ob-
served event, is not found in the associated prediction-set,
the novel prediction is added to the prediction-set with an

event count of 1.



3.2 Pruning the hypothesis space contents of the short-term memory, and rank them accordieg-
The combinatorial explosion in the growth of the HSpace isco  tropy measure. The maximum number of matching hypotheses is

trolled through a process of active pruning. Since we arg il bounded by the length of the short-term memory. With our aoi
terested in those hypotheses that prowidgh-quality prediction, of keeping the last. = 7 observations in the short-term memory,
inconsistent hypotheses or those lacking predictive tyuadin be there are at most 127 such matching hypotheses. The most fre-
removed. quently occurring prediction (maximum likelihood) fromettny-
Note that, for any given hypothesis, the prediction-setespnts ~ Pothesis with the lowest-entropy is the best prediction tiaa be
a histogram of the probability distribution over those esethat made, given the current experience. o
have followed the specified pattern of observations. Thepwptof ~ Formaking predictions, a simple entropy computation issbt
this distribution is a measure of the prediction uncertaantd can  ficient because it is biased toward selecting those hypetheth
be considered an inverse qualitative measure of the piedict a small number of occurrences. For example, a hypothedibaisa
The prediction-sePS for each hypothesis in the HSpace con- ©nly occurred once will have a single prediction-set eletnpro-
sists of a set of tuples(e;, c;), one for each of the events pre-  ducing a computed entropy value of zero. A more robust egtrop
dicted by the hypothesis, measure must be used that takes into account the numberwf occ
rences and gives greater weight to those with higher frequen
PS = {(e1,c1), (e2,¢2),... ,(ev,c0)} A more reliable entropy measure is obtained by re-compkiag

prediction-set entropy with a single, false positive adttethe set.

We add a single, hypothetical false-positive element whégh
resents an implicit prediction of "something else”. Thiglgds a
reliable entropy measure,

wherec; is the count of the number of times thatfollowed this
hypothesis’s list of observations in the data sequencendJgie
individual event counts, the entropy of the prediction sat be
computed as,

v C; C; v C; C;
H=— * 1o ‘ Hyep= — lo
=y Ctot &2 <Ctot> ! |:l._1 Ctot +1 82 <Ctot + 1>
1
wherec;,; is simply the sum of all the individual event counts, — lo
Ctot ply Crot + 1 62 (Ctot+1>
Ctot = c; If a specific hypothesis in the HSpace has only occurred once,
i=1 its associated prediction-set will contain a single eleinvéth an
If a specific hypothesis is associated with a single, comsigire- event count of 1. This yields a computed prediction-setogytof

log, (1) = 0.0. However, using the reliable entropy meas#fe,
yields an adjusted entropy ef3 log,(3) — 1 log, (%) = 1.

Note that a prediction-set with a single element but a higinev
count will yield a reliable entropy considerably less thanrithis
case, the reliable entropy measure is consistent with tuéiue
notion of “predictability” implied by frequent occurrence

diction, the entropy measure for that prediction-set wéllizero.

If a specific hypothesis is associated with a number of cdnflic
ing predictions, then the associated entropy will be highthis
sense, the “quality” of the prediction represented by thecsje
hypothesis is inversely related to the entropy measureh dig
tropy indicates poor predictive quality, and low entropgitates
consistently accurate prediction.

As hypotheses are added to the HSpace, inconsistent hypothe3'4 Brief analy5|s

ses are removed. Aimconsistenhypothesis is one in which the For an alphabet of size:, an ordern Markov chain approach
entropy measure over the prediction-set exceeds a preusast requires a transition matrix of dimensien. The proposed ELPH
thresholdHcsn. In other words, when the entropy measure of algorithm spans potentialspace of ordefm + 1)™ which is sig-
the predictions associated with a specific hypothesis is, fiiails nificantly larger. However, two attributes of the problenmuon

the “predict with high probability” test and is no longer sistered restrict the effective size of the HSpace:
to be a reliable predictor of future events, so it is removethfthe

HSpace. 1. Limited experience yields a sparse space: Only those hy-
It is this pruning behavior which bounds the growth in the hy- potheses that both have been experienced and have high pre-

pothesis space. Over time, only those hypotheses deemehtcc dictive quality are kept in the HSpace.

predictors with high probability are retained. All others &ven-

tually removed. Entropy threshold pruning also facilisatapid 2. Statistical structure in the observation space leadsfio e

adaptation in non-stationary environments. When the Uyidgr cient pruning: If the temporal stream of observations ifytru

process statistics change, the resultant increase ingpicedhset random, leading to no ability to predict future events, then

entropy causes existing hypotheses to be removed and eejigc the HSpace method will indeed explode, or in the presence

low-entropy hypotheses learned following the change. of pruning, will continually prune and add new hypotheses

(i.e. thrash). However, most interesting “real-world” beh
ior has regularities our algorithm should efficiently explo

3.3 Making predictions

The hypotheses which are retained in the HSpace are generall
high-quality predictors of future events and can be usecetfopm
serial prediction tasks. These predictions are made byicdenmsg 3.5 An example
all hypotheses consistent with the current contents ofttbe-germ
memory and choosing the “most likely” hypothesis.

Again, an entropy measure over the prediction-set can b& use - h Lo
as a qualitative prediction measure: The lower the entrtpy, shor_t-term memory t@_: 2 for illustration simplicity.
“better” the prediction. To make a prediction, we simplydte Given the following input:
the hypotheses in the HSpace which are represented by ttentur ...ABACABAD ...

We show step by step how the HSpace is constructed in Table 1.
The hypotheses are shown in the row of the corresponding-obse
vation. For this example, we restrict the amount of historyhie
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observ-

ation hypotheses added

A

A AB = {(A,1)} xB = {(A,1)} Ax = {(A, 1)}

C BA = {(C,1)} *xA = {(C,1)} Bx = {(C,1)}

A AC = {(A, 1)} xC = {(4,1)} Ax = {(4,2)}

B CA = {(B,1)} *A = {(B,1),(C,1)} Cx = {(B,1)}

A AB = {(4,2)} xB = {(A,2)} Ax = {(A4,3)}

D BA = {(D,1),(C,1)} =A = {(D,1),(B,1),(C,1)} Bx = {(D,1),(C,1)}

Table 1: Operation of the ELPH algorithm on a short sample steam. The “*’ denotes an observation that is ignored.

at the second occurrence of observation ‘A’ three hypothesk
be inserted in the HSpace:

AB = A A* = A *B = A,

where ** stands for an observation that is ignored. Follogvthe
subsequent observations ‘C’ and ‘A, six additional hystés will
be inserted, namely

BA = C
AC = A

B* = C
A* = A

*A = C
*C = A.

At the second occurrence of observation ‘B’, *A predicistionly

‘C’, as before, but also ‘B’. We now have an ambiguous préaiiGt
with ‘B’ being predicted with probability;— and ‘C’ also being pre-
dicted with probability%. The entropy of the *A’ prediction goes

to 1. In the next time step, we observe ‘A’ and since ‘A* hag{pr
dicted ‘A’ consistently three times its reliable entropyteases. In
the next time step, we observe ‘D’ and now the ambiguity of *A
includes ‘D’, ‘B’, and ‘C’. The entropy of the prediction set *A

has now increased to approximatively 1.5 and has becomed goo
candidate for pruning.

4. EXPERIMENTAL RESULTS

We tested the ELPH algorithm on a series of syntheticallyegen
ated strings derived from both stationary and non-statiodés-
crete stochastic processes. The performance was measuted a
compared to that of various Markov agents on predictiongask
which each agent observed the input string one element atea ti
and predicted the subsequent element. The performancaireeas
for all agents was the proportion of the number of correctliore
tions to the total number of elements in the input string.

4.1 Performance in stationary environments

We constructed an order-1 Markov process to generate test da
strings by taking the convex combination of two underlyingrkbv
transition matrices$; andU, to form a new transition matrix

A=(1=N(S)+NT),0<A<1

The matrixS; is representative of a nearly deterministic process
in which the state transitions are set to a value approachigt
slightly less than unity to maintain the acyclic propertg(e0.9999).
The second matrix/, has state transition probabilities uniformly
distributed throughout and is representative of a comiyletn-
dom process with maximal entropy rat@.is used to control the
entropy rate of the resulting Markov process. The dimensfdhe
generating transition matrix was fixed at 5 throughout &ldrre-
ported. This Markov process was then used to generate swing
1,000 elements each.
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ELPH performance for a family of stationary processes
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Figure 1: ELPH performance on strings from increasingly
stochastic processes. Prediction accuracy is compared toth
an ideal Markov predictor and a maximum likelihood Markov

learner on identical strings.

In Figure 1, ELPH performance is compared to both an ideal
Markov predictor and a maximum likelihood Markov learneack
sample point represents the prediction accuracy achiavedsgn-
thetically generated string. We repeated the experimedtittes,
each time generating a 1000 length string from a statiortachas-
tic process and then systematically increasing the entragyof
the generating process.

The ideal Markov predictor is an agent that makes maximum
likelihood estimates of the successor state directly froengen-
erating transition matrix. The performance of the ideadm®r
provides a baseline representative of the best predictiandan
be made for any given discrete stochastic process. The rmaxim
likelihood (ML) Markov learner is an agent that has no knaige
of the size of the state-space or generating transitionixnaitrd
must estimate these values from observations obtainedeofiyth
Given an observation history, the ML Markov learner obsgrae
state and constructs the maximum likelihood of the succesate
by accumulating observed state transitions over time.

Figure 2 illustrates the performance of the ELPH algorithinew
the length of context history is limited to 1 and the entramesh-
old is set to a value which eliminates all pruning behavioithwlo
pruning and a history of length 1, the ELPH algorithm showdd b
equivalent to a maximum likelihood Markov learner of order-

As expected, the ideal Markov predictor performs betten &



other methods tested and serves as a benchmark for optirfai-pe
mance. Due to the fact that these are stationary stringdfidieuat
length to provide an adequate sample of the state space, lthe M
Markov learner also does very well. The ML Markov learneras n
quite as good as the ideal predictor owing to the fact thatustm
guess the state transitions for novel observations.

ELPH performance equals that of the ML learner when the pro-
cess entropy rate is near zero (highly deterministic pressand
when entropy rate is high (random processes). This is kadet
to the pruning behavior of ELPH. When the observation stiing
highly deterministic, no pruning occurs and the predictiare equiv-
alent to the ML learner. When the string is random, all preolis
are effectively “guesses” and the performance approatiedsiind

and from proces® for a duration oid samples.

This method yielded strings in which the non-stationarityhe
process could be altered by changing the rate at which gamgra
process alternation occurred, or by altering the degrearafom-
ness of either of the generating processes (or both).

We performed two sets of experiments. For the first set, we sys
tematically changed the rate of alternation of two highlyedain-
istic generating processes and we measured the effect lafrthth
of the history used by ELPH. For the second set of experiments
one of the generating processes was highly deterministctliaa
second was increasingly stochastic. We compared ELPH with a
Markov learning process which used the same history length.
trials used transition matrices of dimension 5 Whly.s» Set to

guess rate. In the intermediate cases, ELPH hypothesesare b 1.0.

ing pruned due to poor predictive quality and informatiobééng

discarded. The ELPH performance in these examples, however

remains relatively good.

ELPH continually constructs multi-order hypotheses frdraear-
vations and attempts to find those with high predictive valfiee
restrict ELPH to a history of length 1, then at each time stepi/l
formulate2' — 1 = 1 hypotheses, corresponding to the immediate
predecessor state. If we further restrict ELPH by increatie en-
tropy thresholdH .51 t0 @ point at which no hypotheses will be
pruned from the space, then we expect that the behaviorcheul
equivalent to the ML Markov learner. Figure 2 shows this tdaHze
case.

4.2 Performancein non-stationary environments

The series of tests illustrated in Figures 1 and 2 describe pe
formance on strings generated from stationary procesagbete
cases, adaptability is not an issue.

To measure the adaptability of the ELPH algorithm compaoed t
other methods, we created non-stationary processes byatitey
between two mixture models with independ@ntalues. The first

ELPH Performance on

low entropy rate non-stationary processes
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Figure 3: Performance of ELPH on a set of non-stationary se-
quences in which the sample duration between process alter-
nations is increased from 1 to 100. Test sequences consisted

100

process Q) was created as described earlier, the second processength 1000 strings formed by alternately sampling from 2 po-

(B) utilized a separate mixture coefficieht and a different tran-
sition matrix.S;, formed by rotating the columns ¢f; by 1. The
time between model switches was specified by a duration garam
terd, measured in samples. Non-stationary strings were crégted
alternating sampling from procestfor a duration ofd samples,

Equivalence of ELPH to ML in the absence of pruning
1 T

F e
e & + ELPH (history=1)
® P e ML Markov Learner
a%,
5

09t -

Bag
08l
07t b
06}
05}
0.4 o,
03f

[ i
blind guess rate

Prediction accuracy (proportion correct)

0.1

0

0

0.5

1

25

Entropy rate of stationary process
Figure 2: Equivalence of ELPH to order-1 ML Markov learner
when history is limited to 1 and entropy threshold is set to a
high value disabling pruning.
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cessesA = (1—X4)(S1)+AaU,and B = (1—-Xg)(S2)+AsU

in which A4 = A = 0. This method yielded non-stationary
strings in which highly deterministic sections from one pra@ess
were followed by highly deterministic sections from a diffeent

process.

In Figure 3, ELPH and the ML Markov learner were applied
to non-stationary strings of varying frequency. Three oS of
the ELPH algorithm are shown in which the length of shortrter
history was restricted to 1, 3 and 7 observations, respagtizach
were tested with identical strings produced by the preagdirxture-
model method in which tha 4 and\ g values were set to 0, yield-
ing highly determined outputs. The independent variabléhis
test was the sampling duratiehof each process which was sys-
tematically varied from 1 to 100.

Non-stationary environments are more typical of “realdafor
situations in which rules change, other agents in the enent
alter their behaviors, etc. In the non-stationary envirents pre-
sented here, the ELPH algorithm performed substantialtyebe
than the Markov chain learners tested.

The ML Markov learner and the ELPH algorithm with a his-
tory length of 1 both perform poorly (Fig. 2). In these cadés,
transition history over single states is unable to sort betun-
derlying (temporary) changes in transition probabilitisl®wever,
when ELPH is provided with increasing history, the perfonce
improves dramatically. Due to the pruning behavior, ELPBE di
cards previously acquired hypotheses following the prochange



and quickly re-learns the “new” state transitions. As theation
between process transitions increases beyond approxynidie
the predictive performance on a non-stationary determi¢niso-
cess exceeds 90% correct predictions.

ELPH vs. Order-7 ML Learner
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Figure 4: Performance of ELPH vs. an Order-7 Markov ML-
learning agent on a set of non-stationary test sequences Wit
varying predictability. Test sequences consisted of lengt1000
strings formed by alternating between 2 processed and B ev-
ery 10 samples, whered = (1 — A\4)(S1) + AaU and B =
(1—=2AB)(S2) + AgU. Inthistest, A4 = 0 and A\ varied from
0to 1. This produced non-stationary strings in which highlyde-
termined sections were followed by increasingly stochastisec-
tions.

Another experiment was performed in which the non-statipna
mixture-model process used to generate strings alterhat@ceen
a highly determined processl)] and an increasingly random pro-
cess B). In addition, this trial increased the observation higtor
available to the ML Markov agent to 7 which was equal to thetsho
term history of the ELPH agent. Figure 4 summarizes the tesul
for a trial in which the sampling duratiahwas held constant at 10.

Providing increasing history to the ML Markov learner does n
improve the performance versus ELPH. Again, the pruning pro
cess employed by ELPH is able to discard accumulated hypeshe
when process changes occur, providing rapid adaptatidretogw
process statistics. A8p increases, the second process becomes
less random and performance increases accordingly. Bethtag
do well when the second process is highly deterministic.

4.3 An Application

We applied our method to the game of rock-paper-scissorsavhe
we pitted a program using ELPH against human opponents. The
rock-paper-scissors game is a well-known simple two-plggene
that proceeds with each person simultaneously making a/™pla
from a set of three choicefock, paper, scissofs The winner
is decided as follows: “rock” wins over scissors, “scisSarms
over paper and “paper” wins over rock. Ties are not counted.

This simple game is an example of a game with no optimal strat-
egy [4]. Theoretically, the best strategy is to play randoielding
to a tie. However, if an opponent exhibits a bias in play s@eac
that bias can be exploited to provide a winning advantagetove.
Humans exhibit a general bias against purely random actiochwv
should lead to predictable play at some level. This predilita
can be exploited by an agent that is able to rapidly learn dagta
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to the bias in human play.

The rock-paper-scissors game provides an excellent doimain
which to test an online, adaptive temporal sequence piediagent.
The overall strategy is to ascertain predictabilitys in the oppo-
nent’s play, predict what the opponent is most likely to detnend
choose a play that is superior to that predicted for the opporif
the opponent exhibits predictable behavior, the learngenpacan
exploit that bias and achieve a statistical edge. The gaplaysd
in real time and requires an online learning strategy. Thentg
must also be highly adaptive to changes in the opponenéiesty
which can occur at any time during the game, and are not made
known to the agent.

A multiple ELPH approach was used to learn two separate tem-
poral observation streams in parallel. The first streamistatsof
the consecutive plays of the opponent and was used to pteedict
opponent’s subsequent play. The second stream was useatiiotpr
the opponent’s next play based on the sequence ofnéehine’s
plays. In this way, if the opponent falls into biased patseelated
to his/her own play, the first stream provides predictorenehs if
the opponent attempts to exploit perceived patterns celatehe
machine’s play, that bias will be detected and exploitede &p-
proach is simple. Observe, make two predictions of the oppts
next play based on the separate input streams, and selguiathe
that has the lowest reliable entropy measure.

A number of matches were played against human opponents with
surprising success. A typical example of the results of areh s
game are shown in Figure 5.

As shown in this example, an advantage was gained following
approximately35 — 40 plays. The program exhibits the key char-
acteristics of a dynamic, adaptive, on-line agent. It aslaptthe
changing play of the opponent and quickly exploits pred&pat-
terns of play. Early results suggest that human playerséxbrie-
dictable patterns (even when explicitly tryimgt to), and demon-
strate the ELPH algorithm as an effective, efficient tooléarning
and predicting these temporal patterns in real-time.

5. RELATED WORK

The problem of determining predictive sequences in tinuead
databases has been addressed by a significant body of datg min
literature, starting with the seminal work of Agrawal anik&nt [1].
However, these approaches (including [1]) generallyagié num-
ber of passes (forward and/or backward) through the datadand



not meet the “on-line” or “real-time” criteria essential fiynamic
agent performance. In addition, the prevalent data minguotp-t
nigues generally do not handle changes in the underlyiroipatdic
model.

Straightforward extensions of the algorithm include Vialedength

windows instead of the fixed length windows we presented, and

multiple input streams. The algorithm can be extended tgdon
time scales by treating embedded sequences with high pabdic

The ELPH algorithm can be viewed as a method to learn a sparseity as higher order temporal streams.

representation of an orderMarkov process via pruning and pa-

rameter tying. Because sub-patterns occur more frequisratythe
whole, our reliability measure preferentially prunes &rgatterns.
Because prediction is then performed via the best subrpatte
are effectively tying probability estimates of all the pedrpatterns
to their dominant sub-pattern.

Previous approaches to learning sparse representatibfesodv
processes include variable memory length Markov model${Mis)
[5, 8, 10, 2] and mixture models that approximatgram probabil-
ities with sums of lower order probabilities [9]. VLMMs areost
similar to our approach in that they use a variable lengtimseg of
the previous input stream to make predictions. However, WM
differ in that they use a tree-structure on the inputs, mteatis are
made via mixtures of trees, and learning is based on aggiimer
rather than pruning.

In the mixture approach,-gram probabilitie®(o¢|oi—1 . .. 0t—n)
are formed via additive combinations of 2-gram compondrearn-
ing in mixture models is complicated by using EM to solve alire
assignment problem between the 2-gram probabilities aschitk-
ture parameters. We believe the relative merits of our #lyorto
be its extreme simplicity and flexibility.

Rock-paper-scissors is one of the stochastic games useadly B

ing and Veloso [3] as a demonstration of their WoLF algorithm

WoLF (Win Or Learn Fast) applies a variable learning ratertal
ent ascent over the space of policies, adapting the learategle-
pending on when a specific policy is winning or losing. The WoL
principle is to learn quickly when losing and more cautigughen
winning.

In contrast to this work, ELPH makes no effort to directlyriea
a policy based on reward, and, in fact, makes no determmaso
to whether it is winning or losing. ELPH simply makes preitins
based on past observations and discards past knowled dgsli o
predict future play. ELPH makes no assumption on the ralityna
of the opponent’s policy. If the opponent exhildisy predictability
in play, ELPH will exploit that predictability and choose action
that will better the opponent with a frequency matching tais
tical bias. If the opponent’s policy is to play purely randgnthen
ELPH should play to a draw.
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Since WOLF starts playing at the Nash equilibrium, when ELPH [10] Y. Singer. Adaptive mixture of probabilistic transaus.

plays against it, they consistently play to a draw. WOLF doats
perform well against ELPH in the non-stationary environtagme-
sented here. WOLF requires playing millions of games before

verging on the policy and so it does not perform well given the

rapid non-stationary policy switches we used (approxitgaesry
20 plays) and the (relatively) short games of 1000 plays.

6. CONCLUSION AND FUTURE WORK

We have demonstrated a novel algorithm that utilizes “mtadi
quality” as a basis for learning temporal sequences. THiyatn
discard historical information with limited predictive lua yields
a space-efficient method, and by using limited context hista
time-efficient method suitable for use in realtime enviremts is
achieved.

The ELPH algorithm is capable of learning complex temporal

sequences in non-stationary environments in real-timeguléin-
ited memory resources while adapting rapidly to changdsamnh-
derlying stochastic process. We demonstrated its potdatiase
in domains where rapid adaptability is of paramount impuréa
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