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ABSTRACT
We provide a uniform framework for learning against arecent his-
tory adversaryin arbitrary repeated bimatrix games, by modeling
such an agent as a Markov Decision Process. We focus on learning
an optimal non-stationary policy in such an MDP over a finite hori-
zon and adapt an existing efficient Monte Carlo based algorithm
for learning optimal policies in such MDPs. We show that this new
efficient algorithm can obtain higher average rewards than a pre-
viously known efficient algorithm against some opponents in the
contract game. Though this improvement comes at the cost of in-
creased domain knowledge, a simple experiment in the Prisoner’s
Dilemma game shows that even when no extra domain knowledge
(besides that the opponent’s memory size is known) is assumed, the
error can still be small.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
I.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms, Theory, Performance

Keywords
Multiagent Learning, Game Theory, Efficient Learning

1. INTRODUCTION
Learning to play a repeated game has been explored in context

of computationally resource-bounded adversaries [9, 13, 14], no-
tably finite state automata. This literature focuses onlearning au-
tomata, i.e., to deduce reply automata that accumulate near-optimal
rewards against the given adversaries over infinite horizon. Learn-
ing over infinite horizons effectively assumes that the learner is go-
ing to have unlimited interactions with the adversary. In this paper,
we address learning against resource-bounded adversaries overfi-
nite horizonsreflecting the reality in Multiagent Systems (MAS)
that agent-pairings are short lived. We address adversaries that use
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the recent history of play to deduce their instantaneous replies. We
show that such opponents can be uniformly modeled as Markov
Decision Processes (section 3) in arbitrary repeated matrix games,
if their decision functions are stationary. We then adapt an efficient
T -step policy learning algorithm for MDPs to work in adversarial
repeated games through our framework (section 5). This algorithm
is thus useful to a learner facing any recent history adversary no
matter what the adversary’s underlying stationary computational
model is. We demonstrate the efficacy of this new efficient algo-
rithm by showing that it can score higher average payoff than a pre-
vious algorithm that scored close to only half of the optimal payoff
in the game of contract [14] (section 6). Comparison of this algo-
rithm with ours shows that our algorithm uses slightly greater do-
main knowledge. However, if we limit this to a minimum (just as-
sume that an upper bound on the opponent’s memory size is known,
which is also assumed in [14]), a simple experiment in Prisoner’s
Dilemma game shows that the performance of our learned policy is
still close to optimal.

The contributions of this paper are

• Reduction of the problem of learning multi-step best response
against a recent history adversary in repeated games to that
of learning a finite-horizon non-stationary optimal policy in
a large MDP or POMDP (when the opponent’s actions are
not observable).

• Proving that an efficient algorithm (known) for the domain
above can efficiently learn a better policy than another known
efficient algorithm against a past sacrifice adversary in the
game of contract.

• Experimentally demonstrating that even with minimal do-
main knowledge the output policy is close in payofffs to an
optimal policy in the Prisoner’s Dilemma game against a
variant of the Tit-for-Tat strategy.

2. BACKGROUND & DEFINITIONS
Here we provide definitions of key concepts for our work. We

refer toA1 andA2 as the sets of possible actions of the two agents.
A mixed policyis a probability distribution overA. If the entire
probability mass is concentrated on a single action, it is also called
a pure policy. We consider a situation where there is a learner in-
teracting with other agents. At any given time the learner interacts
with only one other agent, referred to as theopponentor adversary.
Usually,a will refer to the learner’s action ando to the opponent’s
action.

DEFINITION 1. A bimatrix game is given by a pair of matrices,
(M1,M2), (each of size|A1| × |A2|) where the payoff of thekth
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agent for the joint action(a, o) is given by the entry

Mk(a, o), ∀(a, o) ∈ A1 ×A2, k = 1, 2.

An example of a bimatrix game, the Prisoner’s Dilemma, is shown
in Table 1 and will be used in experiments in section 7. We will
make the usual assumption that all matrix payoffs are bounded in
magnitude by somermax. We consider the problem of learning in
the context of repeated play of a bimatrix game by two agents. This
is called arepeated game. The policy of the learner will be written
asπ and that of the opponent asρ. The expected payoff of the
learner is

V (π, ρ) =
∑

(a,o)∈A1×A2

π(a)ρ(o)M1(a, o)

assumingM1 is the learner’s payoff matrix. In a repeated game, the
goal of the learner is to deduce a policy that maximisesV (π, ρ).

Table 1: Prisoner’s Dilemma Game.(a, b) in the (i, j)th cell is
the tuple of payoffs for Row agent and Column agent (in that
order) for each combination of their actions(i, j) ∈ {C,D} ×
{C,D}.

Actions Cooperate (C) Defect (D)
Cooperate (C) (3,3) (0,5)
Defect (D) (5,0) (1,1)

DEFINITION 2. A best responseof the learner to the opponent’s
policy,ρ, is a set of probability vectorsBR(ρ) defined asBR(ρ) =
{π∗ ∈ ∆(A1)|V (π∗, ρ) ≥ V (π, ρ),∀π ∈ ∆(A1)}, where∆(A1)
is the set of probability distributions overA1.

The best response is the set of optimal policies that a learner can
play to maximize its expected payoff given the opponent is playing
ρ. However, this definition of best response does not account for the
effect on the opponent of the learner’s play. Usually the opponent
will follow an algorithm that takes into account the learner’s play in
its decision process. So ifht represents the history of play at time
t, i.e. the sequence of joint actions played by the two players till
timet, then the opponent’s policy at timet, ρt, will be a function of
ht, given byF (ht) ∈ ∆(A2). Hence, best response should entail
maximization in context of this functionF .

We shall refer to histories that are of bounded length,w. Thus for
t > w, htw will mean the history ofw most recentjoint actions1,
with all previous actions forgotten, i.e.,htw = ht−1

w−1.{at−1, ot−1}.
We call any adversary that chooses its action according to some
stationary functionF of htw, a recent history adversaryor RHA.
Given such an opponent that is affected by the learner’s actions,
it is insufficient for the learner to decide on actions based on its
immediate returns. It should form a more informed decision based
on lookahead over the opponent’s future behavior. In this paper, our
goal will be to find aT -sequence of deterministic decision rules for
the learner,πT = π(0), π(1), . . . , π(T − 1), that maximizes the
undiscounted sum of expected rewards over a finite horizon,T after
the firstw steps of play (at which point, the history ish0

w say),

UπT (h0
w) =

t=T−1∑
t=0

V (π(t), F (htw))

1If t ≤ w, the history is thet most recent joint actions, though we
only use histories fort > w.

3. MODELING AN RHA AS AN MDP
Generally learning against opponents that are finite automata

(bounded rationality) has received significant attention [13] espe-
cially model based approaches [8, 7, 9]. Freund et. al have ad-
dressed more complex opponent strategies that could require ex-
ponential models if represented as finite automatons [14]. They
have explored learning against recent history adversaries (RHA)
in the contract game and provided efficient learning algorithms
against probabilistic state automatons as opponent models, with
small cover time [14]. We provide a uniform framework for rep-
resenting RHA models that applies to any game and show how this
sort of modeling leads to efficient learning.

Since the opponent’s decision is based on the current history,htw
(over thew most recent joint actions), this history defines astateof
the opponent. LetS be the set of all possible recent joint histories,
i.e. all possible states of the opponent. Note that the opponent’s
decision at timet depends on its state at that time and the transition
to the next state,ht+1

w depends on the actions of both agents. We
assume that the opponent uses a stationary functionF (htw) to com-
pute its mixed policy,ρ, at timet and that the learner chooses a de-
terministic policyat simultaneously. Thus the transition from state
htw to stateht+1

w is characterized by the distributionρ, and there are
|A1||A2| possible next states constituting the support of the prod-
uct of ρ and the learners decision. This gives a transition function
δ : S ×A→ ∆(S), identical to the usual transition function of an
MDP. Thus if,ht+1

w = htw−1.{at, ot} whereot is the opponent’s
action,ot ∼ F (htw) ≡ ρt, thenδ(htw, at, h

t+1
w ) = F (htw, ot).

In other words, the opponent’s decision functionis the transition
function of this model. As in any MDP learning problem, this dis-
tribution is unknown.

Now the reward function of this transition model is given byR :
S × A → <, since the learner’s reward for choosing actionsat
in statehtw is given byR(htw, at) = V (at, F (htw)) = V (at, ρt).
The above transition and reward functions together with the state
and action sets (S andA) define a Markov Decision Process for
the learner in the repeated game and it is sufficient for the learner
to learn the optimal policy in this MDP to play the game well. We
call this MDP anAdversary Induced MDPor AIM in short.

Note that the state space of the AIM is exponential inw, viz.,
|S| = |A|2w. Hence learning the AIM (R,F unknown) using an
efficient MDP learning algorithm generally cannot be polynomial
in w, since even the best of such algorithms are polynomial in|S|.
However, many of the states inS will possibly never be visited
since the opponent’s distributionρt = F (htw) may not have full
support; so practical efficient learning may be possible. Also note
that the AIM is not necessarily ergodic under a given policy of the
learner; hence it is generally not a unichain, even though every state
in S is reachable from every other state in at mostw transitions
underappropriatepolicies of the learner.

4. LEARNING IN MDPS AND POMDPS
A strong body of literature exists on learning MDPs. An MDP

whose transition and reward functions are known can be solved for
optimal policy by linear programming in timeP(|S|, |A|) [4], P
stands for some polynomial function. Online learning (to accu-
mulate near-optimal payoffs) in unknown MDPs for undiscounted
settings have been addressed byE3 [17] andR−MAX [6] algo-
rithms that work in timeP(|S|, |A|, Tε) whereTε is theε-return
mixing time[17]. Efficient online learning in unknown MDPs has
also been addressed in [12]. Tesauro [20] has extended Q-learning
to MAS (Hyper-Q learning) where values of mixed strategies are
learned and Bayesian inference is used to estimate opponent strat-
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egy. He has argued that some history independent opponents (w ≤
1) would present a stationary MDP environment (in a stochastic
game sense, whereas our framework is for repeated games) to the
learner to assure convergence.

Efficient offline algorithm for reinforcement learning has been
explored in the PAC framework by Fiechter [11]. More recently
Pivazyan and Shoham [18] have provided a uniform framework for
offline reinforcement learning that improves on [11] and provides
a polynomial dependence onmin(Tε, rs) wherers is thespectral
radius of the MDP, for undiscounted setting. For the discounted
setting they prove aP(|S|, |A|, rs) bound on the sample complex-
ity.

All the above methods address infinite horizon problems, i.e.
where the goal is to (almost) maximize the total asymptotic re-
turn, discounted or averaged. A finite horizon version of this prob-
lem seeks to maximize the sum (discounted or averaged) of returns
over the firstT steps. Kearns et al [16] provide offline algorithm
for POMDPs - the trajectory tree method - that is independent of
|S| but exponential inT . Bagnell et. al [2] have improved on this
bound to polynomial inT by assuming a known baseline distri-
bution on states reflecting how often a “good” policy should visit
those states. The problem of learning optimal mappings from states
to actions in MDPs is replaced in POMDPs by that of learning opti-
mal mappings from observations to actions. Observations generate
belief states, or probability distributions over the state space. In [2],
this distribution is assumed to be given as the baseline distribution
and a policy that optimizes reward-sums relative to this distribu-
tion is learned. This allows for a Monte Carlo algorithm that is
independent of|S|. Since in our problem the state space is expo-
nential, we wish to have an algorithm that is independent of|S| too.
Assuming that the baseline distribution of [2] encodes some form
of domain knowledge, their POMDP algorithm is actually suitable
for our large MDP problem, even though the states are completely
observable. It also allows for the possibility that the learner does
not observe the opponent’s actions turning it into a true POMDP2

where this approach still works. Hence we adopt this approach in
this paper.

5. LEARNING IN AIM OVER FINITE HORI-
ZON

In this paper we consider the finite horizon version of MDP
learning for two primary reasons. Firstly, learning over infinite
horizon makes little sense in real multiagent systems which are
dynamic with the set of opponents ever-changing. Agent interac-
tions are effectively ephemeral where learning to perform over a
finite horizonT , given a learner has an idea of how long it is go-
ing to interact with a given opponent, may enhance the efficieny
of learning. Secondly, learning over infinite horizons can compli-
cate the problem of learning best response. Consider the example
of the “combination-lock” argument in Fortnow and Whang [13].
An RHA with w size history can play an action that is good for
the learner only when the learner’s lastw actions match a certain
pattern. Searching for this pattern can beO(|A1|w) in the worst
case, but this would be necessary to be able to play well for ever
after. However if the learner knows that it needs to optimize payoff
over only a finite horizon, it may not need/want to explore for the
key pattern even ifT > |A1|w. Using the method that we outline
next, an agent can learn to achieve near optimal (restricted sense)

2It can be observed that the algorithm explained later in Table 2,
uses the observation of opponent’s actions only to distinguish states
and if this information is not available, it can still work since it has
access to aµ-reset model.

rewards in polynomial time given some domain information.
Our goal is to learn to optimize the sum of rewards of a learner

through theT interactions following the firstw interactions. We
assume that the MAS is dynamic in the sense that the opponents
can be changed at the learner’s will. The example scenario below
describes a situation where the assumptions here make sense. We
also assume that there is a class (C) of recent history opponents
for the learner to choose from, who do not necessarily play the
same strategies, only strategies whose mean matchesF . So if the
probability of actiono of any opponentc ∈ C is given byFc(., o),
thenECFc(., o) = F (., o), ∀o.

An Example Scenario
A motivating example for such a scenario is a market with multiple
sellers where the buyer is interested to learn an optimal negotiation
strategy for buying an item, say a digital camera. Since such an
item has a pretty much fixed set of selling points, e.g., megapixels,
optical zoom factor, battery life etc., it is reasonable to assume that
the negotiation strategies of the sellers will not vary much. In this
example setup there is no intermediate reward throughout any se-
quence of online interactions, just one reward at the end of each se-
quence, viz. an inverse function of the price negotiated. Note how-
ever, that this reward does indeed depend on the entire sequence of
negotiations. The buyer can go from one seller to another without
committing to buy from any and learn offline how best to negotiate
for the best deal from a number of online interactions each with a
distinct seller.

The Algorithm
Our approach is to use the Monte Carlo basedµ-PolicySearch algo-
rithm from [15] to construct aT sequence of non-stationary deter-
ministic policies,πT = {π(., 0), π(., 1), . . . , π(., T − 1)}, for the
AIM. We call this algorithmµ-PSAIM (µ-Policy Search in AIM),
and is detailed in Table 2. FirstπT is initialized randomly. To
calculateπ(., t) at time t, using a baseline distributionµ like µ-
PolicySearch, the learner generates a history and executes its ac-
tions in thew-window history. At the end, it enters a state in the
AIM (step 2(a)ii in Table 2), executes a random action and there-
after executesT − t−1 steps of on-line interactions with the oppo-
nent, following the corresponding portions of the policyπT . Then
it switches the opponent and repeats the procedurem times. Af-
ter observingm samples of(T − t)-step reward-sums (estimate of
Qπ,t(s, a) which represents the undiscounted sum of rewards ob-
tained by playinga in s at t and then followingπT for remaining
T − t − 1 steps) it can construct an unbiased estimate of a quality
function,Qπ,t(µ, p) = Es∼µ(.|t)Ea∼p(.|s)Qπ,t(s, a) (see [2, 15]),

p ∈ Π1, that is
(

ε
rmaxT

)
-correct with probability at least1 − δ 3,

if

m = O

(
|A|2T 2

ε2
(log |Π1|+ log

1

δ
)

)
(1)

whereΠ1 is the class of deterministic decision rules for the learner
whose size can be doubly exponential inw in the worst case, but
we consider a subset of this class of fixed size that is predisposed
toward likelier states fromµ. With the help of this quality function
the learner can compute the optimal action ruleπ(., t), and execut-
ing this entire procedure in a loop fort = T−1, T−2, . . . , 0, it can
construct the requiredT -sequence policy. Moreover, ifµ is close to
the distribution over most favorable states [2, 15] in the AIM, then
the learner has aT + w step optimal plan for interactions with the
opponent class. Observe that only that portion ofπT , which has al-
3We refer to this as(ε, δ)-learning,ε, δ > 0.
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ready been computed, is used at anyt for computingπ(., t); hence
the random initialization ofπT is merely a technical step. The indi-
cator functionI (step 2(b)) gives 1 if argument is true, else 0. The
opponent switch effectively provides a reset button. Note that reset
models have been studied before in Multiagent Learning [10].

In context of the motivating example above, it is useful to ob-
serve that the price negotiated at the end of each interaction se-
quence would generate the estimateQi directly in step 2(a)iii; there
is no intermediate reward to sum over to generate this estimate.
Also note that each sequence starts att and proceeds untilT , the fi-
nal step of negotiation, so that an estimate can indeed be generated
at the end of every sequence.

1. Input Π1, T . Randomly initialize πT =
{π(., 0), π(., 1), . . . , π(., T − 1)}.

2. Fort = T − 1, . . . , 0 do

(a) Fori = 1, 2, . . . ,m do
i. Select an opponent randomly without

replacement fromC.
ii. Generate a historyhw according to
µ(., t), ignore the opponent’s actions
and play the learner’s sequence ofw ac-
tions.

iii. Reach a state (history)si, generate an
action ai ∼ Uniform, follow this ac-
tion and then policyπT for the remain-
ing T − t − 1 steps. Note the re-
wards and generate an estimateQi for
Qπ,t(si, ai).

(b) With the m samples of the form
{(si, ai, Qi)}, define

Qπ,t(µ, p) =
|A|
m

∑
i

QiI(p(si) = ai)

(c)

π(., t) = arg max
p∈Π1

Qπ,t(µ, p)

3. Return T -step policy πT =
{π(., 0)π(., 1) . . . π(., T − 1)}.

Table 2: Theµ-PSAIM algorithm

THEOREM 1. The total number of transitions observed by the
algorithmµ-PSAIM is given by

P(|A|, T, w, |Π1|, 1/ε, 1/δ)

Proof : The dependence onw is easily established noting that
step 2(a)ii isO(w). The algorithm outputs aT step plan which
together with the given baseline distributionµ implies aT + w
step plan. Them samples generated in Table 2 (step 2(a)) are not
identically distributed since the transition distribution is varying but
with mean identical toF . Therefore the quality estimatesQi are
still independent and unbiased (becauseEFc = F, c ∈ C) and
AQiI(p(s) = a) is an unbiased estimate ofQπ,t(µ, p). Thus Ho-
effding inequality and union bounds are applicable. The rest now
follows directly from Theorem 6.3.3 in [15].

THEOREM 2. If pT is theT step policy returned byµ-PSAIM,

then for anyT -step policyp′T and any historyhw,

UpT (hw) ≥ Up′
T

(hw)− ε− rmaxT‖dp′
T
,hw − µ‖

wheredp′
T
,hw is the state distribution of theT -step policyp′T start-

ing from statehw, ‖‖ is theL1-norm, andε was introduced in con-
text of equation 1 before.

Proof : This follows from Theorem 6.3.1 in [15].
This result establishes the quality of the policies learned byµ-

PSAIM. The value ofµ-PSAIM’s output is close to that of any
T -sequence policy whose future state distribution (d) is close to
µ. Hence, ifµ is a “good” distribution,µ-PSAIM’s payoff will be
close to optimal. Note however, that the notion of optimality is in
context of the given class of deterministic decision rules,Π1.

6. PAST SACRIFICE ADVERSARIES IN
CONTRACT

Here we consider the example of apast sacrifice adversaryor
PSA [14] in the game of contract. This game allows two actions
to each of the players, written as 0 and 1. The game payoffs of the
learner areM1(1, 1) = 1,M1(0, 0) = M1(0, 1) = M1(1, 0) = 0.
Unlike matching pennies, as discussed in [14], it is insufficient to
learn a best response to the opponent since that does not guarantee
the high payoff (i.e., 1) to the learner. The learner must also learn to
influence the opponent to play action 1 frequently enough to score
high averagepayoff. Whether this is possible (and in a sustainable
manner) depends on the type of the opponent.

A past sacrifice adversary is defined [14] as a class of recent
history adversaries whose strategy is given by a boolean formula
FI(htw), whereI ⊆ {1, . . . , w} is an index set,

FI(htw, 1) =
∨

i∈I,i≤t−1

(¬ai ∧ oi), t = 2, 3, . . .

with FI(h1
w = ∅, 1) = 1. FI(htw, 0) = 1 − FI(htw, 1), i.e.,

the opponent’s strategy is deterministic at all times. The opponent
essentially scans the historyhtw to identify if the action pair(0, 1)
was played at any time in the index set and playsot = 1 if so,
else playsot = 0. The action pair(0, 1) is called asacrificesince
the learner passes the opportunity of playing 1 when the opponent
plays 1 to score the high payoff, and plays 0 instead. Hence the
opponent is predisposed to rewarding past sacrifices of the learner
by playing 1 that allows the learner to score payoff 1 by playing 1.
However, the player must be cautious since greedily playing 1 will
deplete the history of any sacrifices making any future payoff of 1
impossible.

Freund et. al have shown [14] that after playing 0 for at most
w3 time steps, the learner can establish a pattern of sacrifices every
g rounds, whereg = GCD(I) is the greatest common divisor of
the indices inI. So the optimal payoff (average) over infinite hori-
zon that can be obtained against such an adversary byanyplayer is
at most1/g (Lemma 3.2 [14]). Freund et. al have also presented
a 1/2-competitive (i.e., achieves at least half of the optimal pay-
off after some time) efficient algorithm to play contract (Theorem
3.1 [14]). Thus the lower bound of the payoff realized by their al-
gorithm is at best1

2g
. We show below thatµ-PSAIM can learn to

achieve higher bound on the average payoff than1
2g
− ε in some

cases for any givenε > 0. But before that, in the next paragraph
we present a short comparison of the two algorithms regarding their
nature and assumptions in order to justify comparing their perfor-
mances.

The main difference between the algorithm in [14] andµ-PSAIM
is that the former is an online learner while the latter learns of-
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fline from repeated online interactions. The former is designed to
learn without using information about the opponent’s state while
µ-PSAIM infers the opponent’s state from the observation of the
lastw joint actions4. Note that this is a parallel characterization
of the opponent’s actual state, e.g., the opponent could be using a
small DFA model for its decisions whileµ-PSAIM would use an
exponential state-space for its opponent model. This is not waste-
ful, firstly because it does not need to sample the entire state space,
and secondly since, for example, some PSA using DFA could actu-
ally require exponentially many states [14]. On the other hand, this
uniformity in opponent-modeling allowsµ-PSAIM to work with
any RHA, not just a PSA, while the algorithm in [14] is specif-
ically designed to learn against a PSA only. Note that [14] also
mentions that if the learner knows|I| then it can achieve higher
average payoff than1/2g, butµ-PSAIM can do that against some
PSA without knowing |I| as we demonstrate below. Lastly, both
algorithms assume thatw is known.

THEOREM 3. Against some PSA opponents,µ-PSAIM can(ε, δ)-
learn to achieve higher average payoff than1

2g
− ε in contract.

Proof : The proof is by example. We first establish the bounds
on the average payoff achievable byµ-PSAIM, u, through the fol-
lowing lemma and then show that in some cases this value can be
greater than1

2g
− ε (although always< 1

g
).

LEMMA 4. If the baseline distributionµ is accurate andT >(
|I|
|I|−1

)
(w − min I + 1), µ-PSAIM will efficiently(ε, δ)-learn

a policy that pays at leastu − ε on the average after timew in
contract, such that

|I| − 1

w
≤ u ≤ |I| − 1

|I|

Proof : Let I = {i1, i2, . . . , ir}, 1 ≤ i1 < i2 < . . . ir ≤ w.
The optimal policy in the given AIM can be seen as follows. The
best baselineµ(., 0) for the learner is to play 0 for all of the first
w steps. The learner first needs to insert a sacrifice at the most
recent round in the history. This is trivial at stepw+ 1 since in the
previousw plays, the opponent has played 1 at every step inI and
the learner has played a 0 in all those steps (byµ), implying that
ow+1 = 1. So if the learner choosesaw+1 = 0 then roundw+1 is
a sacrifice. Now the learner can start playing 1 and collect reward
1 as this sacrifice passes through the indicesir, ir−1 . . . , i2. This
gives it a maximum ofr − 1 reward points overw − i2 + 1 steps.
Now when this sacrifice reaches indexi1 the learner must play 0
to insert a fresh sacrifice in the most recent round in history and
repeat the above strategy. Thus the learner can scorer − 1 reward
in w − i1 + 1 steps giving an average of

u =
r − 1

w − i1 + 1

This pattern of reward can be maintained indefinitely. An example
with w = 4, I = {2, 3} is shown in Figure 1. Evidently, given
the assumptions, Theorem 2 implies the learner will(ε, δ)-learn to
attain payoffu. The result is established by noting that1 ≤ i1 ≤
w − r + 1. (Lemma 4).

Note that ifT ≤
(
|I|
|I|−1

)
(w− i1 +1), then it is not worthwhile

to learn the optimal policy in AIM; instead the learner may just
play 1 all the time making sure that it scores at leastr reward in the
initial w steps. Consequently, the best baseline distributionµ(., .)
for this scenario will concentrate the mass on playing all 1’s.
4Their algorithm also needs to observe the opponent’s actions at
least in the initial rounds [14]
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 w h w

t+1
= { }*  *  1  0

*  *  0  1

h w

t+2
= { }*  1  0  1

*  0  1  1

a  =  1t+1 t+1
t+2 t+2 o  =  1

o  =  1a  =  0
reward = 0

reward = 1

sacrifice

sacrifice

new sacrifice

h  = {
o   o   o   o
a   a    a   a w

t

reward = 0

 t−4    t−3        t−2    t−1

 t−4    t−3         t−2    t−1
}

t

t

o  =  0

a  =  1

Figure 1: The sustainable payoff loop in Contract for w =
4, I = {2, 3}.

According to the results in [14], the bound onu cannot exceed
1/g. Observe that the maximum value ofu = r−1

r
< 1 is reached

when i1 = w − r + 1 or whenr = w. It is easy to verify that
in both extreme cases,g = 1. In general the average payoff that
µ-PSAIM gets close to will always be less than1/g. However the
bound can be higher than1/2g − ε. For example, ifw = 5 and
I = {3, 4, 5}, theng = 1, butu = 2

3
> 1

2g
. Thusµ-PSAIM can

efficiently (ε, δ)-learn to achieve higher average payoff than that
algorithm in some cases. (Theorem 3).

7. EXPERIMENTS IN PRISONER’S
DILEMMA

Several known algorithms fall into the class of RHA. For in-
stance, IGA [19], WoLF-IGA [5] and ReDVaLeR [3] use station-
ary functions on only one step history of policy followed by the
opponent as well as its own policy from last step, so aµ-PSAIM
learner can learn a near-optimal T-step deterministic policy using
w as low as 1. Another example is theTit-For-Tat (TFT) strat-
egy that is known to perform very well in the Prisoner’s Dilemma
game shown in Table 1 [1]. It also uses a window of size 1 and
furthermore its decisions are independent of its own past choices.
Therefore, theµ-PSAIM learner does not even need to observe the
opponent’s (TFT) actions to learn a T-step best response, because
F is independent of TFT’s policy.

We have experimented with a variant of the TFT algorithm, viz.
Tit-For-Two-Successive-Tats(TFTST), which usesw = 2 and its
policy is given by

F (ht2) =

{
defect if the opponent defected in the last two rounds.
cooperate otherwise.

The optimal strategy (πT = {π(., 0), π(., 1), . . . , π(., T−1)} say)
against TFTST in Prisoner’s Dilemma would be to defect in the last
two rounds and alternate between cooperate and defect in the pre-
vious rounds such that there are no more consecutive defects. The
idealµ(., t) distribution would be to distribute the mass uniformly
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Figure 2: Average payoff plots of the optimal policy and the
learned policy in Prisoner’s Dilemma game against a TFTST
opponent.

over all states of the form{
∗ ∗
πt−2 πt−1

}
and 0 for the rest of the states. However, thisµ as a form of domain
knowledge has a strong dependence on the knowledge of the opti-
mal policy beforehand, making the endeavor useless. So we need
to use a differentµ(., t) that does not assume knowledge of the op-
timal policy. On the other hand an inaccurateµ will contribute to
the error in Lemma 2. Though this error when averaged overT
is at most a constant, the value of this constant could be large. A
“good” choice forµ is the stationary state distribution of a “good”
policy, such as distributing the weight on alternating actionsCD
andDC and0 onDD andCC. Thisµ too assumes some domain
knowledge that alternating actions are “good” in this environment.
Rather than using suchµ distributions we wish to evaluate with one
that assumes no domain knowledge. We have experimented with a
suboptimalµ that effectivelydoes not assume any domain knowl-
edgeand found that the error of the output policy is still reasonably
small. In our experiments, we have used a stationary distribution
(in the senseµ(., t) is independent oft) that distributes mass uni-
formly over theentire state space. A little digression is in order
here to discuss this choice. Ifµ contains no domain information
(as in this case),Π1 cannot be reduced in any useful way and recall
that it can be doubly exponential inw. Though this can be tack-
led in small problems such as Prisoner’s Dilemma with smallw,
some domain knowledge will be necessary in larger problems for
tractability with regard toΠ1.

In the experiments, we variedT from 5 to 20, and noted the per-
formance of the policy output from each of 10 runs ofµ-PSAIM
and plotted their average (over these 10 runs) and standard devia-
tion in Figure 2. First observe that the optimal average payoffs are
4 + 2

T
and4 + 1

T
for T being even and odd respectively, assum-

ing that the learner always cooperates in the firstw rounds to set up
the opponent’s memory5. Not only does the curve from the learned

5This was also assumed in testing the output policies, but note that
only the performance from lastT rounds matter here.

policies follow the optimal policy’s pattern closely, the payoff isal-
wayshigher than what mutual cooperation (note that cooperation is
a safe strategy against the given opponent) would have yielded and
way better than mutual defection (the equilibrium strategy). We
usedm = 20T 2 in these experiments which should have meant
significant error (by equation 1) but in practice the error turns out
to be quite low, especially given that ourµ contained no informa-
tion about the domain.

8. CONCLUSION
We have provided a uniform framework (AIM) for learning against

a recent history adversaryin arbitrary repeated bimatrix games, by
modeling such an agent as a Markov Decision Process. We have
focused on learning an optimal policy in such an MDP over a fi-
nite horizon and adapted the existing efficient sampling-basedµ-
PolicySearch algorithm [2, 15] for learning optimal policies in such
MDPs. We have shown that our new efficient algorithm,µ-PSAIM,
can obtain higher average rewards than a previously known effi-
cient algorithm [14] against some opponents in the repeatedcon-
tract game. We have shown experimentally that even whenµ incor-
porates no domain knowledge the output policy can perform close
to optimal.
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