Localization technologies

Two fundamental questions: Where am I? (localization) What services are available? (service discovery) Who wants to know and why? Public health and safety (especially in US) Extended 9-1-1 system (<u>www.fcc.gov/911/extended</u>) GPS DOT efforts support crash beacons, traffic restoration Personal safety Health monitors Commercial opportunities leveraging cellphone infrastructure

Dominant in Europe, Asia

The client may be phone, computer, PDA, specialized device Much of the intelligence will reside in the infrastructure.

Distinctions in localization

Physical location vs symbolic or functional location Locally computed vs location provided by the infrastructure Absolute position vs relative position Accuracy – distance, % of situations, object speed Scale for which the method works

Physical measurement tools:

Arrival time differences (need synch clocks) Radio 30 m = 100 nsec Ultrasound 3 cm = 10 usec Needs calibration for +- 10% temp, humidity effects

Signal strength or bearing (either 802.11 or cellphone)

Direct sensors

Dumb – pressure, IR, sound Smart – vision-based Can be either personal, or part of infrastructure For a good (not really even dated) survey, see the 1995 RAND policy study <u>http://www.rand.org/publications/MR/MR614</u>

"accuracy is addictive" over \$10B spent

History

Sputnik (1957) could provide intermittent 2D navigation from a few minutes of observation

US Navy TRANSIT system (1960's) 2D, slow, intermittent First use of atomic clocks

By 1970's Army, Navy, Air Force all had proposals

AF lead in 1974-79 NAVSTAR design and development

By 1980, a receiver fitted into a 25lb backpack

1994-95 24 satellites reached full operational status

(at present, there are 32 US satellites, GLONASS, +

European...)

2000 SA turned off, because local and wide area DGPS had made it irrelevant.

Commercial uses:

Surveying – first to succeed

Tolerates intermittency, one-hour calibration times Cm accuracy achieved

Trimble most successful company

Truck and package tracking

Qualcomm developed hybrid system in late 1980s Vehicle navigation

FAA executed WAA system by 2002

aim to replace surface navigation aids by 2005 critical requirement is RAIM

1 sec warning of invalid signal

Garmin, others market to hikers, boats, aircraft

In-car systems becoming standard in luxury cars

Extended 9-1-1

9-1-1 Systems first defined and executed in the 1970's Internal to monolithic Bell system
PSAPs = public safety answering points
Caller ID gave automatic location info for wireline calls
Analog cellphones handled by "virtual phone no" This identifies the antenna location

Extended 9-1-1 (a long history)

1993 US studies of future digital communications (PCS) 1994 NPRM

1996 result: two-phase plan for wireless 9-1-1

phase 1 (1997 – 2001) report #, antenna location phase 2 (2001 – 2005) report caller location (lat/lon) 50-100 m precision, high reliability

1997 laws passed requiring compliance

2001-2 Reviews and mid course corrections

Hatfield report (on fcc website):

1990's focused on developing means of localization E-OTD (extended observed time of arrival) A-GPS ("assisted" by base station corrections) No clear winner, multiple ways to succeed Issues in rural deployment Cost, antennas tend to line up along roads
2000's issues are dominated by infrastructure concerns PSAP infrastructure an analog "Kluge" Many independent companies now must cooperate Nobody's in charge Standards for protocols, deployment Tests to determine best localization technology

Other examples:

Aviation

VOR system (physical, locally computed, outside) ILS vs GCA (local vs infrastructure computing) Collision avoidance systems (relative coordinates) Inertial navigation (analysis of accuracy very different) GPS, possibly augmented as in E911 systems by cellphone infrastructure Outside only ?? 802.11-based MS-RADAR and some products Radio-based, using product ID tags or "active badges" Ultrasound-based ATT "bats" (require ceiling receiver arrays) Crickets Smart floor with pressure sensors

For further reading (on website), see IEEE Computer August 2001 and IEEE Pervasive Computing, no. 3

Table 1. Current location sensing technologies.											
Technolom	Trabuiaur	Dhusiaal	Com ha lia	ők a sluta	Deletion		Decemitien	Accuracy a precision if	nd	(r.d.	Limitations
	Dedia tima	Physical	Symbolic	ADSOLUTE	Relative		Recognition	1.5 motors	SCale 24 setallites	LOSI	Limitations
ara	of-flight lateration	·		·		Ŷ		(95-99 percent)	vorldwide	infrastructure \$1.00 receivers	NOT HILDOIS
Active	Diffuse		•	٠			1	Room	1 base per	Administration	Sunlight and
Badges	infrared							size	room, badge	costs, cheap	fluorescent light
	cellular proximity								per base per 10 sec	tags and bases	interfere with infrared
Active Bats	Ultrasound	*		•			1	9 cm	1 base per 10	Administration	Required
	time-of-flight							(95 percent)	square meters,	costs, cheap	ceiling
	lateration								25 computations	tags and	sensor grid
MotionStar	Scano	•		•			/	1 mm 1 mc	per room per sec	Controlled	Control unit
NUUUUIJJUAI	analysis	·		·			v	0.1° (nearly	scene 108 sen-	scenes exnen-	tether precise
	lateration							100 percent)	sors per scene	sive hardware	installation
VHF	Angulation	•		+		1		1° radial	Several	Expensive	30-140 nautical
Omini-								(≈ 100	transmitters per	infrastructure,	miles, line of
directional								percent)	metropolitan	inexpensive	sight
Ranging									area	aircraft receivers	
Cricket	Proximity,		•	0	0	1		4×4 ft.	≈1 beacon	\$10 beacons	No central
	lateration							regions (= 100	per to	and receivers	raccivar
								(≔ roo nercent)	οιμαί στι.		computation
MSR RADAR	802.11 RF	•		+			1	3-4.3 m	3 bases per	802.11 network	Wireless NICs
	scene analysis							(50 percent)	floor	installation,	required
	and									≈\$100 wireless	
	triangulation									NICs	
PinPoint 3D-iE	RF lateration	•		•			1	1-3 m	Several bases	Infrastructure	Proprietary,
									per building	installation,	802.11
										bardware	Interference
Avalanche	Radio signal	•			+			Variable.	1 transceiver	≈\$200 per	Short radio
Transceivers	strength							60-80	perperson	transceiver	range,
	proximity							meter			unwanted signal
								range			attenuation
Easy Living	Vision,		•	•			~	Variable	3 cameras	Processing	Ubiquitous
	triangulation								per small	power, install-	public
Smart Floor	Dhysical	•		•				Spacing of	Complete	ation cameras	Carrieras Recognition
Uniant HOU	contact						Ŷ	bressure	sensor arid	sensor arid	may not scale
	proximity							sensors	per floor	creation of	to large
								(100 percent)		footfall	populations
										training dataset	
Automatic ID	Proximity		•	0	0		1	Range of	Sensor per	Installation,	Must know
systems								sensing	location	variable	sensor locations
								phenomenon		hardware costs	
								typically <1m ³			
Wireless	802.11		•	•		_	1	802.11 cell	Many bases	802.11	Wireless NICs
Andrew	proximity							size, (=	per campus	deployment,	required, RF cell
								approx. 100 n	n	≈\$100 wireless	geometries
								indoor, 1 km			
								free space)		NICs	
E911	Triangulation	•		*			1	150-300 m	Density of	Upgrading	Only where cell
								(so percent)	infrastructure	pitone hardware.or	coverage exists
									mirasuutture	cell infrastructure	
SpotON	Ad hoc	•			+		1	Depends on	Cluster at	\$30 per tag.	Attenuation less
	lateration							cluster size	least 2 tags	no infrastructure	accurate than
											time-of-flight