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ABSTRACT
This paper describes an implemented robotic agent architecture in
which the environment, as sensed by the agent, is used to guide
the recognition of spoken and gestural directives given by ahu-
man user. The agent recognizes these directives using a probabilis-
tic language model that conditions probability estimates for possi-
ble directives on visually-, proprioceptively-, or otherwise-sensed
properties of entities in its environment, and updates these probabil-
ities when these properties change. The result is an agent that can
discriminate against mis-recognized directives that do not ‘make
sense’ in its representation of the current state of the world.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence ]: Natural Language Processing; I.2.9
[Artificial Intelligence ]: Robotics

General Terms
Algorithms

Keywords
language modeling, spoken language interfaces, robotics,multi-
modal interfaces, sensor fusion

1. INTRODUCTION
The capacity to rapidly connect language to referential meaning

is an essential aspect of communication between humans. Eye-
tracking studies show that humans listening to spoken directives
are able to actively attend to the entities in the environment that
the words in these directives might refer to or ‘denote’, even while
the words are still being pronounced [26, 5]. This timely access
to sensory information about what input utterances might refer to
in the environment may allow listeners to adjust their preferences
among likely interpretations of noisy or ambiguous utterances to
favor those that make sense in this context, before any lower-level
recognition decisions have been made.
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If provided early enough in the recognition process, it is con-
ceivable that this sensory information could significantlyimprove
recognition accuracy of spoken language interfaces, particularly for
robotic applications in which users and interfaced agents share the
same environment. Moreover, a recognizer that estimates probabil-
ities of input analyses based on the entities or relations they denote
may be significantly easier to train and port across applications than
existing recognizers based only on word co-occurrences in text cor-
pora, since the associations between words and entities that would
be required in order to recognize input directives would be identi-
cal to those required in order to understand and execute these di-
rectives once they have been recognized. This re-use of training
data could save considerable expense in applications wheretask
requirements are relatively mutable and trained programmers are
scarce, and could facilitate the development of broadly portable ar-
tificial agents for assisting elderly or disabled users, whomay have
difficulty operating other kinds of controls.

This paper describes an implementation of this kind of ‘environment-
sensitive’ interface architecture, in which the environment as sensed
by a particular agent (including properties of the agent itself), is
used to guide the recognition of spoken and gestural directives to
that agent. Moreover, unlike existing multi-sensor interface archi-
tectures such as [12], which align input modalities on a wordlat-
tice representation after complete utterances have been recognized,
the proposed approach performs referential interpretation at every
frameduring the recognition process, so that an interfaced system
would be able to provice incremental feedback (gazing or gesturing
at hypothesized referents) while a user is still speaking.

The remainder of this paper is organized as follows:

• Section 2 describes other recent approaches to linguistic in-
terfaces for agents and how they relate to the current ‘environment-
sensitive’ approach.

• Section 3 describes an extensible agent architecture which
takes information about the agent’s environment from what-
ever sensors it has, and makes it available to the agent’s di-
rective recognizers.

• Then Section 4 describes a language model used inside the
agent’s directive recognizers that uses the sensor information
to guide the recognition of its input directives.

• Finally, Section 5 presents an evaluation of this general ap-
proach in an interactive mobile robot direction task, using
wheel tachometer sensors as context.
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2. BACKGROUND
Until recently, most research on using denotational meaning to

guide incremental recognition has focused on purely symbolic anal-
yses of semantic composition, using lexically-associatedlogical
expressions as hard constraints in an effort to find a unique sat-
isfying variable binding for each hypothesized derivationof an in-
put utterance [11, 15]. This approach does not scale up well to
the kind of spatial and temporal applications that are most likely
to elicit referential descriptions however, because thesehard con-
straints do not provide appropriate definitions for graded concepts
like ‘near’ or ‘large’ or spatial relations like ‘above’ or ‘in front of’
that become graded at their boundaries. As a result, the constraints
become arbitrary, and there is no guarantee that applying them will
result in a unique variable binding in the correct derivation.

More recent approaches [25, 21, 2] focus on modeling continuously-
graded atomic concepts such as color, shape, and motion (e.g. re-
sulting from visual perception), but do not incorporate these into a
model of deriving complete utterances from intended denotations.
Recognizers have been proposed that apply continuous models of
word meaning to filter the output of a purely corpus-based language
model, but these are either based on finite-state grammars [22] and
are unable to derive arbitrarily complex descriptions involving mul-
tiple entities, or are based on incomplete context-free derivations
for utterances [10], and therefore do not define complete proba-
bility estimates for hypothesized analyses of input utterances, as
conventional speech recognizers do.

The implementation described in this paper aims to fill the gap
between these two general approaches by developing a complete
probability model that derives entire utterances from denotational
meanings, which is naturally able to incorporate continuous proba-
bilities for graded concepts and spatial relations.

Similar approaches have been developed for successfully inte-
grating sensory data into autonomous robot architectures,for pur-
poses other than human-robot communication. An attentive stereo
vision system was integrated with a multi-tier agent architecture
onboard a mobile robot [27], and both auditory and visual percep-
tion was integrated to develop mobile robot soccer players for the
RoboCup competition [17]. With these types of successes, propos-
als are being put forth for unified cognitive architectures for mobile
robots [3], which attempt to endow a robot agent with the fullrange
of cognitive abilities, including perception, use of natural language,
learning, and the ability to solve complex problems. However, no
currently implemented approach integrates sensor data into the pro-
cess of recognizing users’ directives, as does the system described
in this paper.

3. AGENT ARCHITECTURE
As [9] states, ”With seemingly no effort, the human brain re-

constructs the environment from the incoming stream of - often
ambiguous - sensory information and generates unambiguousin-
terpretations of the world. To do so many different sources of
sensory information are constantly processed, analysed, and com-
bined.” Similar to humans in that a number of sensory percepts are
often available to make decisions, robotic agents must havean ar-
chitecture built which can not only collect the sensory databut also
integrate it for use in an appropriate manner (in this case, in order
to more accurately recognize users’ spoken and gestural directives).
It’s often the case where there are plenty of available sensors to col-
lect data but there is no way for the system to integrate the data in
order to make a useful decision or action determination.

We propose an agent architecture called MuSICA (Multi-Sensor
Integration for Communicative Agents) to build an autonomous

robotic agent capable of using both exteroceptive (visual,audio/speech)
and proprioceptive (in this case, robot wheel speed) percepts ob-
tained from the environment to more accurately recognize noisy or
ambiguous directives from a human user. Instead of relying on a
conventional static language model (trained on word pairs or word
triples in a corpus of example sentences) to help recognize unclear
utterances, the proposed robotic agent architecture is able to use its
sensory data to dynamically update a probabilistic language model,
based on its current environment context. This model conditions
probability estimates for possible directives on the properties of en-
tities in its environment and updates these probabilities when these
properties change.

Figure 1 shows a graphical representation of the componentsthat
make up the MuSICA architecture. The components are grouped
into classes relating to perception, integration, or effectors of the
robot. Components in each class can therefore interact withcom-
ponents of other classes through a standardized interface.This sim-
plifies the task of adding new sensors, effectors, or new types of
directives to the system.

3.1 Perception
The role of the perception components are to collect data di-

rectly from the environment. These may include proprioceptive
(e.g. wheel speeds of robot) and/or exteroceptive sensors (e.g. mi-
crophones, cameras, magnetic gloves). The sensors detect changes
in the environment and relay these changes to low-level processing
modules that translate the raw data into recognizable formats that
the integration components can use.

The types of sensors that are available for use in the currentim-
plementation include:

1. A microphone using the front end and acoustical model from
the CMU Sphinx 4 speech recognizer. The Sphinx 4 compo-
nent is used in ‘live’ mode (speech is processed as quickly as
a person begins talking). The raw voice data is translated by
the front end and acoustical model into a probability distri-
bution oversubphoneunits (representing the beginning, mid-
dle, or end sounds ofphonemes, which roughly correspond
to sounds of the alphabet letters in spoken English).

2. 16 Polaroid 6500 sonar ranging modules (on the robotic agent:
a Nomad Super Scout). The Polaroid 6500 is an acoustic
range finding device that can measure distances from 6 inches
to 35 feet with a typical absolute accuracy of +1 or -1 percent
over the entire range.

3. Two wheel sensors (also on the Super Scout robot) that can
provide the velocity of the wheels in 1/10s of inches per sec-
ond, the integrated x- and y- coordinate of the robot in 1/10s
of inches with respect to the start position, and the orienta-
tion of the steering in 1/10s of degrees with respect to the
start orientation in the range [0, 3600].

4. An Ascension Technologies Corp. Flock of Birds sensor on
a CyberGlove (Immersion Corp.) is used for gross pointing
gestures. The Flock of Birds sensor provides 6-degree-of-
freedom positioning of the wearer’s wrist with respect to a
magnetic base unit. These gestures are used to provide di-
rection and focus attention on objects, and may occur con-
temporaneously with spoken directives.

5. A Sensoray frame grabber card, which grabs frames at 30Hz
per second through a color camera. The color mode is RGB
where there are 3 bytes for every pixel (number of bits for
every pixel is 24). The video capture is done in NTSC mode.
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Figure 1: Agent Architecture

Pre-processors then detect likely candidates for entitiesin the
environment using blob coloring and color histogramming;
background subtraction is used to detect motion. The pro-
gram controlling the frame grabber translates the raw data
into a format used by the directive recognizer, which con-
tains the number of entities, the location of the entities, and
the color information of the entities.

3.2 Integration
The role of the integration components is to incorporate theagent’s

diverse sensor data into their internal (spoken language orgestu-
ral) recognition models. The architecture supports multiple rec-
ognizer components (running as independent threads on separate
machines), each of which may be tuned to a different type of di-
rective. For example, there may be separate components for recog-
nizing directives for manipulatory actions, for movement actions,
for directing sensors to attend to a particular area or phenomenon,
etc. Distributing recognition among independent task-specific rec-
ognizers in this way allows each recognizer to consider fewer possi-
ble interpretations in its analysis, and thereby allows even complex
multi-purpose agents to communicate efficiently.

Each of the recognizers can also be viewed as an autonomous
agent since they are completely independent from one another and
make decisions without interaction from other recognizers. Each
recognizer communicates with the robot which in turn effects change
to the environment.

The internal modules that make up the directive recognizersare
where the actual integration of the data occurs. The types ofmod-
ules used in the current implementation include:

1. Denotational Language Model: The Language Model in the
current implementation receives pre-processed speech input

from a perceptual component containing the front end and
acoustical model from the CMU Sphinx 4 speech recognizer
[13]. This component accepts acoustical signals from a (head-
set) microphone and sends the data to a directive recognizer
as the probabilities of sub-phonetic units (beginning, middle,
or end ofphonemes, which roughly correspond to sounds
of the alphabet letters in spoken English). The language
model in the directive recognizer then builds a probability
distribution over hypothesized directives using the environ-
ment information it receives from the agent’s sensors. This
environment-sensitive language model is described in further
detail in Section 4.

2. Gestural Model: The thread corresponding to the gestural
model communicates with a simplified gesture preprocessor
that in turn interprets various constrained pointing gestures
from data from the Flock of Birds. The gesture model in
this directive recognizer builds a probability distribution over
positions and velocities indicating valid and invalid point-
ing gestures based on recognized relational utterances (e.g.
”that”).

3.3 Effectors of the Robot
The role of the effectors of the robot is to act upon the commands

the robot has received from the directive recognizers and has cho-
sen to act upon. Effectors are devices that the robot uses to effect
change in the environment. In the current implementation the only
effectors that are used are the Nomad Super Scout mobile robot’s
two motor-driven wheels. Although the current system only uti-
lizes the wheels, it is capable of directing other types of effectors
such as robot arms, grippers, and tools.
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3.4 Component Interfaces
The architecture is built so components in each class can interact

with components of other classes through standardized communi-
cation interfaces. This allows new sensors, effectors and directive
recognizers to be easily accommodated since the only specifica-
tions a new component must provide is how the data is sent, where
the data is sent/received, and the required format structure. The two
basic interfaces built into the system are the 1) perceptioncompo-
nents to integration components and the 2) integration components
to effectors of the robot. Both layers are built using TCP/IPcon-
nections which provides a reliable, point-to-point communication
channel using sockets. This allows any program component tobe
written in either C, C++, or Java.

4. AN ENVIRONMENT-SENSITIVE (‘DENO-
TATIONAL’) LANGUAGE MODEL

Most modern spoken language interfaces recognize spoken di-
rectives using probabilistic models, which assign a probability es-
timate P(Y | X) for each possible messageY that might have
been intended by the user, given an uncertain observed acoustical
signalX. This probability is then decomposed, using Bayes law,
into a language model, consisting of a prior probabilityP(Y ) of
the intended messageY , and anacoustical model, consisting of
a posterior probabilityP(X | Y ) of the observationX given the
messageY (divided by an additional prior probability of the obser-
vationP(X), which can be eliminated because it is constant across
all possible analyses):

P(Y | X) =
P(X, Y )

P(X)
(1)

=
P(X | Y ) · P(Y )

P(X)
(2)

∝ P(X | Y ) · P(Y ) (3)

The interface then assumes the messageY which generates the
observationX with the highest estimated probability must be the
user’s intended message, and substitutes it for the observation in
later processing. Most language models used in automatic speech
recognition systems generate word strings as intended messages in
the prior modelP(Y ) using ‘n-gram’ probabilities ofn-word se-
quences (for example, ‘trigrams’ of three-word sequences)in a set
of training sentences. However, these purely-word-based models
do not provide any notion of phrasal or clausal constituent struc-
ture, which will be necessary in order to distinguish the different
environment entities that may be involved in a directive (e.g. those
denoted by the subject and object of a directive) if the modelis
expected to be sensitive to these denoted entities.

These phrasal or clausal constituents can be learned from a gen-
eral corpus of transcribed directives that are annotated with brack-
ets delimiting noun phrases, verb phrases, relative clauses, etc. (see
Figure 2.a.). Although this is a very detailed kind of annotation, it
can be partially automated using existing broad-coverage parsers.
Moreover, since it is likely that the syntactic patterns encoded in
these rules will be generally applicable, this annotation need only
be done once (the resulting rules can then be ported to different
environments).

These phrase-structure trees are then mapped to a Dynamic Bayes
Net (DBN) representation [7] via a variant of the left-corner gram-
mar transformation [20, 1], which preserves an explicit representa-
tion of constituents while minimizing the number of stack position
required to recognize the string using an incremental recognizer
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Figure 2: (a) ordinary phrase structure tree and (b) right-
corner transform of this tree for the sentence ‘pick up the
brown can straight in front of you.’

(such as a pushdown automaton).1

This right-corner DBN model is similar to the Hidden Markov
Models (HMMs) that keep track of probability distributionsover
state variables in conventional speech recognizers, but allows a
bounded stack of variables over incomplete constituents (phrases
and clauses) to be maintained, rather than a single state variable, at
every point in time. These incomplete constituents are represented
by ‘slashed’ categories like VP/NP, representing a verb phrase (VP)
lacking a noun phrase (NP) to follow it – or in other words, a tran-
sitive verb.

In this manner, right-corner derivations can be recognizedincre-
mentally while still preserving explicit representationsof interme-
diate constituents at all levels of the integrated model: e.g. repre-
senting subphones (corresponding to the onset, middle, andending
sounds of individual phonemes, extracted from Sphinx’s existing
acoustical models [24]) in the DBN’s lowest (i = 0) level, partial
phonemes in the next (i = 1) level (which is isomorphic to a hid-
den Markov model, also extracted from existing acoustical mod-
els), partial words in the following (i=2) level, and partial phrases
at subsequent (i > 2) levels, until eventually the denotation of a
complete sentence can be recognized in the top level, at the end of
the utterance.

When they are mapped to the right-corner DBN model (see Fig-
ure 3), the transformed trees are decomposed into sets of recog-
nition rules, which are probabilistically weighted based on their
frequency in the training corpus. The right-corner DBN (shown in

1This observation has been used to justify constraints on internal
recursion (e.g. arising from rules of the form ‘S�a S b’), but not
left or right recursion (e.g. arising from rules of the form ‘S�S a b’
or ‘S�a bS’), by converting context-free grammars into finite state
automata [4, 18], but this conversion makes constituent structure
unavailable for interpretation at run time.
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Figure 3: Right-corner derivation of ‘pick up the brown can
straight in front of you,’ mapped to random variable positions
in DBN. Taken together, each stack forms a complete analysis
of the recognized input at every time framet.

Figure 4) uses two kinds of rules, each mapping a pair of adjacent
incomplete constituentsLi−1

t
andLi

t to a higher-level pair of ad-
jacent incomplete constituentsLi

t+1 andLi+1

t+1. One kind of rule
combines the two adjacent incomplete constituents (e.g. VP/NP
and NP) into another possibly incomplete constituent (e.g.VP) in
Li

t+1, leavingLi+1

t+1 to be filled in by a higher-level rule; and the
other kind of rule passes the less recently recognized constituentLi

t

up to the next higher levelLi+1

t+1, so that it can be combined with
some later constituent when one becomes available. The probabil-
ities governing these two kinds of rules (induced over the DBN-
mapped transformed grammar) is called acomposition model.

Phrasal or clausal constituents from phrase-structure-annotated
corpora can then be associated with denoted entities (for example,
the segmented region of pixels that a noun phrase ‘the brown can’
refers to in a training example) before they are mapped to a right-
corner DBN and decomposed into composition rules. The resulting
rules do not have to be specific to the entities in the trainingenvi-
ronment, however. The specific entities can be abstracted away us-
ing ‘coindexation patterns’ which describe the entities denoted by
each resulting constituent purely in terms of coindexations from en-
tities used in the composed constituents. Although some structural
information is lost in certain parts of the right-corner transform
(e.g. the prepositional phrase in Figure 3 could be a noun phrase
or a verb phrase modifier), these coindexation patterns ensure that
the dependency information from the original phrase structure tree
will be preserved.2

Entities must still be initially introduced at some point, however.
This is done using alexicalization modelwhich defines the proba-
bility with which a word (a symbol at some particular ‘lexical’ level
of the DBN) can be replaced with a syntactic category and a setof
entity features, allowing distributions over syntactic categories and
denoted entities to be easily calculated for references to entities in
any new environment.

4.1 Lexicalization model
The lexicalization model is where the sensor information inter-

acts with the right-corner DBN language model. It controls the
probability with which a wordW (for example, the word ‘covers,’
recognized by its component phonemes), may be replaced withan
incomplete constituent categoryP (for example VP/NP) and an as-
sociated entity or vector of entitiesE in the current environment (in
this case, the entity that is covered and the entity that is covering
it).

2It should be pointed out however that the bounded stack of the
DBN representation limits the number of available PP attachment
configurations to those that involve only a bounded amount ofin-
ternal recursion (see [14, 19] for arguments that such limitations
are appropriate for modeling human language).
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Figure 4: DBN implementation of finite-stack recognizer. Ran-
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t , L
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probability distributions to instances of (possibly incomplete)
constituent labels. Random variablesR0
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2
t , R

3
t , R4

t at
each time frame t assign distributions to rules for combining
labels, propagating labels to higher levels, or retaining labels at
their current levels.

The lexicalization model takes as input a vector of featuresrep-
resenting properties of entities in the environment, and returns a
distribution over these entities. In the current implementation, the
possible features include the (wheeled robot) agent’s leftand right
wheel speeds, the slope and intercept of a line representingthe di-
rection of a pointing gesture by the speaker (as seen from an over-
head camera), andX, Y -coordinate locations andH, S, V (hue,
saturation, value) scores for average colors of entities inthe world
(segmented color-blobs in images from the same overhead cam-
era). Since these different sensor modalities are not always avail-
able simultaneously, this model takes in feature ”packets”which
are tagged with the type of input represented. For example, anew
reading for wheel speed will be of the form ”w 4.3 4.8.”

The desired output of the lexicalization model is:

P(E,P | W ) = P(E | P, W ) · P(P | W ), (4)

whereE is a vector of entities,P is a pre-terminal symbol as de-
scribed in Section 4 (e.g. NP/NN), andW is a terminal symbol, i.e.
a word. P(E | P, W ) andP(P | W ) are obtained from the same
training data used for building the syntactic models, whichconsists
of a corpus annotated with syntactic constituents and denotations.
For a given word in the training set, its word model,P(E | P, W ),
is built by collecting the features of all entities that it referred to in
the training set. A gaussian distribution over the feature set is ob-
tained using Maximum Likelihood Estimation (MLE), and is then
normalized to the set of entities (each entity is assigned a proba-
bility proportional to the probability of its features).P(P | W )
is obtained using frequency counts in the syntactic corpus.When
the lexicalization model receives a feature packet, it usesthe word
modelP(E | P, W ) andP(P | W ) to compute a distribution over
entities and pre-terminals for every modeled word.

5. EVALUATION
The evaluation of the system’s capabilities was performed us-

ing two different experiments. The first experiment evaluated the
system’s ability to accurately yield correct denotations of complex
directives and the second experiment evaluated the benefit of using
an environment- sensitive communicative agent architecture.
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5.1 Experiment 1
The denotational language model was evaluated on collecteddi-

rectives to a voice-directed mobile manipulator arm in front of a
shelf stacked with everyday household objects (cereal boxes, soft
drink cans, etc.), which was photographed using a 3-D laser scan-
ning camera.3 The resulting 3-D point cloud was polygonized into
a triangle mesh and segmented into entitiesei corresponding to
convex regions of this mesh, each with continuous features~fei

specifying the entity’s size (exposed surface area), shape(ratio of
longest to second longest perpendicular dimensions), spatial loca-
tion (3-D coordinates of centroid), and color (average hue,satura-
tion, and intensity over all pixels in the segment). Word meanings
were modeled for adjectives and prepositions using multivariate
gaussians in this feature space (defined on color, size, and shape
features for adjectives, and on differences in centroid coordinates
for prepositions), which were developed partially by hand as a domain-
independent language resource. Verbs and common nouns were
considered domain-specific and were trained automaticallyon a
version of the collected corpus of arm directives that was anno-
tated with phrase structure (labeled brackets) and constituent deno-
tations (in the associated training environment). The compositional
model was trained on (right-corner transforms of) the denotation-
annotated phrase structure trees in this same annotated corpus. All
training and testing using this corpus was done using the leave-one-
out method of cross-validation.

The accuracy of the sentence-level denotations obtained from
the integrated denotational language model was tested against that
of denotations obtained by parsing and interpreting the single sen-
tence output of a trigram HMM-based language model trained on
transcriptions of the same collected corpus, using a parserand in-
terpreter trained on the annotated version of the same corpus (again
using leave-one-out cross-validation). Due to the large amount of
noise in this rich environment, the single-best pipelined language
model yielded 0/165 sentences with correct denotations; whereas
the integrated denotational model yielded 54 parses, 10 of which
had correct denotations (p<.1 due to chance) – a statistically signif-
icant improvement (p<.01 using a two-tailed t-test). These results
were fairly evenly distributed across task environments.

5.2 Experiment 2
The benefit of this environment-sensitive communicative agent

architecture was evaluated using a relatively self-contained subset
of recognizable directives relating to wheel movement: ‘start/stop
moving,’ ‘ start/stop turning left/right,’ and the relevant sensors for
the denotational recognizer: left and right wheel tachometers. 75
input utterances were collected by asking two subjects to direct a
voice-controlled mobile robot using the above commands.

The ‘lexicalization model’ part of the denotational language model
(as described in Section 4) was trained on a small set of moving and
turning scenarios staged by a trainer, consisting of three scenarios
for each directive. These scenarios were intended to correspond
to the preconditions of ‘sample events’ that might be provided for
each type of directive by an (experienced) user teaching thesys-
tem different ways of changing trajectory. The system was then
supplied with a pre-existing ‘composition model’ (as described in
Section 4) trained on directives that were transcribed and annotated
with phrase and clause constituents, and with the objects (in some

3Subjects were asked to direct the manipulator arm to pick up sev-
eral objects from the shelf. The objects were visually designated
(by pointing), in order to avoid biasing subjects toward anylinguis-
tic description. As a result, some of the collected directives contain
very long, complex definite descriptions. The manipulator arm was
a non-functional prop during this data collection.

independent training scenario) denoted by each constituent.
An agent with the integrated environment-sensitive (denotational)

recognizer described in the previous sections was comparedwith
a baseline agent whose directive recognizer did not incorporate
this kind of environment information. This baseline recognizer
used a conventional trigram Hidden Markov Model (HMM)-based
language model trained on the sample set of directives described
above. Of the 75 collected utterances, the integrated denotational
model recognized 71 correctly, whereas the baseline HMM-based
model recognized only 58 correctly. This represents a 70% reduc-
tion in recognition error due to the environment-sensitive/ denota-
tional architecture. This is a statistically significant improvement
with p ≤ .01 using a two-tailed t-test.

The linear-time recognizer ran in approximately 10 to 20 times
real time (so on average, a one-second utterance takes 10 to 20
seconds to process) on a 2.4GHz Pentium 4 desktop computer. This
processing speed is on par with that of other experimental systems
used in speech recognition evaluations, and can be optimized to run
more efficiently through various techniques [6].

6. CONCLUSION AND FUTURE WORK
This paper has described an implemented robotic agent architec-

ture in which the environment, as sensed by the agent, is usedto
guide the recognition of spoken and gestural directives given by a
human user. This architecture has been observed to reduce recog-
nition error by up to 70% over a conventional HMM-based spoken
language interface in controlled tests. Moreover, this architecture
allows hypothesized denotations to be dynamically extracted dur-
ing recognition, while users are still speaking, presenting the excit-
ing possibility of allowing an interfaced agent to provide incremen-
tal feedback in other modalities, e.g. using gaze or pointing gestures
to indicate understanding (or misunderstanding) of indented mean-
ings. In future work, this possibility will be examined in greater
detail.

Also, following [23], the denotational model described in this pa-
per models references using tractable distributions over candidate
entities or relations (tuples of candidate entities) of bounded arity.
Others [8] have correctly argued that this representation is inade-
quate for intensional references such as goals or destinations which
do not correspond to existing entities. This approach is therefore
being extended to employ sampled spatial coordinates or attribute
values in a particle filter as potential referents for descriptions of
spatial regions or hypothetical entities. This extension is indepen-
dently motivated by the efficiency of this technique for approximate
probability estimation in complex multiply-connected time-series
models such as those described above [16].

For further information and downloads of right-corner DBN tools,
visit http://www.cs.umn.edu/research/nlp/.
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