
Prometheus Design Tool

John Thangarajah
johthan@cs.rmit.edu.au

Lin Padgham
linpa@cs.rmit.edu.au

Michael Winikoff
winikoff@cs.rmit.edu.au

RMIT University
Melbourne, Australia

ABSTRACT
The Prometheus Design Tool is a graphical editor which supports
the design tasks specified within the Prometheus methodology for
designing agent systems. The tool propagates information where
possible and ensures consistency between various parts of the de-
sign.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design

Keywords
Agent Software Engineering, Methodologies, Tool Support

1. INTRODUCTION
The Prometheus Design Tool (PDT, see figure 1) is developed

to support design and development of multi-agent systems using
the Prometheus methodology as described in [4]. It is intended to
support software engineers and developers in both developing and
documenting the various aspects of specifying and designing a sys-
tem using an agent oriented approach. The three design phases in
Prometheus, which are supported within the tool are:
System specification: in which the goals of the system are iden-
tified, the interface between the agents and their environment is
captured in terms of actions and percepts, functionalities are de-
scribed, and detailed scenarios consisting of sequences of steps are
developed.
High-level (architectural) design: in which the agent types that
will exist in the system are defined by combining functionalities,
the overall structure of the system is described using a system overview
diagram, and interaction protocols are used to capture the dynamics
of the system in terms of legal message sequences.
Detailed design: in which the internals of each agent are devel-
oped in terms of capabilities, events, plans and data. Process di-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-150-2/05/0007 ...$5.00.

Figure 1: The Prometheus Design Tool (PDT)

agrams are used as a stepping stone between interaction protocols
and plans.

Like most modern software engineering methodologies, Prometheus
is applied in an iterative manner. An issue that inevitably arises is
that when making a change to the design, it is virtually impossi-
ble to remember to change all other parts of the design that are
effected, so as to ensure that the design remains consistent. There-
fore some form of consistency checking is necessary. This can be
done manually, but this is extremely tedious and error prone, and
therefore tool support for consistency checking is highly desirable.
This was also confirmed by feedback from students and others who
used Prometheus prior to tool support being available.

The tool is written in Java and runs on any platform supporting
Java. It has been used extensively under both Windows and Unix
and can be downloaded from http://www.cs.rmit.edu.au/agents/pdt.

2. FEATURES OF THE TOOL
The tool supports software development activities from specifi-

cation through to a very detailed design level which is close to code.
The output of the tool can readily be transformed into JACK agent
system code, and work is currently underway to automate this. Fol-
lowing is a list of some of the most important features of the PDT:
Graphical interface plus structured textual descriptors: The
tool provide a direct manipulation graphical interface for creating
the key diagrams of the Prometheus methodology. These include

127

actor diagrams1, system overview diagrams and agent overview di-
agrams. There are also textual forms which allow a combination of
free text and entries based on menus of items.
Propagation: Wherever possible, information is propagated from
one part of the design to another. For example, if goals are asso-
ciated with a role2, and the role is associated with an agent, then
the goals are also automatically associated with that agent. Sim-
ilarly, graphical icons representing things that should be included
in a particular diagram are automatically placed into that diagram.
Whenever information about an application entity is changed, it is
propagated to all relevant places in the design.
Consistency checking: The consistency checking performed by
the tool has two aspects. One aspect is continuously active: the
user interface will prevent certain errors from being made in the
first place. The sorts of errors prevented include: (i) Definition:
it is not possible to have references to non-existent entities, since
creating a reference will create the entity if it does not exist, and
when an entity is deleted all references to it are deleted as well. (ii)
Naming: it is not possible for two entities to have the same name,
for example a goal and a plan both called Determine Stocks To Buy.
(iii) Simple type errors: for example, it is not possible in PDT to
connect an action and another action. (iv) Scope constraints: for
example, it is not possible to create an incoming percept to a plan
without that percept also being (a) shown on the system overview
diagram, and (b) shown as incoming to the agent whose plan it is.
(v) Violations of interface declarations: for example, if an agent is
specified as reading a belief set, then it is not possible to create a
“write” arrow from one of the agent’s plans to the belief set. Sim-
ilarly, if an agent specifies that it only sends a message, then its
plans cannot receive the message, and PDT does not allow the user
to violate this constraint.

The other aspect is a consistency check that is performed on de-
mand, generating a list of errors and warnings that can be checked
by the developer. Examples of a warning are writing of internal
data that is never read, while an example of an error is a mismatch
between the interaction protocol specified between two agents and
the messages actually sent and received by processes within those
agents. Further details are available in [3].
Hierarchical views: The tool allows for each agent to be devel-
oped with as many layers of abstraction as needed to keep each
layer manageable in size. This is achieved using capabilities and
capability overview diagrams. However better support for abstrac-
tion is needed at the system level, where an improvement would
be to allow a diagram which captures subsystem interaction rather
than simply agent interaction.
Report generation: One of the very useful features of the tool is
its ability to generate an HTML design document. This document
contains both figures and textual information, as well as an index
over all the design entities. The tool can also save printable images
of the various diagrams (in PNG format).
Integration into Eclipse: PDT can be run as a plug-in to Eclipse,
allowing use of the various tools within Eclipse. Further support
within the Eclipse environment is currently being developed.

3. RELATED WORK
A number of other agent-oriented software engineering method-

ologies have tool support including Tropos [1] and MaSE [2]. Tro-

1This is a recent addition to the methodology and is described in
[5].
2In a process of integrating our approach with that of some others,
what are referred to as Functionalities in [4] are now referred to as
Roles.

pos tool support3 consists of a number of separate tools that cover
different aspects of the software engineering process. The closest
tool to PDT is TAOM, but it does not appear to support cross check-
ing or hierarchical views. The MaSE methodology is supported by
agentTool4. Unfortunately, the MaSE methodology views agents as
“black boxes” and thus does not support the design of plan-based
agents. The JACK Design Environment (JDE) is also related to
our work, since it provides design diagrams. However, the JDE
does not support system specification activities or high level de-
sign. Finally, a tool that takes designs produced with PDT and
generates a Jadex5 agent definition file has been independently de-
veloped (mentioned in [6]).

4. CONCLUSIONS AND FUTURE WORK
The Prometheus Design Tool provides a number of features that

are extremely useful in developing larger projects. However, not
all aspects of the Prometheus methodology are currently supported.
Future work includes: developing (better) support for protocol spec-
ification, developing support for process specification within agents;
and integration of separate debugging tools. There are also plans to
improve the user interface to facilitate more flexible abstraction and
expansion. Also, the tool does not currently support well the explo-
ration of multiple design options, prior to deciding on a particular
path. This would greatly improve the usefulness of the software as
a sophisticated design tool.

We would like to acknowledge the support of Agent Oriented
Software Pty. Ltd. and of the Australian Research Council (ARC)
under grant LP0453486.

5. REFERENCES
[1] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and

J. Mylopoulos. Tropos: An agent-oriented software
development methodology. Autonomous Agents and Multi
Agent Systems, 8(3):203–236, May 2004.

[2] S. A. DeLoach. Analysis and design using MaSE and
agentTool. In Proceedings of the 12th Midwest Artificial
Intelligence and Cognitive Science Conference (MAICS),
2001.

[3] L. Padgham and M. Winikoff. Prometheus: A pragmatic
methodology for engineering intelligent agents. In
Proceedings of the OOPSLA 2002 Workshop on
Agent-Oriented Methodologies, pages 97–108, Seattle, Nov.
2002.

[4] L. Padgham and M. Winikoff. Developing Intelligent Agent
Systems: A practical guide. Wiley Series in Agent
Technology. John Wiley and Sons, 2004.

[5] M. Perepletchikov and L. Padgham. Use case and actor driven
requirements engineering: An evaluation of modifications to
Prometheus. Technical report, Submitted for publication,
2005.

[6] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf.
Evaluation of agent-oriented software methodologies:
Examination of the gap between modeling and platform. In
P. Giorgini, J. Müller, and J. Odell, editors, Agent Oriented
Software Engineering (AOSE), July 2004.

3http://trinity.dit.unitn.it/∼tropos/tools.php, visited 12th April 2005
4http://www.cis.ksu.edu/∼sdeloach/ai/projects/agentTool/
agentool.htm, visited 12th April 2005
5http://vsis-www.informatik.uni-hamburg.de/projects/jadex/, vis-
ited 12th April 2005

128

