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ABSTRACT

This paper describes an implemented robotic agent artinitem

which the environment, as sensed by the agent, is used te guid

the recognition of spoken and gestural directives given ly-a
man user. The agent recognizes these directives using atplisb

tic language model that conditions probability estimategbssi-
ble directives on visually-, proprioceptively-, or othésersensed
properties of entities in its environment, and updatestpesbabil-
ities when these properties change. The result is an agantdh

discriminate against mis-recognized directives that do‘make

sense’ in its representation of the current state of thedwvorl

Categories and Subject Descriptors

1.2.7 [Artificial Intelligence ]: Natural Language Processing; 1.2.9
[Artificial Intelligence ]: Robotics

General Terms
Algorithms

Keywords

language modeling, spoken language interfaces, robatiodj-
modal interfaces, sensor fusion

1. INTRODUCTION

The capacity to rapidly connect language to referentialnimega

is an essential aspect of communication between humans: Eye

tracking studies show that humans listening to spoken tilneec
are able to actively attend to the entities in the envirorintieat

the words in these directives might refer to dehoté even while

the words are still being pronounced [26, 5]. This timelyessc
to sensory information about what input utterances migher re

in the environment may allow listeners to adjust their jexfiees
among likely interpretations of noisy or ambiguous uttesmto
favor those that make sense in this context, before any Kavet

recognition decisions have been made.
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If provided early enough in the recognition process, it ig-co
ceivable that this sensory information could significamtiyprove
recognition accuracy of spoken language interfaces quéatiy for
robotic applications in which users and interfaced agemisesthe
same environment. Moreover, a recognizer that estimatéspil-
ities of input analyses based on the entities or relatioeg denote
may be significantly easier to train and port across apjdicathan
existing recognizers based only on word co-occurrencesircor-
pora, since the associations between words and entitiew/thdad
be required in order to recognize input directives woulddemnti-
cal to those required in order to understand and execute ties
rectives once they have been recognized. This re-use ofrigai
data could save considerable expense in applications whske
requirements are relatively mutable and trained programmrae
scarce, and could facilitate the development of broadlygbe ar-
tificial agents for assisting elderly or disabled users, wiay have
difficulty operating other kinds of controls.

This paper describes an implementation of this kind of ‘emvinent-
sensitive’ interface architecture, in which the enviromirees sensed
by a particular agent (including properties of the agerglfisis
used to guide the recognition of spoken and gestural diesctio
that agent. Moreover, unlike existing multi-sensor irded archi-
tectures such as [12], which align input modalities on a watd
tice representation after complete utterances have beegnized,
the proposed approach performs referential interpretaticevery
frameduring the recognition process, so that an interfaced system
would be able to provice incremental feedback (gazing cugies)
at hypothesized referents) while a user is still speaking.

The remainder of this paper is organized as follows:

e Section 2 describes other recent approaches to linguistic i

terfaces for agents and how they relate to the current ‘enwient-

sensitive’ approach.

e Section 3 describes an extensible agent architecture which
takes information about the agent’s environment from what-
ever sensors it has, and makes it available to the agent’s di-
rective recognizers.

e Then Section 4 describes a language model used inside the
agent’s directive recognizers that uses the sensor intfayma
to guide the recognition of its input directives.

e Finally, Section 5 presents an evaluation of this general ap
proach in an interactive mobile robot direction task, using
wheel tachometer sensors as context.



2. BACKGROUND

Until recently, most research on using denotational mepton
guide incremental recognition has focused on purely syinbaokl-
yses of semantic composition, using lexically-associdbegcal
expressions as hard constraints in an effort to find a unigtie s
isfying variable binding for each hypothesized derivatidran in-
put utterance [11, 15]. This approach does not scale up well t
the kind of spatial and temporal applications that are migstyl
to elicit referential descriptions however, because thesd con-
straints do not provide appropriate definitions for gradedcepts
like ‘near’ or ‘large’ or spatial relations like ‘above’ oin front of’
that become graded at their boundaries. As a result, theérats
become arbitrary, and there is no guarantee that applyérg thill
result in a unique variable binding in the correct derivatio

More recent approaches [25, 21, 2] focus on modeling coatisly-
graded atomic concepts such as color, shape, and motiarrée.g
sulting from visual perception), but do not incorporatesth@to a
model of deriving complete utterances from intended ddiuots.
Recognizers have been proposed that apply continuous soflel
word meaning to filter the output of a purely corpus-baseduage
model, but these are either based on finite-state gramn@rarz
are unable to derive arbitrarily complex descriptions hairgg mul-
tiple entities, or are based on incomplete context-freévaons
for utterances [10], and therefore do not define completéagro
bility estimates for hypothesized analyses of input uttees, as
conventional speech recognizers do.

The implementation described in this paper aims to fill the ga
between these two general approaches by developing a demple
probability model that derives entire utterances from datanal
meanings, which is naturally able to incorporate contirsymoba-
bilities for graded concepts and spatial relations.

Similar approaches have been developed for successftdy in
grating sensory data into autonomous robot architectéwegur-
poses other than human-robot communication. An attentares
vision system was integrated with a multi-tier agent amgttiire
onboard a mobile robot [27], and both auditory and visuat@er
tion was integrated to develop mobile robot soccer playarshe
RoboCup competition [17]. With these types of successepgs-
als are being put forth for unified cognitive architectur@smhobile
robots [3], which attempt to endow a robot agent with theriaige
of cognitive abilities, including perception, use of natilanguage,
learning, and the ability to solve complex problems. Howgere
currently implemented approach integrates sensor datéiatpro-
cess of recognizing users’ directives, as does the systearided
in this paper.

3. AGENT ARCHITECTURE

As [9] states, "With seemingly no effort, the human brain re-
constructs the environment from the incoming stream of eroft
ambiguous - sensory information and generates unambiguneus
terpretations of the world. To do so many different sourcés o
sensory information are constantly processed, analysetdcam-
bined.” Similar to humans in that a number of sensory pescem
often available to make decisions, robotic agents must hawer-
chitecture built which can not only collect the sensory dtisalso
integrate it for use in an appropriate manner (in this caserder
to more accurately recognize users’ spoken and gestueaitiies).

It's often the case where there are plenty of available gerieaol-
lect data but there is no way for the system to integrate tkeida
order to make a useful decision or action determination.

We propose an agent architecture called MuSICA (Multi-Bens
Integration for Communicative Agents) to build an autonasio
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robotic agent capable of using both exteroceptive (visualjo/speech)
and proprioceptive (in this case, robot wheel speed) pesaap
tained from the environment to more accurately recognizgyrr
ambiguous directives from a human user. Instead of relym@ o
conventional static language model (trained on word pairgard
triples in a corpus of example sentences) to help recogmiziear
utterances, the proposed robotic agent architectureéstatise its
sensory data to dynamically update a probabilistic languagdel,
based on its current environment context. This model candit
probability estimates for possible directives on the prieg of en-
tities in its environment and updates these probabilitieemthese
properties change.

Figure 1 shows a graphical representation of the compotiesits
make up the MuSICA architecture. The components are grouped
into classes relating to perception, integration, or éffiecof the
robot. Components in each class can therefore interactooiti
ponents of other classes through a standardized inteifhigsim-
plifies the task of adding new sensors, effectors, or newstyfe
directives to the system.

3.1 Perception

The role of the perception components are to collect data di-
rectly from the environment. These may include proprioivept
(e.g. wheel speeds of robot) and/or exteroceptive sensaysri-
crophones, cameras, magnetic gloves). The sensors detegjes
in the environment and relay these changes to low-levelgasing
modules that translate the raw data into recognizable ftarihat
the integration components can use.

The types of sensors that are available for use in the cument
plementation include:

1. A microphone using the front end and acoustical model from
the CMU Sphinx 4 speech recognizer. The Sphinx 4 compo-
nentis used in ‘live’ mode (speech is processed as quickly as
a person begins talking). The raw voice data is translated by
the front end and acoustical model into a probability distri
bution oversubphonainits (representing the beginning, mid-
dle, or end sounds gdhonemeswhich roughly correspond
to sounds of the alphabet letters in spoken English).

2. 16 Polaroid 6500 sonar ranging modules (on the robotictage
a Nomad Super Scout). The Polaroid 6500 is an acoustic
range finding device that can measure distances from 6 inches
to 35 feet with a typical absolute accuracy of +1 or -1 percent
over the entire range.

3. Two wheel sensors (also on the Super Scout robot) that can
provide the velocity of the wheels in 1/10s of inches per sec-
ond, the integrated x- and y- coordinate of the robot in 1/10s
of inches with respect to the start position, and the orienta
tion of the steering in 1/10s of degrees with respect to the
start orientation in the range [0, 3600].

4. An Ascension Technologies Corp. Flock of Birds sensor on
a CyberGlove (Immersion Corp.) is used for gross pointing
gestures. The Flock of Birds sensor provides 6-degree-of-
freedom positioning of the wearer’s wrist with respect to a
magnetic base unit. These gestures are used to provide di-
rection and focus attention on objects, and may occur con-
temporaneously with spoken directives.

5. A Sensoray frame grabber card, which grabs frames at 30Hz
per second through a color camera. The color mode is RGB
where there are 3 bytes for every pixel (number of bits for
every pixel is 24). The video capture is done in NTSC mode.
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Figure 1: Agent Architecture

Pre-processors then detect likely candidates for entititee
environment using blob coloring and color histogramming;
background subtraction is used to detect motion. The pro-
gram controlling the frame grabber translates the raw data
into a format used by the directive recognizer, which con-
tains the number of entities, the location of the entities| a
the color information of the entities.

3.2 Integration

The role of the integration components is to incorporatatfent’s
diverse sensor data into their internal (spoken languaggestu-
ral) recognition models. The architecture supports migtiec-
ognizer components (running as independent threads omasepa
machines), each of which may be tuned to a different type -of di
rective. For example, there may be separate componentsdog+
nizing directives for manipulatory actions, for movemeati@ns,
for directing sensors to attend to a particular area or pmemnon,
etc. Distributing recognition among independent taslcjgerec-
ognizers in this way allows each recognizer to consider f@essi-
ble interpretations in its analysis, and thereby allows)@@mplex
multi-purpose agents to communicate efficiently.

from a perceptual component containing the front end and
acoustical model from the CMU Sphinx 4 speech recognizer
[13]. This component accepts acoustical signals from adthea
set) microphone and sends the data to a directive recognizer
as the probabilities of sub-phonetic units (beginning,dted

or end ofphonemeswhich roughly correspond to sounds
of the alphabet letters in spoken English). The language
model in the directive recognizer then builds a probability
distribution over hypothesized directives using the envir
ment information it receives from the agent’s sensors. This
environment-sensitive language model is described ihéurt
detail in Section 4.

. Gestural Model: The thread corresponding to the gestural
model communicates with a simplified gesture preprocessor
that in turn interprets various constrained pointing gesstu
from data from the Flock of Birds. The gesture model in
this directive recognizer builds a probability distritariover
positions and velocities indicating valid and invalid pein
ing gestures based on recognized relational utteranags (e.
"that”).

Each of the recognizers can also be viewed as an autonomous

agent since they are completely independent from one anatite
make decisions without interaction from other recognizétach
recognizer communicates with the robot which in turn effettange
to the environment.

The internal modules that make up the directive recogniaess
where the actual integration of the data occurs. The typesoof
ules used in the current implementation include:

1. Denotational Language Model: The Language Model in the
current implementation receives pre-processed speedci inp
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3.3 Effectors of the Robot

The role of the effectors of the robot is to act upon the contdean
the robot has received from the directive recognizers asctha-
sen to act upon. Effectors are devices that the robot usdetd e
change in the environment. In the current implementatierothly
effectors that are used are the Nomad Super Scout mobil¢'sobo
two motor-driven wheels. Although the current system ortly u
lizes the wheels, it is capable of directing other types tdatbrs
such as robot arms, grippers, and tools.



3.4 Component Interfaces

a

The architecture is built so components in each class carsicit ) S
with components of other classes through standardized emiam pick  up NP
cation interfaces. This allows new sensors, effectors amettile —
recognizers to be easily accommodated since the only specifi NP PP
tions a new component must provide is how the data is sentevhe N — T
the data is sent/received, and the required format strewcTire two the Noun A?V /PP\
basic interfaces built into the system are the 1) percemiionpo- Adj Nout straight in front of NP
nents to integration components and the 2) integration comipts I
to effectors of the robot. Both layers are built using TCRIt- brown can you

nections which provides a reliable, point-to-point comication
channel using sockets. This allows any program componemng to b)
written in either C, C++, or Java.

S/frontof_NP

4. ANENVIRONMENT-SENSITIVE (‘DENO- S/PP PP/frontof NP
TATIONAL) LANGUAGE MODEL s Rw
Most modern spoken language interfaces recognize spoken di _— |
rectives using probabilistic models, which assign a prilales- SINP NP straight

timate P(Y | X) for each possible messagé that might have

been intended by the user, given an uncertain observedtaaius S/upNP - up NP/NP NP/Noun Noun

signal X'. This probability is then decomposed, using Bayes law,  pjck ulp NP/Noun  Adj can
into alanguage modelconsisting of a prior probabilitf(Y") of I
the intended messadé, and anacoustical modelconsisting of the brown

a posterior probability?(X | Y') of the observationX given the
messagé” (divided by an additional prior probability of the obser-

vationP(X), which can be eliminated because it is constant across Figure 2: (a) ordinary phrase structure tree and (b) right-
all possible analyses): corner transform of this tree for the sentence ‘pick up the

brown can straight in front of you.’

P(X,Y)
PY | X)= PIX) @
P(X | Y)-P(Y) (such asa pushdown automatén_). . _
=1/ ) This right-corner DBN model is similar to the Hidden Markov
P(X) Models (HMMs) that keep track of probability distributionser
xP(X|Y)-P(Y) 3) state variables in conventional speech recognizers, bnwsala

bounded stack of variables over incomplete constituertrafes
The interface then assumes the messggehich generates the and clauses) to be maintained, rather than a single stasblgrat
observationX with the highest estimated probability must be the every point in time. These incomplete constituents areaspted

user’s intended message, and substitutes it for the oligamia by ‘slashed’ categories like VP/NP, representing a verlagh(VP)
later processing. Most language models used in automagieckp lacking a noun phrase (NP) to follow it — or in other words,antr
recognition systems generate word strings as intendedages sitive verb.
the prior modelP(Y") using n-grani probabilities ofn-word se- In this manner, right-corner derivations can be recognizece-
guences (for example, ‘trigrams’ of three-word sequenitea)set mentally while still preserving explicit representatiafdnterme-
of training sentences. However, these purely-word-basedets diate constituents at all levels of the integrated modeJ: epre-
do not provide any notion of phrasal or clausal constituémnics senting subphones (corresponding to the onset, middlesaidg
ture, which will be necessary in order to distinguish thdedént sounds of individual phonemes, extracted from Sphinx'stexg
environment entities that may be involved in a directivg.(ghose acoustical models [24]) in the DBN's lowest=£ 0) level, partial
denoted by the subject and object of a directive) if the maglel  phonemes in the next & 1) level (which is isomorphic to a hid-
expected to be sensitive to these denoted entities. den Markov model, also extracted from existing acousticatim
These phrasal or clausal constituents can be learned fr@n-ag els), partial words in the following & 2) level, and partial phrases
eral corpus of transcribed directives that are annotatéul lwwack- at subsequent (> 2) levels, until eventually the denotation of a
ets delimiting noun phrases, verb phrases, relative ciaese (see  complete sentence can be recognized in the top level, anthefe
Figure 2.a.). Although this is a very detailed kind of antiots it the utterance.
can be partially automated using existing broad-coveragseps. When they are mapped to the right-corner DBN model (see Fig-
Moreover, since it is likely that the syntactic patternsaaed in ure 3), the transformed trees are decomposed into sets af-rec
these rules will be generally applicable, this annotatieachonly nition rules, which are probabilistically weighted basead their

be done once (the resulting rules can then be ported to eliffer  frequency in the training corpus. The right-corner DBN (ghan
environments). T . A . .
These phrase-structure trees are then mapped to a Dynayes Ba This observation has been used to justify constraints arriat

: . - ) ) recursion (e.g. arising from rules of the form- a s b’), but not
Net (DBN) representation [7] via a variant of the left-cargeam left or right recursion (e.g. arising from rules of the fore sa b’

mar transformation [20, 1], which preserves an explicitespnta-  or‘s_, abs’), by converting context-free grammars into finite state
tion of constituents while minimizing the number of staclsiion automata [4, 18], but this conversion makes constituentsire
required to recognize the string using an incremental neizeg unavailable for interpretation at run time.
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t=0 t=1 t=2 t=3 t=4
1 =25 X X X X X
i=4 X X X S/INP——S/NP
i=3 X S/upNP—S/NP NP/NN—NP/NN
i=2 pick up the brown/ can

Figure 3: Right-corner derivation of ‘pick up the brown can
straight in front of you,” mapped to random variable positions
in DBN. Taken together, each stack forms a complete analysis
of the recognized input at every time framet.

Figure 4) uses two kinds of rules, each mapping a pair of adjac
incomplete constituents!~" and L! to a higher-level pair of ad-
jacent incomplete constituents ,; and L;1]. One kind of rule
combines the two adjacent incomplete constituents (e.gNFP
and NP) into another possibly incomplete constituent (¢R). in
Li,1, leavingL; 1] to be filled in by a higher-level rule; and the
other kind of rule passes the less recently recognizeditosist
up to the next higher level} 1], so that it can be combined with
some later constituent when one becomes available. Thealpitob
ities governing these two kinds of rules (induced over tha\BB
mapped transformed grammar) is callecbanposition model

Phrasal or clausal constituents from phrase-structunetated
corpora can then be associated with denoted entities (fonple,
the segmented region of pixels that a noun phrase ‘the brawh c
refers to in a training example) before they are mapped tgha-ri
corner DBN and decomposed into composition rules. Thetiagul
rules do not have to be specific to the entities in the traieimg-
ronment, however. The specific entities can be abstractagt ag+
ing ‘coindexation patterns’ which describe the entitiesated by
each resulting constituent purely in terms of coindexatioom en-
tities used in the composed constituents. Although sonuetsiral
information is lost in certain parts of the right-cornernséorm
(e.g. the prepositional phrase in Figure 3 could be a nouasghr
or a verb phrase modifier), these coindexation patternsenisat
the dependency information from the original phrase stimectree
will be preserved.

Entities must still be initially introduced at some poinbwever.
This is done using &xicalization modeWwhich defines the proba-
bility with which a word (a symbol at some particular ‘lexidavel
of the DBN) can be replaced with a syntactic category and afset
entity features, allowing distributions over syntactitegpries and
denoted entities to be easily calculated for referencestities in
any new environment.

4.1 Lexicalization model

The lexicalization model is where the sensor informatiderin
acts with the right-corner DBN language model. It contrdis t
probability with which a word/V” (for example, the word ‘covers,
recognized by its component phonemes), may be replacedawith
incomplete constituent categaBy/(for example VP/NP) and an as-
sociated entity or vector of entitigsin the current environment (in
this case, the entity that is covered and the entity thatveniog
it).

G-
(13) Gz£ L3

=SS - -

Figure 4: DBN implementation of finite-stack recognizer. Ra-
dom variables L?, L}, L? L3, L}, at each time framet assign
probability distributions to instances of (possibly inconplete)
constituent labels. Random variablesRY, R}, R?, R}, R} at
each time framet assign distributions to rules for combining
labels, propagating labels to higher levels, or retainingdbels at
their current levels.

E—E—_

The lexicalization model takes as input a vector of featvegs
resenting properties of entities in the environment, ardrns a
distribution over these entities. In the current impleraéion, the
possible features include the (wheeled robot) agent'aatedtright
wheel speeds, the slope and intercept of a line represethindi-
rection of a pointing gesture by the speaker (as seen fronvem o
head camera), and’, Y-coordinate locations andl, S,V (hue,
saturation, value) scores for average colors of entitieégerworld
(segmented color-blobs in images from the same overhead cam
era). Since these different sensor modalities are not ahseil-
able simultaneously, this model takes in feature "packetsith
are tagged with the type of input represented. For exampiewa
reading for wheel speed will be of the form "w 4.3 4.8.”

The desired output of the lexicalization model is:

P(E,P|W)=PE|P,W)-P(P|W), (4)

whereF is a vector of entitiesP is a pre-terminal symbol as de-
scribed in Section 4 (e.g. NP/NN), ahd is a terminal symbol, i.e.
aword.P(E | P,W) andP(P | W) are obtained from the same
training data used for building the syntactic models, wltighsists
of a corpus annotated with syntactic constituents and d¢nos.
For a given word in the training set, its word mode(E | P, W),

is built by collecting the features of all entities that ifewed to in
the training set. A gaussian distribution over the featetdsob-
tained using Maximum Likelihood Estimation (MLE), and i®th
normalized to the set of entities (each entity is assignetbbg
bility proportional to the probability of its featuresP(P | W)

is obtained using frequency counts in the syntactic corpuisen
the lexicalization model receives a feature packet, it tisesvord
modelP(E | P, W) andP(P | W) to compute a distribution over
entities and pre-terminals for every modeled word.

5. EVALUATION

The evaluation of the system’s capabilities was performed u
ing two different experiments. The first experiment evaddathe

2It should be pointed out however that the bounded stack of the System’s ability to accurately yield correct denotatiohsamplex

DBN representation limits the number of available PP attaaft
configurations to those that involve only a bounded amouim-of
ternal recursion (see [14, 19] for arguments that such ditioibs
are appropriate for modeling human language).
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directives and the second experiment evaluated the behastrng
an environment- sensitive communicative agent architectu



5.1 Experiment 1

The denotational language model was evaluated on colleiéted
rectives to a voice-directed mobile manipulator arm in froha
shelf stacked with everyday household objects (cerealhomaft
drink cans, etc.), which was photographed using a 3-D laseT-s
ning camera. The resulting 3-D point cloud was polygonized into
a triangle mesh and segmented into entitiecorresponding to
convex regions of this mesh, each with continuous featyres
specifying the entity’s size (exposed surface area), sfrapie of
longest to second longest perpendicular dimensions)iaspata-
tion (3-D coordinates of centroid), and color (average Isagyra-
tion, and intensity over all pixels in the segment). Word niegs
were modeled for adjectives and prepositions using muitite
gaussians in this feature space (defined on color, size, tzaygkes
features for adjectives, and on differences in centroiddioates
for prepositions), which were developed partially by hasid domain-

independent language resource. Verbs and common nouns wer

considered domain-specific and were trained automaticadly
version of the collected corpus of arm directives that wasoan
tated with phrase structure (labeled brackets) and caestideno-
tations (in the associated training environment). The amsitipnal
model was trained on (right-corner transforms of) the datia-
annotated phrase structure trees in this same annotateascal|
training and testing using this corpus was done using theleae-
out method of cross-validation.

The accuracy of the sentence-level denotations obtaired fr
the integrated denotational language model was testedsadhat
of denotations obtained by parsing and interpreting thglsisen-
tence output of a trigram HMM-based language model traimed o
transcriptions of the same collected corpus, using a parsein-
terpreter trained on the annotated version of the same s¢again
using leave-one-out cross-validation). Due to the largewarof
noise in this rich environment, the single-best pipelirmtguage
model yielded 0/165 sentences with correct denotationgreds
the integrated denotational model yielded 54 parses, 10hathw
had correct denotations{pl due to chance) — a statistically signif-
icant improvement (g.01 using a two-tailed t-test). These results
were fairly evenly distributed across task environments.

5.2 Experiment 2

The benefit of this environment-sensitive communicativerag
architecture was evaluated using a relatively self-coethisubset
of recognizable directives relating to wheel movemestart/stop
moving' ‘ start/stop turning left/right and the relevant sensors for
the denotational recognizer: left and right wheel tachenset75
input utterances were collected by asking two subjectsrecta
voice-controlled mobile robot using the above commands.

The ‘lexicalization model’ part of the denotational langeanodel
(as described in Section 4) was trained on a small set of rg@nd
turning scenarios staged by a trainer, consisting of thceaaios
for each directive. These scenarios were intended to quones
to the preconditions of ‘sample events’ that might be predidbr
each type of directive by an (experienced) user teachingyke
tem different ways of changing trajectory. The system was th
supplied with a pre-existing ‘composition model’ (as désed in
Section 4) trained on directives that were transcribed andtated
with phrase and clause constituents, and with the objettsofne

3Subjects were asked to direct the manipulator arm to picleup s
eral objects from the shelf. The objects were visually desigd
(by pointing), in order to avoid biasing subjects toward Bnguis-
tic description. As a result, some of the collected diregigontain
very long, complex definite descriptions. The manipulator was
a non-functional prop during this data collection.
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independent training scenario) denoted by each constituen

An agent with the integrated environment-sensitive (detianal)
recognizer described in the previous sections was compaitad
a baseline agent whose directive recognizer did not ingatpo
this kind of environment information. This baseline reciagn
used a conventional trigram Hidden Markov Model (HMM)-bdise
language model trained on the sample set of directives itbesicr
above. Of the 75 collected utterances, the integrated dgooél
model recognized 71 correctly, whereas the baseline HMb&ta
model recognized only 58 correctly. This represents a 7@¥ba-e
tion in recognition error due to the environment-sensitidenota-
tional architecture. This is a statistically significantpimvement
with p < .01 using a two-tailed t-test.

The linear-time recognizer ran in approximately 10 to 20e8m
real time (so on average, a one-second utterance takes 1D to 2
seconds to process) on a 2.4GHz Pentium 4 desktop comphier. T

dprocessing speed is on par with that of other experimentaésys

used in speech recognition evaluations, and can be optirtozein
more efficiently through various techniques [6].

6. CONCLUSION AND FUTURE WORK

This paper has described an implemented robotic agentecehi
ture in which the environment, as sensed by the agent, istosed
guide the recognition of spoken and gestural directivesrghy a
human user. This architecture has been observed to redtmg-re
nition error by up to 70% over a conventional HMM-based spoke
language interface in controlled tests. Moreover, thisigéecture
allows hypothesized denotations to be dynamically exdciur-
ing recognition, while users are still speaking, preserttire excit-
ing possibility of allowing an interfaced agent to provideliemen-
tal feedback in other modalities, e.g. using gaze or pajgestures
to indicate understanding (or misunderstanding) of ineléntean-
ings. In future work, this possibility will be examined inegter
detail.

Also, following [23], the denotational model describedhistpa-
per models references using tractable distributions oamdidate
entities or relations (tuples of candidate entities) ofrimed arity.
Others [8] have correctly argued that this representadnade-
quate for intensional references such as goals or destivsatihich
do not correspond to existing entities. This approach issfoee
being extended to employ sampled spatial coordinates ritpiett
values in a particle filter as potential referents for degins of
spatial regions or hypothetical entities. This extenspimdepen-
dently motivated by the efficiency of this technique for apgmate
probability estimation in complex multiply-connected &rseries
models such as those described above [16].

For further information and downloads of right-corner DRI,
visitht t p: / / www. cs. um. edu/ r esear ch/ nl p/ .
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