
Abstract

This paper describes non-ideal properties of batteries
and how these properties may impact power-performance
trade-offs in wearable computing. The first part of the
paper details the characteristics of an ideal battery and
how these characteristics are used in sizing batteries and
estimating discharge times. Typical non-ideal characteris-
tics and the regions of operation where they occur are
described. The paper then covers results from a first-prin-
ciples, variable-load battery model, showing likely areas
for exploiting battery behavior in mobile computing. The
major result is that when battery behavior is non-ideal,
lowering the average power or the energy per operation
may not increase the amount of computation that can be
completed in a battery life.

1. Introduction
Two of the major constraints on mobile and wearable

computing are size and weight, of which the battery is a
large portion. Reducing the battery is thus a key to reduc-
ing the overall system bulk. The usual approach to achiev-
ing this is to decrease the power consumption of the
hardware, either by power management, putting unused
systems into low power modes; or by a power-performance
trade-off, completing a computation at a slower speed for
less power. While power management and power-perfor-
mance trade-offs are important for all mobile computers,
they are more so for wearable computers because of their
performance intensive user interfaces and their tighter con-
straints on size and weight. Previous work in power-perfor-
mance trade-offs attempted to minimize the energy-delay
product [4] or the energy per operation [9]. When the sys-
tem is battery-powered, however, minimizing either mea-
sure may not maximize the computations per battery life.
Non-ideal battery properties may come into play, as will be
shown using both simulation results from a first-principles
battery model. These properties must be considered during
wearable computer design and for software control of
power management and power-performance trade-offs.

The paper begins by describing the ideal characteristics
of batteries in Section 2. Then Section 3 covers the non-
ideal characteristics of batteries and the regions of opera-
tion where the characteristics are exhibited. Section 4 pre-
sents simulation results from a first-principles, variable-
load model of Li-ion cells. Finally, Section 5 summarizes
ways in which the non-ideal battery properties can be
exploited.

2. Ideal battery properties and discharge time
estimates

The two most important properties of batteries from the
viewpoint of someone using them are voltage and capacity.
An ideal battery has a constant voltage throughout a dis-
charge, which drops instantaneously to zero when the bat-
tery is fully discharged, and has constant capacity for all
values of the load, as shown in Figure 1.

For sizing batteries, the battery voltage should be in the
allowable range of the power supply of the device in ques-
tion. The battery voltage is considered to be the rated volt-
age of the battery, e.g. 1.2V per cell for NiCd batteries and
3.6V per cell for most Li-ion batteries. The charge capacity
of the battery is typically given in terms of Amp-hours or
milliAmp-hours and is called the battery’s “C” rating. The
C rating is used in the battery industry to normalize the
load current to the battery’s capacity [6]. The advantage of
C ratings is that it allows battery manufacturers to present
one graph of discharge curves for batteries of similar con-
struction but different capacities. Loads are then measured
relative to the C rating, e.g. a 10 mA load on a battery with
a rated capacity of 100 mAh is a load of 0.1C.

For mobile systems, the discharge timeT is usually esti-
mated to be the battery’s rated voltageV multiplied by the
charge capacityC, divided by the average powerP of the
system, orT = (C×V)/P. The rated voltage multiplied by
the charge capacity is the battery’s nominal energy capac-
ity, typically given in Watt-hours (1 Wh = 3600 J). As Sec-
tion 4 will show, this method will overestimate the battery
life if the load has a large peak value.
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3. Non-ideal battery properties
While ideally a battery has constant voltage and capac-

ity, in practice both vary widely. Figure 2a shows the bat-
tery voltage as a function of discharge time for two
different loads. Load 1 is smaller than load 2. Because of
resistance and other losses, the voltage throughout the dis-
charge is lower for load 2 than load 1. The voltage for each
load also drops over the course of the discharge due to
changes in the battery’s active materials and reactant con-
centrations.

The capacity also varies with the value of the load. The
two major ways in which it varies are loss of capacity with
increasing load, and an effect called recovery where an
intermittent load may have a larger capacity than a continu-
ous load. Figure 2b shows the loss of capacity with increas-
ing load current for a typical NiCd battery. The capacity
decreases by about 40% over a range of discharge rates of
0.1C to 10C. (Note that the capacity in Figure 2b exceeds
100% at low rates because the C rating is specified as the
capacity for a given time of discharge. The capacity in Fig-
ure 2b was measured at the 2 hour rate, since 100% capac-
ity occurs at 0.5C. If the capacity had been measured at the
10 hour rate, 100% would have occurred at 0.1C.)

The second non-ideal capacity property, recovery, is
shown in Figure 2c. A reduction of the load for periods of
time results in an increase in battery capacity. The voltage
rises while the load is reduced, and the overall time of dis-
charge increases. This phenomena occurs because, during
the time when load is reduced, reactants in the battery dif-
fuse to the reaction location, allowing more of them to be
used during the life of the battery. The degree to which the
battery recovers depends on the discharge rate and the
length of time the load is reduced, as well as the details of

the battery construction.

It is widely known that the battery voltage varies during
discharge. For example, power supplies are usually rated
over a range of input voltages. When a power supply is
used with a battery, it is necessary to ensure that the range
of the supply’s input voltage includes the range of the bat-
tery voltage during discharge. Since the voltage variation is
widely known, this paper will not focus on it. The non-
ideal capacity properties, on the other hand, are not widely
known, and so will be the main subject of the remainder of
this work. Given that a battery’s discharge time is typically
estimated using ideal values of voltage and capacity, the
loss of capacity can lead to an overestimate of the dis-
charge time for large loads. While a chart such as Figure 2b
or a model such as Peukert’s equation [6] allows one to
account for the loss of capacity for loads that are constant
and continuously on, in general loads are intermittent and
variable. If recovery occurs, then the duration of the off
times of the load must be considered in addition to the
duration of its on times and its value while on. Models that
account for both capacity loss and recovery are needed to
determine if recovery occurs for the loads encountered in
mobile computing, and if so, to properly estimate battery
lives for intermittent loads.

4. Results with Doyle’s variable load model
The typical load of a mobile computer system is not

constant, but variable. A model is needed, then, to estimate
the discharge time with variable loads. A variable-load
model would ideally possess the following characteristics:

•  Accurate relative capacity information (i.e. if several
loads are simulated, then the model should correctly
predict the relative difference in discharge times,
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Figure 1. Characteristics of an ideal battery: Constant
voltage and constant capacity



even if the actual differences are inaccurate.)

•  Applicable to a variety of battery types

•  Intuitive parameters and behavior

•  Ease of correlation to actual cells

Of these four criteria, the first is the most important for
this paper. The last three will become more important when
battery models are more widely used in mobile system
design. A number of battery models were investigated
[1][3][5][7], but Doyle’s model inspired the most confi-
dence due to its having been created solely for Li-ion cells
and due to its use in industry [2]. The other models had not
been created for use with Li-ion cells and hence results
with them would have required lengthy correlation with
actual cells before their predictions could have been
trusted.

Doyle’s model was used to study the effect of inter-
mittent discharges on the capacity. It was found that peak
power predicts battery capacity better than average power.

Figure 3 shows the model results for battery capacity
versus average power for continuous discharges over a
range of loads, and for intermittent discharges for several
combinations of peak power and duty cycle. The inter-
mittent discharges were square waves with an off power of
0 W/kg. The two major features of the results are that the
capacity decreases as the load power increases for
continuous loads, and that there is a range where the peak
power of an intermittent load rather than the average power
is a stronger indicator of the battery’s capacity. For
example, the 300 W/kg continuous load results in a battery
capacity of 90 Wh/kg (point A in the figure) and the
75 W/kg continuous load results in a battery capacity of
140 Wh/kg (point B), while the intermittent load with a
peak power of 300 W/kg and duty cycle of 25% (i.e. an
average power of 75 W/kg, point C) results in a capacity of
approximately 100 Wh/kg. Thus using the average power
of this intermittent load would over-estimate the battery
capacity by about 40% (i.e., point B’s 140 Wh/kg would be
expected), while using the peak power would under-
estimate it by only about 10% (i.e., point A’s 90 Wh/kg
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Figure 2. Non-ideal battery properties: (a) voltage change, (b) loss of
capacity, and (c) recovery (after [6])
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would be expected). To put these results in more common
terms, the 75 W/kg continuous load B would have a battery
life of about 1.9 hours, while the intermittent load C, with
the same average power, 75 W/kg, would have a battery
life of about 1.3 hours. Only when the peak power is below
about 50 W/kg (about a 3 hour discharge when continu-
ously on) would the peak and average power give about the
same estimate of battery life.

The characteristics displayed in Figure 3 mean that min-
imizing energy per operation may not maximize computa-
tions per battery life. For example, suppose a mobile
system has a dynamic power profile that is cyclic, having
periods of activity with a high peak power followed by idle
periods of low power. If one has a choice between a 20%
reduction in the energy per cycle by reducing the idle
power and a 20% reduction in the energy per cycle by
reducing the active power, the average power is reduced by
20% in both cases. If the battery capacity were constant as
is commonly assumed, one would expect that the battery
life would increase by a factor of 1/(1-20%) = 1.25 for both
cases. But because the capacity is determined by the peak
power, the battery life will be increased more by reducing
the active power than by reducing idle power. Not only will
the average power be reduced but the capacity available
will be increased. Hence, once all the subsystems that can
be put into idle mode are put into idle mode, one should
focus on reducing the power during the active time rather
than focus on reducing the power during the idle time.

A second example is if the designer has a choice
between reducing the active time and the active power by
some factor. Both will result in the same decrease in the

average power. But again, reducing the active power will
result in a bigger increase in battery life when the active
power is large. This means that the focus should be on
reducing peak power rather than reducing duty cycle.

For a more concrete example of each method of reduc-
ing average power, consider the dynamic power profile as
shown in Figure 4. The average power, Pave, is equal to
(Pactive× tactive + Pidle × tidle)/tcycle. To reduce the average
powerPave, the active power can be reduced (A), the idle
power can be reduced (B), or the active duty cycle can be
reduced (C). Table 1 shows the results from Doyle’s model
for the waveform of Figure 4. The waveform was simulated
for three different values of initial average power, and the
desired reduction in average power for each case was 20%.
As expected, reducing active power (A) results in the great-
est increase in battery life when the peak power is large.
Reducing idle power (B) always results in the least
increase in battery life. Reducing the duty cycle (C) always
does better than reducing the idle power and does as well
as reducing peak power only for the lowest value of peak
power. But when the peak power is larger, reducing the
duty cycle does not increase the battery life by as much as
reducing the active power.

The column labeled “% difference from expected”
refers to difference between the simulated battery life of
the modification and what would be expected given the ini-
tial battery life and the factor by which the power was
reduced. For example, the initial battery life of the wave-
form with the 300 W/kg peak power is 51 minutes.
Because the average power for each of the modifications is
80% of the initial waveform, one would expect the battery

Figure 3. Doyle’s Li-ion model results for capacity versus average power, showing difference
between continuous and intermittent loads of same average value.
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life for them to be 51/0.8 = 64 minutes. But this ignores the
non-ideal capacity behavior. As the results show, the non-
ideal capacity behavior can cause two loads with the same
average power to have greatly different battery lives. The
dynamic power must be considered as well as the average
power.

The results of Figure 3 may explain why the advertised

battery life of the typical notebook computer is greater than
what users realize in practice: Suppose the notebook manu-
facture is advertising an estimated battery life rather than a
measured one. If the manufacturer estimates the battery life
by using the battery’s rated capacity and the average power
of the system, then the estimate will be too large because of
the loss of capacity of the battery at higher rates. While the
notebook computer manufacturers reap an advantage by

Figure 4. Dynamic power profile example. Modifications A, B, and C reduce
the average power.
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Table 1. Doyle’s model results for waveform of Figure 4.

Waveform
modification

Duty Cycle,
tactive/tcycle,%

Peak power,
W/kg

Idle power,
W/kg

Average power,
W/kg

Battery life,
minutes

% difference
from expected

none 20 300 75 120 51 --

A 20 180 75 96 83 +30

B 20 300 45 96 67 +5

C 9.3 300 75 96 68 +7

none 20 200 50 80 87 --

A 20 120 50 64 132 +21

B 20 200 30 64 117 +8

C 9.3 200 50 64 118 +9

none 20 100 25 40 202 --

A 20 60 25 32 268 +6

B 20 100 15 32 253 0

C 9.3 100 25 32 268 +6



advertising a longer battery life than is achievable in prac-
tice, obviously a motive to be considered, they may simply
be using the rated battery capacity rather than the capacity
available at the notebook’s peak power.

The results shown in Figure 3 and from other simula-
tions with Doyle’s model (not shown due to space limita-
tions) show that recovery is a much smaller effect than loss
of capacity for loads that would be typical of mobile com-
puting. This has two consequences. First, models of battery
behavior under continuous loads can be used to estimate
battery life. Second, continuous discharges are sufficient
for measuring the effect of a change to lower power so long
as the energy consumed while the system is idle is
accounted for.

5. Conclusions
Because the battery is a key factor in the overall system

weight and volume, its characteristics must be carefully
considered. Non-ideal battery properties can lead to mis-
estimates of battery life. Models that capture the non-ideal
behavior are necessary both for wearable computer design
and for software control of power management and power-
performance trade-offs [8].

In summary, this paper has shown the following:

•  Battery capacity will vary with load power.

•  Peak power is a better indicator of battery capacity
than average power. Estimating battery life using
average power can be overly optimistic if peak
power is large.

•  Total system power must be considered. Power-per-
formance trade-offs made by examining a subsystem
in isolation may not lead to an increase in the com-
putations per battery life because total peak power is
ignored.

•  Peak power should be reduced wherever possible,
which means background operations should be per-
formed serially rather than concurrently. Serial oper-
ation is better than concurrent operation when each
consumes roughly the same energy.

•  Reducing active energy is more important than
reducing idle energy.

•  Continuous behavior can be used to estimate inter-
mittent behavior.

Because of non-ideal battery behavior, reducing average
power or energy per operation may not increase the amount
of computation completed in a battery life. Battery behav-
ior must be considered to properly make decisions about

low power operation in wearable computing.
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