
BASIC Stamp Programming Manual
Version 1.8

®

®

This manual is valid with the following software and firmware versions:

BASIC Stamp I:
STAMP.EXE software version 2.0
Firmware version 1.4

BASIC Stamp II:
STAMP2.EXE software version 1.1
Firmware version 1.0

Newer versions will usually work, but older versions may not. New software can be obtained for free on our BBS
and Internet web and ftp site. New firmware, however, must usually be purchased in the form of a new BASIC
Stamp. If you have any questions about what you may need, please contact Parallax.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 1

Thank you for purchasing a BASIC Stamp product. We’ve been making
BASIC Stamp computers for years, and most customers find them
useful and fun. Of course, we hope your experience with BASIC Stamps
will be useful and fun, as well. If you have any questions or need
technical assistance, please don’t hesitate to contact Parallax or the
distributor from which you purchased your BASIC Stamps.

This manual is divided into two sections. The first section deals with the
BASIC Stamp I, and the second section deals with the BASIC Stamp II.
The BASIC Stamp I has been around for some time, and therefore has
more data in the way of application notes. If you have prior experience
with BASIC Stamp I, you should consult Appendix C, for details on
converting to the Basic Stamp II.

PBASIC Language: the BASIC Stamps are programmed in a simple
version of the BASIC language, called PBASIC. We developed PBASIC
to be easy to understand, yet well-suited for the many control and
monitoring applications that BASIC Stamps are used in. The PBASIC
language includes familiar instructions, such as GOTO, FOR...NEXT,
and IF...THEN, as well as specialized instructions, such as SERIN,
PWM, BUTTON, COUNT, and DTMFOUT.

Hardware: the BASIC Stamps discussed in this manual are the “BS1-IC”
and “BS2-IC.” Both represent the latest versions of the BASIC Stamp I
and BASIC Stamp II. Both include a small circuit board with a PBASIC
interpreter chip, EEPROM, 5-volt regulator, reset circuit, and resonator.
These five components form a complete computer in a very small space.
The modular design of the BS1-IC and BS2-IC makes them perfect for
use in breadboards and printed circuit boards.

Each of the BASIC Stamp modules has a corresponding “carrier board.”
The carrier boards provide 9-volt battery clips, connectors for program-
ming, and a small prototyping area. Although they are optional, we
recommend that you purchase at least one carrier board as a means of
easily programming your BASIC Stamps.

Introduction

Page 2 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Warranty
Parallax warrants its products against defects in materials and workmanship for a period
of 90 days. If you discover a defect, Parallax will, at its option, repair, replace, or refund
the purchase price. Simply return the product with a description of the problem and a
copy of your invoice (if you do not have your invoice, please include your name and
telephone number). We will return your product, or its replacement, using the same
shipping method used to ship the product to Parallax (for instance, if you ship your
product via overnight express, we will do the same).

This warranty does not apply if the product has been modified or damaged by accident,
abuse, or misuse.

14-Day Money-Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your
needs, you may return it for a refund. Parallax will refund the purchase price of the
product, excluding shipping/handling costs. This does not apply if the product has been
altered or damaged.

Copyrights and Trademarks
Copyright © 1997 by Parallax, Inc. All rights reserved. PBASIC is a trademark and
Parallax, the Parallax logo, and BASIC Stamp are registered trademarks of Parallax, Inc.
PIC is a registered trademark of Microchip Technology, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability
Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting
from any breach of warranty, or under any legal theory, including lost profits, downtime,
goodwill, damage to or replacement of equipment or property, and any costs or recover-
ing, reprogramming, or reproducing any data stored in or used with Parallax products.

BBS/Internet Access
We maintain BBS and Internet systems for your convenience. These may be used to obtain
software, communicate with members of Parallax, and communicate with other custom-
ers. Access information is shown below:

E-mail: info@parallaxinc.com
Ftp: ftp.parallaxinc.com (same file selection as BBS)
Web: http://www.parallaxinc.com
BBS: (916) 624-7101 (300-14400 baud, 8 data bits, 1 stop bit, no parity)

Internet BASIC Stamp Discussion List
We maintain an email discussion list for people interested in BASIC Stamps. The list
works like this: lots of people subscribe to the list, and then all questions and answers to
the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss issues.

To subscribe to the Stamp list, send email to majordomo@parallaxinc.com and write
subscribe stamps in the body of the message.

Important Information

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 3

BASIC Stamp I:
Programming ... 7

System requirements ...7
Packing list ..7
Connecting to the PC ...8

Hardware ..9
BS1-IC pin-out ...9
Carrier board features ...9
General BASIC Stamp schematic ...10
Regulator current limits ..10

I/O Port & Variable Space .. 11

Common Questions .. 13
Example Application... 15
Using the Editor .. 16

Starting the editor ...16
Program formatting ...16
Entering and editing programs ..20
Editor function keys ...20
Running your program ...22
Loading a program from disk ..22
Saving a program on disk ...22
Using cut, copy, and paste ..23
Using search and replace ..23

Instruction Set Summary .. 25
PBASIC Instructions ... 27

BRANCH ...27
BUTTON ..28
DEBUG...30
EEPROM ..31
END ..32
FOR...NEXT ...33
GOSUB ...35
GOTO ...36
HIGH ..37
IF...THEN...38
INPUT ..39
LET ...40
LOOKDOWN ...42
LOOKUP..43

Contents

Page 4 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Contents

LOW ...44
NAP ..45
OUTPUT ..47
PAUSE..48
POT ...49
PULSIN ..51
PULSOUT ..52
PWM ..53
RANDOM..55
READ ...56
RETURN ..57
REVERSE ...58
SERIN ...59
SEROUT ...63
SLEEP ...66
SOUND ..67
TOGGLE ..68
WRITE ..69

BASIC Stamp I Application Notes .. 71
Note #1: LCD user-interface terminal71
Note #2: Interfacing an 8-bit A/D convertor77
Note #3: Hardware solution for keypads81
Note #4: Controlling and testing servos85
Note #5: Practical pulse measurements91
Note #6: A serial stepper-motor controller99
Note #7: Using a thermistor ...103
Note #8: Sending Morse code ..109
Note #9: Constructing a dice game113
Note #10: Humidity and temperature115
Note #11: Infrared communication119
Note #12: Sonar rangefinding ..123
Note #13: Using serial EEPROMs129
Note #14: Networking multiple Stamps135
Note #15: Using PWM for analog output141
Note #16: Keeping Stamp programs private145
Note #17: Solar-powered Stamp ..149
Note #18: One pin, many switches155
Note #19: Using the button instruction effectively159
Note #20: An accurate timebase ..167
Note #21: Fun with model trains ...171
Note #22: Interfacing a 12-bit A/D convertor183
Note #23: Interfacing the DS1620 digital thermometer ...189

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 5

BASIC Stamp II:
Programming .. 198

System requirements ...198
Packing list ..198
Connecting to the PC ...199

Carrier Board Features ... 199
BS2-IC Pinout .. 200

Using the Editor ... 201
Starting the editor ...201
Entering and editing programs ..202
Editor function keys ...202

PBASIC Instruction Summary .. 204
BS2 Hardware .. 207

Schematic ...207
PBASIC2 Interpreter Chip...208
Erasable Memory Chip ..209
Reset Circuit ..209
Power Supply ..210
Serial Interface ..210
PC-TO-BS2 Connector Hookup ...212

Writing programs for the BASIC Stamp II 213
BS2 Memory Organization..213
Defining variables (VAR) ..217
Aliases & Modifiers ..221
Viewing the Memory Map ..224
Defining constants (CON) ...225
Defining data (DATA) ...228
Run-time Math and Logic ...231
Unary Operators ...236
Binary Operators ..239

PBASIC Instructions .. 247
BRANCH ...247
BUTTON ..249
COUNT ..251
DEBUG...253
DTMFOUT ..257
END ..260

Contents

FOR...NEXT ...261
FREQOUT..264
GOSUB ...266
GOTO ...268
HIGH ..269
IF...THEN...270
INPUT ..276
LOOKDOWN ...278
LOOKUP..282
LOW ...284
NAP ..285
OUTPUT ..287
PAUSE..288
PULSIN ..289
PULSOUT ..291
PWM ..293
RANDOM..296
RCTIME ...298
READ ...302
RETURN ..304
REVERSE ...305
SERIN ...307
SEROUT ...318
SHIFTIN...328
SHIFTOUT...332
SLEEP ...334
STOP...336
TOGGLE ..337
WRITE ..339
XOUT ...342

Stamp II Application Notes ..345
Note #1: Controlling lights with X-10 (XOUT)345
Note #2: Using SHIFTIN and SHIFTOUT351
Note #3: Connecting to the telephone line359

APPEDICES ... 363
A) ASCII Chart ...363
B) Reserved Words ...365
C) BS1 to BS2 Conversion ...367
D) BS1 and BS2 Schematics ...447

Contents

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 7

1

BASIC Stamp I

System Requirements

To program the BASIC Stamp I, you’ll need the following computer
system:

• IBM PC or compatible computer
• 3.5-inch disk drive
• Parallel port
• 128K of RAM
• MS-DOS 2.0 or greater

If you have the BASIC Stamp I carrier board, you can use a 9-volt battery
as a convenient means to power the BASIC Stamp. You can also use a
5-15 volt power supply (5-40 volts on the BS1-IC rev. b), but you should
be careful to connect the supply to the appropriate part of the BASIC
Stamp. A 5-volt supply should be connected directly to the +5V pin, but
a higher voltage should be connected to the PWR pin.

Connecting a high voltage supply (greater than 6 volts) to the 5-volt pin
can permanently damage the BASIC Stamp.

Packing List

If you purchased the BASIC Stamp Programming Package, you should
have received the following items:

• BASIC Stamp manual (this manual)

• BASIC Stamp I programming cable (parallel port DB25-to-3 pin)

• BASIC Stamp II programming cable (serial port DB9-to-DB9)

• 3.5-inch diskette
If you purchased the BASIC Stamp II Starter Kit, you should have
received the following items:

• BASIC Stamp Manual (this manual)

• BASIC Stamp II programming cable (serial port DB9-to-DB9)

• 3.5-inch diskette
If any items are missing, please let us know.

Page 8 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Connecting to the PC

To program a BASIC Stamp I, you’ll need to connect it to your PC and
then run the editor/downloader software. In this section of the manual,
it’s assumed that your BASIC Stamp is a BS1-IC, and that you have the
corresponding carrier board.

To connect the BASIC Stamp to your PC, follow these steps:

1) Plug the BS1-IC onto the carrier board. The BS1-IC plugs into a
14-pin SIP socket, located near the battery clips on the carrier.
When plugged onto the carrier board, the components on the
BS1-IC should face the battery clips.

2) In the BASIC Stamp Programming Package, you received a
cable to connect the BASIC Stamp to your PC. The cable has two
ends, one with a DB25 connector and the other with a 3-pin
connector. Plug the DB25 end into an available parallel port on
your PC.

3) Plug the remaining end of the cable onto the 3-pin header on the
carrier board. On the board and the cable, you’ll notice a double-
arrow marking; the markings on the cable and board should
match up.

4) Supply power to the carrier board, either by connecting a 9-volt
battery or by providing an external power source.

With the BASIC Stamp connected and powered, run the editor/
downloader software as described later in this manual.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 9

1

BASIC Stamp I

PWR Unregulated power in: accepts 6-15 VDC (6-40 VDC on BS1-IC rev. b),
which is then regulated to 5 volts. May be left unconnected if 5 volts
is applied to the +5V pin.

GND System ground: connects to PC parallel port pin 25 (GND) for program-
ming.

PCO PC Out: connects to PC parallel port pin 11 (BUSY) for programming.

PCI PC In: connects to PC parallel port pin 2 (D0) for programming.

+5V 5-volt input/output: if an unregulated voltage is applied to the PWR pin,
then this pin will output 5 volts. If no voltage is applied to the PWR pin,
then a regulated voltage between 4.5V and 5.5V should be applied to
this pin.

RES Reset input/output: goes low when power supply is less than 4 volts,
causing the BS1-IC to reset. Can be driven low to force a reset. Do not
drive high.

P0-P7 General-purpose I/O pins: each can sink 25 mA and source 20 mA.
However, the total of all pins should not exceed 50 mA (sink) and 40
mA (source).

BS1-IC

P
W

R

G
N

D

P
C

O

P
C

I

+
5V

R
E

S

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Shown at 125%
of actual size

Vin

Vss

PCO

PCI

Vdd

RES

P0

P1

P2

P3

P4

P5

P6

P7

© 1994

REV E

BASIC Stamp
TM

BS1-IC

PC Parallel Port
25112

Reset

9-volt
Battery
Clips

Prototyping
Area

Mounting
Holes

Programming
Header

BS1-IC Socket
(pin 1)

Reset
Button

I/O
Header

Header signals are duplicated on these columns
of holes. All other holes are independent.

BS1-IC Carrier Board

Page 10 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

2N3906

2.2M2.2M

470K

Vcc

OPTIONAL
BROWNOUT
CIRCUIT

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

EE CS

PC BUSY

PC DATA

RESET

Vss

D0

D1

D2

D3

EE CLK

EE DATA

OSC1

OSC2

Vdd

D7

D6

D5

D4

4 MHz

93LC56

1

2

3

4

8

7

6

5

CS

CLK

DI

DO

Vcc

NC

ORG

Vss

4.7K

4.7K

Vcc

PC
PROGRAMMING
CONNECTOR

I/O PORT

PC parallel pin 2 (D0)
PC parallel pin 11 (BUSY)
PC parallel pin 25 (GND)

PBASIC

Must be Microchip 93LC56; other
brands may not work due to memory
access differences.

* The BS1-IC has a slightly different schematic (it uses a different reset circuit,
and it includes a 5-volt regulator). However, this schematic serves as an
example of how simple the BASIC Stamp circuit is to implement.

Current Limits of the On-Board Regulator

In some cases, you may want to know how much current the BS1-IC can
handle with its on-board regulator. At higher supply voltages, the
regulator can handle less current. The BS1-IC itself takes 1-2 mA, so any
current “left over” can be used to drive external circuits. The table below
shows the approximate current limits at various voltages:

Power Supply (volts) Total Current (mA)

5-9 50
12 40
25 10
40 2-3

We recommend a supply voltage on the low end (5-15 VDC). However,
the BS1-IC will run at higher voltages, as shown.

General Stamp Schematic*:

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 11

1

The BASIC Stamp I has 16 bytes of RAM devoted to I/O and the storage
of variables. The first two bytes are used for I/O (1 for actual pins, 1 for
direction control), leaving 14 bytes for data. This arrangement of
variable space is shown below:

Word Name Byte Names Bit Names Special Notes

Port Pins Pin0-Pin7 I/O pins; bit addressable.
Dirs Dir0-Dir7 I/O pin direction control; bit

addressable.

W0 B0 Bit0-Bit7 Bit addressable.
B1 Bit8-Bit15 Bit addressable.

W1 B2
B3

W2 B4
B5

W3 B6
B7

W4 B8
B9

W5 B10
B11

W6 B12 Used by GOSUB instruction.
B13 Used by GOSUB instruction.

The PBASIC language allows a fair amount of flexibility in naming
variables and I/O pins. Depending upon your needs, you can use the
variable space and I/O pins as bytes (Pins, Dirs, B0-B13) or as 16-bit
words (Port, W0-W6). Additionally, the I/O pins and the first two data
bytes can be used as individual bits (Pin0-Pin7, Dir0-Dir7, Bit0-Bit15). In
many cases, a single bit may be all you need, such as when storing a
status flag.

BASIC Stamp I

Page 12 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Port is a 16-bit word, which is composed of two bytes, Pins and Dirs:

Pins (byte) and Pin0-Pin7 (corresponding bits) are the I/O port pins.
When these variables are read, the I/O pins are read directly. When
these variables are written to, the corresponding RAM is written to,
which is then transferred to the I/O pins before each instruction.

Dirs (byte) and Dir0-Dir7 (corresponding bits) are the I/O port
direction bits. A “0” in one of these bits causes the corresponding
I/O pin to be an input; a “1” causes the pin to be an output. This byte
of data is transferred to the I/O port’s direction register before each
instruction.

When you write your PBASIC programs, you’ll use the symbols described
above to read and write the BASIC Stamp’s 8 I/O pins.

Normally, you’ll start your program by defining which pins are
inputs and which are outputs. For instance, “dirs = %00001111”
sets bits 0-3 as outputs and bits 4-7 as inputs (right to left).

After defining which pins are inputs and outputs, you can read and
write the pins. The instruction “pins = %11000000” sets bits 6-7
high. For reading pins, the instruction “b2 = pins” reads all 8 pins
into the byte variable b2.

Pins can be addressed on an individual basis, which may be easier.
For reading a single pin, the instruction “Bit0 = Pin7” reads the state
of I/O pin 7 and stores the reading in bit variable Bit0. The
instruction “if pin3 = 1 then start” reads I/O pin 3 and then jumps
to start (a location) if the pin was high (1).

The BASIC Stamp’s editor software recognizes the variable names
shown on the previous page. If you’d like to use different names, you
can start your program with instructions to define new names:

symbol switch = pin0 'Define label "switch" for I/O pin 0
symbol flag = bit0 'Define label "flag" for bit variable bit0
symbol count = b2 'Define label "count" for byte variable b2

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 13

1

Can I expand the BASIC Stamp’s program memory?:
No; the PBASIC interpreter only addresses 8 bits of program space,
which results in the 256-byte limitation. Using a larger EEPROM,
such as the Microchip 93LC66, won’t make any difference.

What voltage range can I use to power the BASIC Stamp:
We encourage people to use a 9-volt battery to power the BASIC
Stamp, especially if they have the carrier board. The battery is
simple and can power the BASIC Stamp for days, even weeks if
sleep mode is used.

However, if you want to use an external power supply, you can use
anything that supplies 5-15 volts DC (5-40 VDC on BS1-IC rev. b) at
a minimum of 2 mA (not including I/O current needs).

If you have a 5-volt supply, connect it to the BASIC Stamp’s +5V
pin. This will route power directly to the BASIC Stamp circuit,
bypassing the voltage regulator.

If you have a 6-15 (6-40 VDC on BS1-IC rev. b) volt supply, connect
it to the BASIC Stamp’s PWR pin. This will route power through the
on-board 5-volt regulator.

Can I use the Stamp to power external circuits?:
Yes; if you need to supply 5 volts, connect your circuit to the BASIC
Stamp’s +5V pin. If you need the unregulated input voltage, connect
your circuit to the PWR pin.

How long can the BASIC Stamp run on a 9-volt battery?:
This depends on what you’re doing with the BASIC Stamp. If your
program never uses sleep mode and has several LED’s connected
to I/O lines, then the BASIC Stamp may only run for several hours.
If, however, sleep mode is used and I/O current draw is minimal,
then the BASIC Stamp can run for weeks.

What are the sink and source capabilities of the BASIC Stamp’s I/O lines?:
The I/O pins can each sink 25 mA and source 20 mA. However, the
total sink and source for all 8 I/O lines should not exceed 50 mA
(sink) and 40 mA (source).

BASIC Stamp I

Page 14 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Does the BASIC Stamp support floating point math?:
No; the BASIC Stamp only works with integer math, which means
that no fractions are allowed. Expressions must be given as inte-
gers, and any results are given as integers. For instance, if you gave
the BASIC Stamp an instruction to divide 5 by 2, it would return a
result of 2, not 2.5; the remainder (.5) is simply lost.

How does the BASIC Stamp evaluate mathematical expressions?:
Mathematical expressions are evaluated strictly left to right. This is
important, since you may get different results than you expect. For
instance, under normal rules, the expression 2 + 3 x 4 would be
solved as 2 + (3 x 4), since multiplication takes priority over
addition. The result would be 14. However, since the BASIC Stamp
solves expressions from left to right, it would be solved as (2 + 3) x
4, for a result of 20.

When writing your programs, please remember that the left-to-
right evaluation of expressions may affect the results.

What do I need to make the BASIC Stamp support RS-232 voltages?

The BASIC Stamp’s I/O pins operate at TTL voltages (0-5 volts), so
the SERIN and SEROUT instructions operate at these voltages. This
is fine for most applications, such as BASIC Stamps communicating
with other BASIC Stamps. However, some PCs may not accept TTL
voltages, especially when the PC is receiving data. If you need real
RS-232 voltages, you can use the circuit shown below. The
LT1181ACN is available from various distributors, including Digi-
Key (call 800-344-4539).

BASIC Stamp I

5 VDC

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

LT1181ACN

0.1 µF

0.1 µF

0.1 µF

0.1 µF

Data Out (RS-232; DB9 pin 2)

Data In (RS-232; DB9 pin 3)
Data Out (Stamp; any I/O pin)

Data In (Stamp; any I/O pin)

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 15

1

loop:
pot 0,100,b2 'Read potentiometer on pin 0 and

'store result in variable b2.

b2=b2/2 'Divide result so highest value
'will be 128.

sound 1,(b2,10) 'Generate a tone using speaker
'on pin 1. Frequency is set by
'value in b2. Duration of tone
'is set to 10.

goto loop 'Repeat the process.

10K

0.1 µF

+

10 µF

40 Ω

PWR

GND

PCO

PCI

+5V

RES

P0

P1

P2

P3

P4

P5

P6

P7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

B
S

1-
IC

This page shows a simple application using a BS1-IC. The purpose of
the application is to read the value of the potentiometer and then
generate a corresponding tone on the speaker. As the potentiometer
value changes, so does the tone. For interesting variations, the potenti-
ometer could easily be changed to a thermistor or photocell.

BASIC Stamp I

Page 16 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Starting the Editor

With the BASIC Stamp connected and powered, run the editor software
by typing the following command from the DOS prompt:

STAMP

Assuming you’re in the proper directory, the BASIC Stamp software
will start running after several seconds. The editor screen is dark blue,
with one line across the top that names various functions.

Program Formatting

There are few restrictions on how programs are entered. However, you
should know the rules for entering constants, labels, and comments, as
described in the following pages:

• Constants: constant values can be declared in four ways: decimal,
hex, binary, and ASCII.

Hex numbers are preceded with a dollar sign ($), binary numbers
are preceded with a percent sign (%), and ASCII values are
enclosed in double quotes ("). If no special punctuation is used,
then the editor will assume the value is decimal. Following are
some examples:

100 'Decimal
$64 'Hex
%01100100 'Binary
"A" 'ASCII "A" (65)
"Hello" 'ASCII "H", "e", "l", "l", "o"

Most of your programs will probably use decimal values, since
this is most common in BASIC. However, hex and binary can be
useful. For instance, to define pins 0-3 as outputs and pins 4-7 as
inputs, you could use any of the following, but the binary
example is the most readable:

dirs = 15 'Decimal
dirs = $0F 'Hex
dirs = %00001111 'Binary

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 17

1

• Address Labels: the editor uses labels to refer to addresses (loca-
tions) within your program. This is different from some versions
of BASIC, which use line numbers.

Generally speaking, label names can be any combination of
letters, numbers, and underscores (_), but the first character of the
name must not be a number. Also, label names cannot use
reserved words, such as instruction names (serin, toggle, goto,
etc.) and variable names (port, w2, b13, etc.)

When first used, label names must end with a colon (:). When
called elsewhere in the program, labels are named without the
colon. The following example illustrates how to use a label to
refer to an address:

loop: toggle 0 'Toggle pin 0

for b0 = 1 to 10
toggle 1 'Toggle pin 1 ten times
next

goto loop 'Repeat the process

• Value Labels: along with program addresses, you can use labels to
refer to variables and constants. Value labels share the same
syntax rules as address labels, but value labels don’t end with a
colon (:), and they must be defined using the “symbol” directive.
The following example shows several value labels:

symbol start = 1 'Define two constant
symbol end = 10 'labels

symbol count = b0 'Define a label for b0

loop: for count = start to end
toggle 1 'Toggle pin 1 ten times
next

BASIC Stamp I

Page 18 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

• Comments: comments can be added to your program to make it
more readable.

Comments begin with an apostrophe (') and continue to the end
of the line. You can also designate a comment using the standard
REM statement found in many versions of BASIC...

symbol relay = 3 'Make label for I/O pin 3
symbol length = w2 'Make label for w2

dirs = %11111111 'Make all pins outputs
pins = %00000000 'Make all pins low

REM this is the main loop

main: length = length + 10 'Increase length by 10
gosub sub 'Call pulse out routine
goto main 'Loop back

sub: pulsout relay,length : toggle 0 : return

• General Format:

The editor is not case sensitive, except when processing strings
(such as “hello”).

Multiple instructions and labels can be combined on the same
line by separating them with colons (:).

The following example shows the same program as separate lines
and as a single-line...

Multiple-line version:

dirs = 255 'Make all pins outputs
for b2 = 0 to 100 'Count from 0 to 100
pins = b2 'Make pins = count (b2)
next 'Continue counting til 100

Single-line version:

dirs = 255 : for b2 = 0 to 100 : pins = b2 : next

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 19

1

• Mathematical Operators: the following operators may be used in
mathematical expressions:

+ add
- subtract
* multiply (returns low word of result)
** multiply (returns high word of result)
/ divide (returns quotient)
// divide (returns remainder)
min keep variable greater than or equal to value
max keep variable less than or equal to value
& logical AND
| logical OR
^ logical XOR
&/ logical AND NOT
|/ logical OR NOT
^/ logical XOR NOT

Some examples:

count = count + 1 'Increment count
timer = timer * 2 'Multiply timer by 2
b2 = b2 / 8 'Divide b2 by 8
w3 = w3 & 255 'Isolate lower byte of w3
b0 = b0 + 1 max 99 'Increment b0, but don't

'allow b0 to exceed 99
b3 = b3 - 1 min 10 'Decrement b3, but don't

'allow b3 to drop below 10

BASIC Stamp I

Page 20 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Entering & Editing Programs

As covered in the previous pages, there are some rules to remember
about the use of constants, labels, and comments. However, for the most
part, you can format your programs as you see fit.

We’ve tried to make the editor as intuitive as possible: to move up, press
the up arrow; to highlight one character to the right, press shift-right
arrow; etc.

Most functions of the editor are easy to use. Using single keystrokes,
you can perform the following common functions:

• Load, save, and run programs.

• Move the cursor in increments of one character, one word, one
line, one screen, or to the beginning or end of a file.

• Highlight text in blocks of one character, one word, one line, one
screen, or to the beginning or end of a file.

• Cut, copy, and paste highlighted text.

• Search for and/or replace text.

Editor Function Keys

The following list shows the keys that are used to perform various
functions:

Alt-R Run program in BASIC Stamp (download the
program on the screen, then run it)

Alt-L Load program from disk
Alt-S Save program on disk
Alt-Q Quit editor and return to DOS

Enter Enter information and move down one line
Tab Same as Enter

Left arrow Move left one character
Right arrow Move right one character

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 21

1

Up arrow Move up one line
Down arrow Move down one line
Ctrl-Left Move left to next word
Ctrl-Right Move right to next word

Home Move to beginning of line
End Move to end of line
Page Up Move up one screen
Page Down Move down one screen
Ctrl-Page Up Move to beginning of file
Ctrl-Page Down Move to end of file

Shift-Left Highlight one character to the left
Shift-Right Highlight one character to the right
Shift-Up Highlight one line up
Shift-Down Highlight one line down
Shift-Ctrl-Left Highlight one word to the left
Shift-Ctrl-Right Highlight one word to the right

Shift-Home Highlight to beginning of line
Shift-End Highlight to end of line
Shift-Page Up Highlight one screen up
Shift-Page Down Highlight one screen down
Shift-Ctrl-Page Up Highlight to beginning of file
Shift-Ctrl-Page Down Highlight to end of file

Shift-Insert Highlight word at cursor
ESC Cancel highlighted text

Backspace Delete one character to the left
Delete Delete character at cursor
Shift-Backspace Delete from left character to beginning of line
Shift-Delete Delete to end of line
Ctrl-Backspace Delete line

Alt-X Cut marked text and place in clipboard
Alt-C Copy marked text to clipboard
Alt-V Paste (insert) clipboard text at cursor

Alt-F Find string (establish search information)
Alt-N Find next occurrence of string

Alt-P Calibrate potentiometer scale
(see POT instruction for more information)

BASIC Stamp I

Page 22 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Running Your Program

To run the program shown on the screen, press Alt-R. The editor
software will check all available parallel ports, searching for a BASIC
Stamp. If it finds one, it will download and run your program. Note that
any program already in the BASIC Stamp will be overwritten. If the
editor is unable to locate a BASIC Stamp, it will display an error.

Assuming that you have a BASIC Stamp properly connected to your
PC, the editor will display a bargraph, which shows how the download
of your program is progressing. Typical downloads take only several
seconds, so the graph will fill quickly.

As the graph fills, you’ll notice that some of the graph fills with white
blocks, while the remainder fills with red blocks. These colors represent
how much of the BASIC Stamp’s EEPROM space is used by the
program. White represents available space, and red represents space
occupied by the program.

When the download is complete, your program will automatically start
running in the BASIC Stamp. If you used the debug directive in your
program, it will display its data when it’s encountered in the program.

To remove the download graph from the screen, press any key.

Loading a Program from Disk

To load a PBASIC program from disk, press Alt-L. A small box will
appear, prompting you for a filename. If you entered the filename
correctly, the program will be loaded into the editor. Otherwise, an
error message will be displayed.

If you decide not to load a program, press ESC to resume editing.

Saving a Program on Disk

To save a PBASIC program on disk, press Alt-S. A small box will appear,
prompting you for a filename. After the filename is entered, the editor
will save your program.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 23

1

Using Cut, Copy, and Paste

Like most word processors, the editor can easily cut, copy, and paste
text. If you need to make major changes to your program, or your
program has many repetitive routines, these functions can save a lot of
time.

The function of the cut, copy, and paste routines is to cut or copy
highlighted text to the clipboard (the clipboard is an area of memory set
aside by the editor). Text in the clipboard can later be pasted (inserted)
anywhere in your program. Both cut and paste copy text to the clip-
board, but cut also removes the text from its current location.

Please note that cutting text is different from deleting it. While both
functions remove text from its current location, only cut saves the text
to the clipboard – delete removes it entirely.

As an example of cut and paste, let’s cut a section of text and then paste
it elsewhere. The following steps will guide you through the process:

• First, you need to highlight some text. For this example, let’s
highlight everything from the cursor to the end of the line. To do
this, press Shift-End (everything from the cursor to the end of the
line should become highlighted).

• Second, with the line highlighted, press Alt-X (cut). The text
should disappear.

• Third, move the cursor to another location – anywhere is fine.
Then, press Alt-V (paste). The text should appear where the
cursor was, pushing any following text down as necessary.

The first step could be replaced with copy (Alt-C), instead of cut (Alt-
X). The only difference would be that the text would appear in its
original location, as well as the pasted location.

BASIC Stamp I

Page 24 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Using Search & Replace

The editor has a function that allows you to search for and/or replace
text. In many instances, this function can be very useful. For example,
you may decide to change a variable name throughout your program.
Doing so manually would take a lot of time, but with search and replace,
it takes just seconds.

To set the search criteria, press Alt-F (find). A small box will appear in
the center of the screen, requesting a search string and an optional
replacement string. To perform the search, follow these steps:

• Enter the search string. If you want to search for a string that
contains the Tab or Return keys, you can do so by typing Ctrl-Tab
or Ctrl-Return; “•” will appear for each tab, “↓” for each return.

• Enter the replacement string, if necessary. If you enter a replace-
ment string, it will be copied to the clipboard (the clipboard is an
area of memory set aside by the editor). During the search, you
will have the option to replace individual occurrences of the
search string with the replacement string.

If you only want to search (without the option to replace), just
press Enter for the replacement string.

• The editor will remove the search criteria box and highlight the
first occurrence of the search string.

To replace the highlighted string with the replacement string,
press Alt-V (paste).

To find the next occurrence of the search string, press Alt-N.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 25

1

BRANCHING

IF...THEN Compare and conditionally branch.

BRANCH Branch to address specified by offset.

GOTO Branch to address.

GOSUB Branch to subroutine at address. Up to 16 GOSUB’s are
allowed.

RETURN Return from subroutine.

LOOPING

FOR...NEXT Establish a FOR...NEXT loop.

NUMERICS

{LET} Perform variable manipulation, such as A=5, B=A+2, etc.
Possible operations are add, subtract, multiply, divide,
max. limit, min. limit, and logical operations AND, OR,
XOR, AND NOT, OR NOT, and XOR NOT.

LOOKUP Lookup data specified by offset and store in variable. This
instruction provides a means to make a lookup table.

LOOKDOWN Find target’s match number (0-N) and store in variable.

RANDOM Generate a pseudo-random number.

DIGITAL I/O

OUTPUT Make pin an output.

LOW Make pin output low.

HIGH Make pin output high.

TOGGLE Make pin an output and toggle state.

PULSOUT Output a timed pulse by inverting a pin for some time.

INPUT Make pin an input

PULSIN Measure an input pulse.

REVERSE If pin is an output, make it an input. If pin is an input, make
it an output.

BUTTON Debounce button, perform auto-repeat, and branch to
address if button is in target state.

BASIC Stamp I

Page 26 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

SERIAL I/O

SERIN Serial input with optional qualifiers and variables for stor-
age of received data. If qualifiers are given, then the
instruction will wait until they are received before filling
variables or continuing to the next instruction. Baud rates
of 300, 600, 1200, and 2400 are possible. Data received
must be with no parity, 8 data bits, and 1 stop bit.

SEROUT Send data serially. Data is sent at 300, 600, 1200, or 2400
baud, with no parity, 8 data bits, and 1 stop bit.

ANALOG I/O

PWM Output PWM, then return pin to input. Used to output
analog voltages (0-5V) using a capacitor and resistor.

POT Read a 5-50K potentiometer and scale result.

SOUND

SOUND Play notes. Note 0 is silence, notes 1-127 are ascending
tones, and notes 128-255 are white noises.

EEPROM ACCESS

EEPROM Store data in EEPROM before downloading BASIC pro-
gram.

READ Read EEPROM byte into variable.

WRITE Write byte into EEPROM.

TIME

PAUSE Pause execution for 0–65536 milliseconds.

POWER CONTROL

NAP Nap for a short period. Power consumption is reduced.

SLEEP Sleep for 1-65535 seconds. Power consumption is re-
duced to approximately 20 µA.

END Sleep until the power cycles or the PC connects. Power
consumption is reduced to approximately 20 µA.

PROGRAM DEBUGGING

DEBUG Send variables to PC for viewing.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 27

BASIC Stamp I

1

BASIC Instructions

BRANCH offset,(address0,address1,...addressN)

Go to the address specified by offset (if in range).

• Offset is a variable/constant that specifies the address to branch
to (0–N).

• Addresses are labels that specify where to branch.

Branch works like the ON x GOTO command found in other
BASICs. It’s useful when you want to write something like this:

if b2 = 0 then case_0 ' b2=0: go to label "case_0"
if b2 = 1 then case_1 ' b2=1: go to label "case_1"
if b2 = 2 then case_2 ' b2=2: go to label "case_2"

You can use Branch to organize this into a single statement:

BRANCH b2,(case_0,case_1,case_2)

This works exactly the same as the previous IF...THEN example. If
the value isn’t in range (in this case if b2 is greater than 2), Branch
does nothing. The program continues with the next instruction
after Branch.

Branch can be teamed with the Lookdown instruction to create a
simplified SELECT CASE statement. See Lookdown for an example.

Sample Program:

Get_code:
serin 0,N2400,("code"),b2 ' Get serial input.

' Wait for the string "code",
' then put next value into b2.

BRANCH b2,(case_0,case_1,case_2) ' If b2=0 then case_0
' If b2=1 then case_1
' If b2=2 then case_2

goto Get_code ' If b2>2 then Get_code.

case_0: ... ' Destinations of the
case_1: ... ' Branch instruction.
case_2: ...

Page 28 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address

Debounce button input, perform auto-repeat, and branch to ad-
dress if button is in target state. Button circuits may be active-low
or active-high (see the diagram on the next page).

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Downstate is a variable/constant (0 or 1) that specifies which
logical state is read when the button is pressed.

• Delay is a variable/constant (0–255) that specifies how long the
button must be pressed before auto-repeat starts. The delay is
measured in cycles of the Button routine. Delay has two special
settings: 0 and 255. If set to 0, the routine returns the button state
with no debounce or auto-repeat. If set to 255, the routine performs
debounce, but no auto-repeat.

• Rate is a variable/constant (0–255) that specifies the auto-repeat
rate. The rate is expressed in cycles of the Button routine.

• Bytevariable is the workspace for Button. It must be cleared to 0
before being used by Button for the first time.

• Targetstate is a variable/constant (0 or 1) that specifies which
state the button should be in for a branch to occur (0=not pressed,
1=pressed).

• Address is a label that specifies where to branch if the button is
in the target state.

When you press a button or flip a switch, the contacts make or break
a connection. A burst of electrical noise occurs as the contacts
bounce against each other. Button’s debounce feature prevents this
noise from being interpreted as more than one switch action.

Button also lets the Stamp react to a button press the way your PC
keyboard does to a key press. When you press a key, a character
appears on the screen. If you hold the key down, there’s a delay,
then a rapid-fire stream of characters appears on the screen. Button’s
autorepeat function can be set up to work the same way.

Button is designed to be used inside a program loop. Each time
through the loop, Button checks the state of the specified pin. When

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 29

BASIC Stamp I

1

BASIC Instructions

it first matches downstate,
Button debounces the
switch. Then, in accor-
dance with targetstate, it
either branches to address
(targetstate = 1) or doesn’t
(targetstate = 0).

If the switch is kept in
downstate, Button tracks the
number of program loops
that execute. When this
count equals delay, Button again triggers the action specifed by
targetstate and address. Hereafter, if the switch remains in downstate,
Button waits rate number of cycles between actions.

The important thing to remember about Button is that it does not
stop program execution. In order for its delay and autorepeat
functions towork, Button must execute from within a loop.

Sample Program:

' This program toggles (inverts) the state of an LED on pin 0 when the
' active-low switch on pin 7 is pressed. When the switch is held down, Button
' waits, then rapidly autorepeats the Toggle instruction, making the LED
' flash rapidly. When the switch is not pressed, Button skips the Toggle
' instruction. Note that b2, the workspace variable for Button, is cleared
' before its first use. Don't clear it within the loop.

let b2 = 0 ' Button workspace cleared.
Loop:

BUTTON 7,0,200,100,b2,0,skip ' Go to skip unless pin7=0.
Toggle 0 ' Invert LED.
... ' Other instructions.

skip:
goto Loop ' Skip toggle and go to Loop.

+5

10k

to I/O pin

active-high
(downstate = 1)

+5

10k

to I/O pin

active-low
(downstate = 0)

Example button circuits.

LED hookup for sample program.

470

Stamp
pin 0

LED

Page 30 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

DEBUG variable{,variable}

Displays the specified variable (bit, byte, or word) in a window on
the screen of a connected PC. Debug works only after a “run”
(ALT-R) download has finished.

Debug accepts formatting modifiers as follows:

• No modifiers: prints “variable = value”

• # before variable, as in #b2, prints the decimal value, without the
“variable =” text.

• $ before variable, as in $b2, prints hex value.

• % before variable, as in %b2, prints binary value.

• @ before variable, as in @b2, prints the ASCII character
corresponding to the value of the variable.

• Text in quotes appears as typed.

• cr (carriage return) causes printing in the Debug window to start
a new line.

• cls (clear screen) clears the Debug window.

• commas must separate all variables used with Debug.

Samples:

DEBUG b2 ' Print "b2 = " + value of b2
DEBUG #b2 ' Print value of b2
DEBUG "reading is ",b2 ' Print "reading is " & value of b2
DEBUG #%b2 ' Print value of b2 in binary
DEBUG #@b2 ' Display the ASCII character

' corresponding to the value in b2.
DEBUG "inputs ",b2,b3,cr ' Print "inputs" & value of b2 & value

' of b3 & carriage return.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 31

BASIC Stamp I

1

BASIC Instructions

EEPROM {location},(data,data,...)

Store values in EEPROM before downloading the BASIC program.

• Location is an optional variable/constant (0–255) that specifies
the starting location in the EEPROM at which data should be
stored. If no location is given, data is written starting at the next
available location.

• Data are variables/constants (0–255) to be stored sequentially in
the EEPROM.

EEPROM is useful for storing values to be used by your program.
One application is to store long messages for use by Serout as shown
below:

Program Sample 1:

' Sends the text "A very long message indeed..." then reads address 255 for
' the last instruction location of the program.

serout 0,N2400,("A very long message indeed...")
read 255,b2 ' Get last program location (reflects length of program)
debug b2 ' Display it on the screen.

Program Sample 2:

' Sends the text "A very long message indeed..." then reads address 255 for
' the last instruction location of the program.

EEPROM 0,("A very long message indeed...")
for b2 = 0 to 28 ' Send message 1 char at a time.
read b2,b3 ' Read data at location b2 of
serout 0,N2400,(b3) ' EEPROM into b3. Transmit b3.
next ' Send next character.
read 255,b2 ' Get last program location (reflects length of program)
debug b2 ' Display it on the screen.

The first program sample shows an endpoint of 197, meaning that
it uses 58 bytes of program memory to send the 29-byte message.
Sample 2 has an endpoint of 232 (23 bytes of program memory
used). When you add 29 bytes for the storage of the message,
sample 2 is 6 bytes more efficient. The savings are greater when the
messages are used at several points in a program.

Page 32 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

END

Enter sleep mode indefinitely. The Stamp wakes up when the
power cycles or the PC connects. Power consumption is reduced to
about 20 µA, assuming no loads are being driven.

If you do leave Stamp pins in an output-high or output-low state
driving loads when End executes, two things will happen:

• The loads will continue to draw current from the Stamp’s power
supply.

• Every 2.3 seconds, current to those loads will be interrupted for
a period of approximately 18 milliseconds (ms).

The reason for the output glitch every 2.3 seconds has to do with the
design of the PBASIC interpreter chip. It has a free-running clock
called the “watchdog timer” that can periodically reset the proces-
sor, causing a sleeping Stamp to wake up. Once awake, the Stamp
checks its program to determine whether it should remain awake
or go back to sleep. After an End instruction, the Stamp has standing
orders to go back to sleep.

Unfortunately, the watchdog timer cannot be shut off, so the Stamp
actually gets its sleep as a series of 2.3-second naps. At the end of
each nap, the watchdog timer resets the PBASIC chip. Among other
things, a reset causes all of the chip’s pins to go into input mode. It
takes approximately 18 ms for the PBASIC firmware to get control,
restore the pins to their former state, and put the Stamp back to
sleep.

If you use End, Nap, or Sleep in your programs, make sure that your
loads can tolerate these periodic power outages. The easy solution
is often to connect pull-up or pull-down resistors as appropriate to
ensure a continuing supply of current during the reset glitch.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 33

BASIC Stamp I

1

BASIC Instructions

FOR variable = start TO end {STEP {-} increment}...NEXT {variable}

Establish a For...Next loop. Variable is set to the value start. Code
between the For and Next instructions is then executed. Variable is
then incremented/decremented by increment (if no increment value
is given, the variable is incremented by 1). If variable has not reached
or passed the value end, the instructions between For and Next are
executed again. If variable has reached or passed end, then the
program continues with the instruction after Next. The loop is
executed at least once, no matter what values are given for start and
end.

Your program can have as many For...Next loops as necessary, but
they cannot be nested more than eight deep (in other words, your
program can’t have more than eight loops within loops).

• Variable is a bit, byte, or word variable used as an internal
counter. Start and end are limited by the capacity of variable (bit
variables can count from 0 to 1, byte variables from 0 to 255, and
word variables from 0 to 65535).

• Start is a variable/constant which specifies the initial value of
variable.

• End is a variable/constant which specifies the ending value of
variable.

• Increment is an optional variable/constant by which the counter
increments or decrements (if negative). If no step value is given,
the variable increments by 1.

• Variable (after Next) is optional. It is used to clarify which of a
series of For...Next loops a particular Next refers to.

Program Samples:

Programmers most often use For...Next loops to repeat an action a
fixed number of times, like this:

FOR b2 = 1 to 10 ' Repeat 10 times.
 debug b2 ' Show b2 in debug window.
NEXT ' Again until b2>10.

Don’t overlook the fact that all of the parameters of a For...Next loop

Page 34 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

can be variables. Not only can your program establish these values
itself, it can also modify them while the loop is running. Here’s an
example in which the step value increases with each loop:

let b3 = 1
FOR b2 = 1 to 100 STEP b3 ' Each loop, add b3 to b2.
debug b2 ' Show b2 in debug window.
let b3 = b3+2 ' Increment b3.
NEXT ' Again until b2>15.

If you run this program, you may notice something familiar about
the numbers in the debug window (1,4,9,16,25,36,49...). They are all
squares (12=1, 22=4, 32=9, 42=16, etc.), but our program used addi-
tion, not multiplication, to calculate them. This method of generat-
ing a polynomial function is credited to Sir Isaac Newton.

There is a potential bug in the For...Next structure. PBASIC uses 16-
bit integer math to increment/decrement the counter variable and
compare it to the end value. The maximum value a 16-bit variable
can hold is 65535. If you add 1 to 65535, you get 0 (the 16-bit register
rolls over, much like a car’s odometer does when you exceed the
maximum mileage it can display).

If you write a For...Next loop whose step value is larger than the
difference between the end value and 65535, this rollover will cause
the loop to execute more times than you expect. Try the following:

FOR w1 = 0 to 65500 STEP 3000 ' Each loop add 3000 to w1.
 debug w1 ' Show w1 in debug window.
NEXT ' Again until w1>65500.

The value of w1 increases by 3000 each trip through the loop. As it
approaches the stop value, an interesting thing happens: 57000,
60000, 63000, 464, 3464... It passes the end value and keeps going.
That’s because the result of the calculation 63000 + 3000 exceeds the
maximum capacity of a 16-bit number. When the value rolls over to
464, it passes the test “is w1 > 65500?” used by Next to determine
when to end the loop.

The same problem can occur when the step value is negative and
larger (in absolute value) than the difference between the end value
and 0.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 35

BASIC Stamp I

1

BASIC Instructions

GOSUB address

Store the address of the instruction following Gosub, branch to
address, and continue execution there. The next Return instruction
takes the program back to the stored address, continuing the
program on the instruction following the most recent Gosub.

• Address is a label that specifies where to branch. Up to 16
GOSUBs are allowed per program.

PBASIC stores data related to Gosubs in variable w6. Make sure that
your program does not write to w6 unless all Gosubs have Returned,
and don’t expect data written to w6 to be intact after a Gosub.

If a series of instructions is used at more than one point in your
program, you can turn those instructions into a subroutine. Then,
wherever you would have inserted that code, you can simply write
Gosub label (where label is the name of your subroutine).

Sample Program:

' In this program, the subroutine test takes a pot measurement, then performs
' a weighted average by adding 1/4 of the current measurement to 3/4 of a
' previous measurement. This has the effect of smoothing out noise.

for b0 = 1 to 10
GOSUB test ' Save this address & go to test.
serout 1,N2400,(b2) ' Return here after test.
next ' Again until b0 > 10.
end ' Prevents program from running into test.

test:
pot 0,100,b2 ' Take a pot reading.
let b2 = b2/4 + b4 ' Make b2 = (.25*b2)+b4.
let b4 = b2 * 3 / 4 ' Make b4 = .75*b2.

return ' Return to previous address+1 instruction.

The Return instruction at the end of test sends the program to the
instruction immediately following Gosub test; in this case Serout.

Make sure that your program cannot wander into a subroutine
without Gosub. In the sample, what if End were removed? After the
loop , execution would continue in test. When it reached Return, the
program would jump back into the the For...Next loop at Serout
because this was the last return address assigned. The For...Next
loop would execute forever.

Page 36 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

GOTO address

Branch to address, at which point execution continues.

• Address is a label that specifies where to branch.

Sample Program:

abc:
pulsout 0,100 ' Generate a 1000-µs pulse on pin 0.
GOTO abc ' Repeat forever.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 37

BASIC Stamp I

1

BASIC Instructions

HIGH pin

Make the specified pin output high. If the pin is programmed as an
input, it changes to an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin.

You can think of the High instruction as the equivalent of:

output 3 ' Make pin 3 an output.
let pin3 = 1 ' Set pin 3 high.

Notice that the Output command accepts the pin number (3), while
Let requires the pin’s variable name pin3. So, in addition to saving
oneinstruction, High allows you to make a pin output-high using
only its number. When you look at the sample program below,
imagine how difficult it would be to write it using Output and Let.

This points out a common bug involving High. Programmers some-
times substitute pin names like pin3 for the pin number. Remember
that those pin names are really bit variables. As bits, they can hold
values of 0 or 1. The statement “High pin3” is a valid BASIC
instruction, but it means, “Get the state of pin3. If pin3 is 0, make
pin 0 output high. If pin3 is 1, make pin 1 output high.”

Sample Program:

' One at a time, change each of the pins to output and set it high.
for b2 = 0 to 7 ' Eight pins (0-7).
HIGH b2 ' Set pin no. indicated by b2.
pause 500 ' Wait 1/2 second between pins.
next ' Do the next pin.

Page 38 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

IF variable ?? value {AND/OR variable ?? value...} THEN address

Compare variable(s) to value(s) and branch if result is true.

• ?? is one of the following operators: = (equal), <> (not equal),
> (greater than), < (less than), >= (greater than or equal to),
<= (less than or equal to)

• Variable is a variable that is compared to value(s)

• Value is a variable or constant for comparison

• Address is a label that specifies where to branch if the result of
the comparison(s) is true

Unlike those in some other flavors of BASIC, this If...Then state-
ment can only go to an address label. It does not support statements
like “IF x > 30 THEN x = 0.” To do the same thing neatly in PBASIC
requires a little backwards thinking:

IF x <= 30 THEN skip ' If x is less than or equal
let x = 0 ' to 30, don't make x=0.
skip: ... ' Program continues.

Unless x > 30, the program skips over the instruction “let x = 0.”

PBASIC’s If...Then can evaluate two or more comparisons at one
time with the conjunctions And and Or. It works from left to right,
and does not accept parentheses to change the order of evaluation.
It can be tricky to anticipate the outcome of compound compari-
sons. We suggest that you set up a test of your logic using debug as
shown in the sample program below.

Sample Program:

' Evaluates the If...Then statement and displays the result in a debug window.
let b2 = 7 ' Assign values.
let b3 = 16
IF b3 < b2 OR b2 = 7 THEN True ' B3 is not less than b2, but

' b2 is 7: so statement is true.
debug "statment is false" ' If statement is false, goto here.

end
True:

debug "statement is true" ' If statement is true, goto here.
end

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 39

BASIC Stamp I

1

BASIC Instructions

INPUT pin

Make the specified pin an input. This turns off the pin’s output
drivers, allowing your program to read whatever state is present on
the pin from the outside world.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

There are several ways to set pins to input. When a program begins,
all of the Stamp’s pins are inputs. Input instructions (Pulsin, Serin)
automatically change the specified pin to input and leave it in that
state. Writing 0s to particular bits of the variable dirs makes the
corresponding pins inputs. And then there’s the Input instruction.

When a pin is set to input, your program can check its state by
reading its value. For example:

Hold: if pin4 = 0 then Hold ' Stay here until pin4 is 1.

The program is reading the state of pin 4 as set by external circuitry.
If nothing is connected to pin 4, it could be in either state (1 or 0) and
could change states apparently at random.

What happens if your program writes to a pin that is set up as an
input? The state is written to the output latch assigned to the pin.
Since the output drivers are disconnected when a pin is an input,
this has no effect. If the pin is changed to output, the last value
written to the latch will appear on the pin. The program below
shows how this works.

Sample Program:

' To see this program in action, connect a 10k resistor from pin 7 to +5V.
' When the program runs, a debug window will show you the state at pin 7
' (a 1, due to the +5 connection); the effect of writing to an input pin (none);
' and the result of changing an input pin to output (the latched state appears
' on the pin and may be read by your program). Finally, the program shows
' how changing pin 7 to output writes a 1 to the corresponding bit of dirs.

INPUT 7 ' Make pin 7 an input.
debug "State present at pin 7: ",#pin7,cr,cr
let pin7 = 0 ' Write 0 to output latch.
debug "After 0 written to input: ",#pin7,cr,cr
output 7 ' Make pin 7 an output.
debug "After pin 7 changed to output: ",#pin7,cr
debug "Dirs (binary): ",#%dirs ' Show contents of dirs.

Page 40 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

{LET} variable = {-}value ?? value...

Assign a value to the variable and/or perform logic operations on
the variable. All math and logic is done at the word level (16 bits).

The instruction “Let” is optional. For instance, “A=10” is identical
to “Let A=10”.

• ?? is one of the following operators:

+ add
– subtract
* multiply (returns low word of result)
** multiply (returns high word of result)
/ divide (returns quotient)
// divide (returns remainder)
min keep variable greater than or equal to value
max keep variable less than or equal to value
& logical AND
| logical OR
^ logical XOR
&/ logical AND NOT
|/ logical OR NOT
^/ logical XOR NOT

• Variable is assigned a value and/or manipulated.

• Value(s) is a variable/constant which affects the variable.

When you write programs that perform math, bear in mind the
limitations of PBASIC’s variables: all are positive integers; bits can
represent 0 or 1; bytes, 0 to 255; and words, 0 to 65535. PBASIC
doesn’t understand floating-point numbers (like 3.14), negative
numbers (–73), or numbers larger than 65535.

In most control applications, these are not serious limitations. For
example, suppose you needed to measure temperatures from -50°
to +200°F. By assigning a value of 0 to –50° and 65535 to +200° you
would have a resolution of 0.0038°!

The integer restriction doesn’t mean you can’t do advanced math
withthe Stamp. You just have to improvise . Suppose you needed
to use the constant π (3.14159...) in a program. You would like to
write:

Let w0 = b2 * 3.14

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 41

BASIC Stamp I

1

BASIC Instructions

However, the number “3.14” is a floating-point number, which the
Stamp doesn’t understand. There is an alternative. You can express
such quantities as fractions. Take the value 1.5. It is equivalent to
the fraction 3/2. With a little effort you can find fractional substi-
tutes for most floating-point values. For instance, it turns out that
the fraction 22/7 comes very close to the value of π. To perform the
calculation Let w0 = b2 * 3.14, the following instruction will do the
trick:

Let w0 = b2 * 22 / 7

PBASIC works out problems from left to right. You cannot use
parentheses to alter this order as you can in some other BASICs.
And there is no “precedence of operators” that (for instance) causes
multiplication to be done before addition. Many BASICs would
evaluate the expression “2+3*4” as 14, because they would calcu-
late “3*4” first, then add 2. PBASIC, working from left to right,
evaluates the expression as 20, since it calculates “2+3” and multi-
plies the result by 4. When in doubt, work up an example problem
and use debug to show you the result.

Sample Program:

pot 0,100,b3 ' Read pot, store result in b3.
LET b3=b3/2 ' Divide result by 2.
b3=b3 max 100 ' Limit result to 0-100.

' Note that "LET" is not necessary.

Page 42 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

LOOKDOWN target,(value0,value1,...valueN),variable

Search value(s) for target value. If target matches one of the values,
store the matching value’s position (0–N) in variable.

If no match is found, then the variable is unaffected.

• Target is the variable/constant being sought.

• Value0, value1,... is a list of values. The target value is compared
to these values

• Variable holds the result of the search.

Lookdown’s ability to convert an arbitrary sequence of values into an
orderly sequence (0,1,2...) makes it a perfect partner for Branch.
Using Lookdown and Branch together, you can create a SELECT
CASE statement.

Sample Program:

' Program receives the following one-letter instructions over a serial
' linkand takes action: (G)o, (S)top, (L)ow, (M)edium, (H)igh.
Get_cmd: serin 0,N2400,b2 ' Put input value into b2.

LOOKDOWN b2,("GSLMH"),b2 ' If b2="G" then b2=0 (see note)
' If b2="S" then b2=1
' If b2="L" then b2=2
' If b2="M" then b2=3
' If b2="H" then b2=4

branch b2,(go,stop,low,med,hi) ' If b2=0 then go
' If b2=1 then stop
' If b2=2 then low
' If b2=3 then med
' If b2=3 then hi

goto Get_cmd ' Not in range; try again.
go: ... ' Destinations of the
stop: ... ' Branch instruction.
low: ...
med: ...
hi: ...
' Note: In PBASIC instructions, including EEPROM, Serout, Lookup and
' Lookdown, strings may be formatted several ways. The Lookdown command
' above could also have been written:
' LOOKDOWN b2,(71,83,76,77,72),b2 ' ASCII codes for "G","S","L"...
' or
' LOOKDOWN b2,("G","S","L","M","H"),b2

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 43

BASIC Stamp I

1

BASIC Instructions

LOOKUP offset,(value0,value1,...valueN),variable

Look up data specified by offset and store it in variable. For instance,
if the values were 2, 13, 15, 28, 8 and offset was 1, then variable would
get the value “13”, since “13” is the second value in the list (the first
value is #0, the second is #1, etc.). If offset is beyond the number of
values given, then variable is unaffected.

• Offset specifies the index number of the value to be looked up.

• Value0, value1,... is a table of values.

• Variable holds the result of the lookup.

Many applications require the computer to calculate an output
value based on an input value. When the relationship is simple, like
“out = 2*in”, it’s no problem at all. But what about relationships that
are not so obvious? In PBASIC you can use Lookup.

For example, stepper motors work in an odd way. They require a
changing pattern of 1s and 0s controlling current to four coils. The
sequence appears in the table to the right.

Repeating that sequence makes the motor
turn. The program below shows how to use a
Lookup table to generate the sequence.

Sample Program:

' Output the four-step sequence to drive a stepper motor w/on-screen simulation.
let dirs = %00001111 ' Set lower 4 pins to output.

Rotate:
for b2 = 0 to 3
 LOOKUP b2,(10,9,5,6),b3 ' Convert offset (0-3)

' to corresponding step.
 let pins = b3 ' Output the step pattern.
 LOOKUP b2,("|/-\"),b3 ' Convert offset (0-3)

' to "picture" for debug.
 debug cls,#%pins," ",#@b3 ' Display value on pins,
next ' animated "motor."

goto Rotate ' Do it again.

' Note: In the debug line above, there are two spaces between the quotes.

0 1010 10
1 1001 9
2 0101 5
3 0110 6

Step # Binary Decimal

Page 44 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

LOW pin

Make the specified pin output low. If the pin is programmed as an
input, it changes to an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

You can think of the Low instruction as the equivalent of:

output 3 ' Make pin 3 an output.
let pin3 = 0 ' Make pin 3 low.

Notice that the Output command accepts the pin number (3), while
Let requires the pin’s variable name pin3. So, in addition to saving
one instruction, Low allows you to make a pin output-low using
only its number. When you look at the sample program below,
imagine how difficult it would be to write it using Output and Let.

This also points out a common bug involving Low. Programmers
sometimes substitute pin names like pin3 for the pin number.
Remember that those pin names are really bit variables. As bits,
they can hold values of 0 or 1. The statement “Low pin3” is a valid
PBASIC instruction, but it means, “Get the state of pin3. If pin3 is 0,
make pin 0 output low. If pin3 is 1, make pin 1 output low.”

Sample Program:

' One at a time, change each of the pins to output and make it low.
for b2 = 0 to 7 ' Eight pins (0-7).
LOW b2 ' Clear pin no. indicated by b2.
pause 500 ' Wait 1/2 second between pins.
next ' Do the next pin.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 45

BASIC Stamp I

1

BASIC Instructions

NAP period

Enter sleep mode for a short period. Power consumption is reduced
to about 20 µA, assuming no loads are beingdriven.

• Period is a variable/constant which
determines the duration of the reduced
power nap. The duration is (2^period) *
approximately 18 ms. Period can range
from 0 to 7, resulting in the nap lengths
shown in the table.

Nap uses the same shutdown/startup
mechanism as Sleep, with one big difference. During sleep, the
Stamp compensates for variations in the speed of the watchdog
timer that serves as its alarm clock. As a result, longer sleep
intervals are accurate to about ±1 percent. Naps are controlled by
the watchdog timer without compensation. Variations in tempera-
ture, voltage, and manufacturing of the PBASIC chip can cause the
actual timing to vary by as much as –50, +100 percent (i.e., a period-
0 nap can range from 9 to 36 ms).

If your Stamp application is driving loads (sourcing or sinking
current through output-high or output-low pins) during a nap,
current will be interrupted for about 18 ms when the Stamp wakes
up. The reason is that the reset that awakens the Stamp also
switches all of the pins input mode for about 18 ms. When PBASIC
regains control, it restores the I/O direction dictated by your
program.

When you use End, Nap, or Sleep, make sure that your loads can
tolerate these glitches. The simplest way is often to connect resistors
high or low (to +5V or ground) as appropriate to ensure a continu-
ing supply of current during reset.

The sample program on the next page can be used to demonstrate
the effects of the nap glitch with either an LED and resistor, or an
oscilloscope, as shown in the diagram.

Sample Program:

' During the Nap period, the Stamp will continue to drive loads connected to

Period 2period Nap Length
0 1 18 ms
1 2 36 ms
2 4 72 ms
3 8 144 ms
4 16 288 ms
5 32 576 ms
6 64 1152 ms
7 128 2304 ms

Page 46 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

' pins that are configured as outputs. However, at the end of a Nap, all pins
' briefly change to input, interrupting the current. This program may be
' used to demonstrate the effect.

low 7 ' Make pin 7 output-low.
Again:

NAP 4 ' Put the Stamp to sleep for 288 ms.
goto Again ' Nap some more.

+5

10k

Oscilloscope

Use either of these circuits to observe the output glitch when the Stamp awakens from a
Nap. Pin 7 is output low while the Stamp is asleep. When it resets, all pins switch to input,

allowing the resistor to pull pin 7 high (left) or causing the LED to blink off (right).

470

Stamp
pin 7

LED
Stamp
pin 7

+5

Stamp asleep (288ms)

reset (18ms)

OR

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 47

BASIC Stamp I

1

BASIC Instructions

OUTPUT pin

Make the specified pin an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

When a program begins, all of the Stamp’s pins are inputs. If you
want to drive a load, like an LED or logic circuit, you must configure
the appropriate pin as an output.

Output instructions (High, Low, Pulsout, Serout, Sound and Toggle)
automatically change the specified pin to output and leave it in that
state. Although not technically an output instruction, Pot also
changes a pin to output. Writing 1s to particular bits of the variable
Dirs causes the corresponding pins to become outputs. And then
there’s Output.

When a pin is configured as an output, you can change its state by
writing a value to it, or to the variable Pins. When a pin is changed
to output, it may be a 1 or a 0, depending on values previously
written to the pin. To guarantee which state a pin will be in, either
use the High or Low instructions to change it to output, or write the
appropriate value to it immediately before switching to output.

Sample Program:

' To see this program in action, connect a 10k resistor from pin 7 to the +5
' power-supply rail. When the program runs, a debug window will show you the
' the state at pin 7 (a 1, due to the +5 connection); the effect of writing
' to an input pin (none); and the result of changing an input pin to output
' (the latched state appears on the pin and may be read by your program).
' Finally, the program will show how changing pin 7 to output wrote
' a 1 to the corresponding bit of the variable Dirs.

input 7 ' Make pin 7 an input.
debug "State present at pin 7: ",#pin7,cr,cr
let pin7 = 0 ' Write 0 to output latch.
debug "After 0 written to input: ",#pin7,cr,cr
OUTPUT 7 ' Make pin 7 an output.
debug "After pin 7 changed to output: ",#pin7,cr
debug "Dirs (binary): ",#%dirs

Page 48 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

PAUSE milliseconds

Pause program execution for the specified number of milliseconds.

• Milliseconds is a variable/constant (0–65535) that specifies how
many milliseconds to pause.

The delays produced by the Pause instruction are as accurate as the
Stamp’s ceramic resonator timebase, ±1 percent. When you use
Pause in timing-critical applications, keep in mind the relatively
low speed of the BASIC interpreter (about 2000 instructions per
second). This is the time required for the PBASIC chip to read and
interpret an instruction stored in the EEPROM.

Since the PBASIC chip takes 0.5 milliseconds to read in the Pause
instruction, and 0.5 milliseconds to read in the instruction follow-
ing it, you can count on loops involving Pause taking at least 1
millisecond longer than the Pause period itself. If you’re program-
ming timing loops of fairly long duration, keep this (and the 1-
percent tolerance of the timebase) in mind.

Sample Program:

abc:
low 2 ' Make pin 2 output low.
PAUSE 100 ' Pause for 0.1 second.
high 2 ' Make pin 2 output high.
PAUSE 100 ' Pause for 0.1 second.

goto abc

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 49

BASIC Stamp I

1

BASIC Instructions

POT pin,scale,variable

Read a 5–50k potentiometer, thermistor, photocell, or other vari-
able resistance. The pin specified by Pot must be connected to one
side of a resistor, whose other side is connected through a capacitor
to ground. A resistance measurement is
taken by timing how long it takes to dis-
charge the capacitor through the resistor.
If the pin is an input when Pot executes, it
will be changed to output.

• Pin is a variable/constant (0–7) that
specifies the I/O pin to use.

• Scale is a variable/constant (0–255) used to scale the instruction’s
internal 16-bit result. The 16- bit reading is multiplied by (scale/
256), so a scale value of 128 would reduce the range by
approximately 50%, a scale of 64 would reduce to 25%, and so on.
The Alt-P option (explained below) provides a means to find the
best scale value for a particular resistor.

• Variable is used to store the final result of the reading. Internally,
the Pot instruction calculates a 16-bit value, which is scaled down
to an 8-bit value. The amount by which the internal value must be
scaled varies with the size of the resistor being used.

 Finding the best Pot scale value:

• To find the best scale value, connect the resistor to be used with
the Pot instruction to the Stamp, and connect the Stamp to the PC.

• Press Alt-P while running the Stamp’s editor software. A special
calibration window appears, allowing you to find the best value.

• The window asks for the number of the I/O pin to which the
resistor is connected. Select the appropriate pin (0-7).

• The editor downloads a short program to the Stamp (this
overwrites any program already stored in the Stamp).

• Another window appears, showing two numbers: scale and
value. Adjust the resistor until the smallest possible number is
shown for scale (we’re assuming you can easily adjust the resistor,
as with a potentiometer).

variable
resistance
5–50k

to I/O pin

0.1µF

Page 50 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

Once you’ve found the smallest number for scale, you’re done. This
number should be used for the scale in the Pot instruction.

Optionally, you can verify the scale number found above by
pressing the spacebar. This locks the scale and causes the Stamp to
read the resistor continuously. The window displays the value. If
the scale is good, you should be able to adjust the resistor, achieving
a 0–255 reading for the value (or as close as possible). To change the
scale value and repeat this step, just press the spacebar. Continue
this process until you find the best scale.

Sample Program:

abc:
POT 0,100,b2 ' Read potentiometer on pin 0.
serout 1,N300,(b2) ' Send potentiometer reading

' over serial output.
goto abc ' Repeat the process.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 51

BASIC Stamp I

1

BASIC Instructions

PULSIN pin,state,variable

Change the specified pin to input and measure an input pulse in
10µs units.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• State is a variable/constant (0 or 1) that specifies which edge
must occur before beginning the measurement.

• Variable is a variable used to store the result of the measurement.
The variable may be a word variable with a range of 1 to 65535,
or a byte variable with a range of 1 to 255.

Many analog properties (voltage, resistance, capacitance, frequency,
duty cycle) can be measured in terms of pulse durations. This
makes Pulsin a valuable form of analog-to-digital conversion.

You can think of Pulsin as a fast stopwatch that is triggered by a
change in state (0 or 1) on the specified pin. When the state on the
pin changes to the state specified in Pulsin, the stopwatch starts
counting. When the state on the pin changes again, the stopwatch
stops.

If the state of the pin doesn’t change (even if it is already in the state
specified in the Pulsin instruction), the stopwatch won’t trigger.
Pulsin waits a maximum of 0.65535 seconds for a trigger, then
returns with 0 in variable.

The variable can be either a word or a byte. If the variable is a word,
the value returned by Pulsin can range from 1 to 65535 units of 10µs.
If the variable is a byte, the value returned can range from 1 to 255
units of 10µs. Internally, Pulsin always uses a 16-bit timer. When
your program specifies a byte, Pulsin stores the lower 8 bits of the
internal counter into it. Pulse widths longer than 2550µs will give
false, low readings with a byte variable. For example, a 2560 µs
pulse returns a Pulsin reading of 256 with a word variable and 0 with
a byte variable.

Sample Program:

PULSIN 4,0,w2 ' Measure an input pulse on pin 4.
serout 1,n300,(b5) ' Send high byte of 16-bit pulse measurement
 . . . ' over serial output.

Page 52 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

PULSOUT pin,time

Generate a pulse by inverting a pin for a specified amount of time.
If the pin is an input when Pulsout is executed, it will be changed to
an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Time is a variable/constant (0–65535) that specifies the length of
the pulse in 10µs units.

Sample Program:

abc:
PULSOUT 0,3 ' Invert pin 0 for 30

' microseconds.
pause 1 ' Pause for 1 ms.

goto abc ' Branch to abc.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 53

BASIC Stamp I

1

BASIC Instructions

PWM pin,duty,cycles

Output pulse-width-modulation on a pin, then return the pin to
input state. PWM can be used to generate analog voltages (0-5V)
through a pin connected to a resistor and
capacitor to ground; the resistor-capaci-
tor junction is the analog output (see
circuit). Since the capacitor gradually
discharges, PWM should be executed pe-
riodically to update and/or refresh the
analog voltage.

• Pin is a variable/constant (0–7) which
specifies the I/O pin to use.

• Duty is a variable/constant (0–255) which specifies the analog
level desired (0–5 volts).

• Cycles is a variable/constant (0–255) which specifies the number
of cycles to output. Larger capacitors require multiple cycles to
fully charge. Each cycle takes about 5 ms.

PWM emits a burst of 1s and 0s whose ratio is proportional to the
duty value you specify. If duty is 0, then the pin is continuously low
(0); if duty is 255, then the pin is continuously high. For values in
between, the proportion is duty/255. For example, if duty is 100, the
ratio of 1s to 0s is 100/255 = 0.392, approximately 39 percent.

When such a burst is used to charge a capacitor arranged as shown
in the schematic, the voltage across the capacitor is equal to (duty/
255) * 5. So if duty is 100, the capacitor voltage is (100/255) * 5 = 1.96
volts.

This voltage will drop as the capacitor discharges through what-
ever load it is driving. The rate of discharge is proportional to the
current drawn by the load; more current = faster discharge. You can
combat this effect in software by refreshing the capacitor’s charge
with frequent doses of PWM.

You can also buffer the output to greatly reduce the need for
frequent PWM cycles. The schematic on the next page shows an
example. Feel free to substitute more sophisticated circuits; this
“op-amp follower” is merely a suggestion.

10k

from
I/O pin

10µF

analog
voltage
output

Page 54 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

If you use a buffer
circuit, you will still
have to refresh the
capacitor from time
to time. When the
pin is configured to
input after PWM ex-
ecutes, it is effec-
tively disconnected
from the resistor/ca-
pacitor circuit. How-
ever, leakage currents of up to 1µA can flow into or out of this
“disconnected” pin. Over time, these small currents will cause the
voltage on the capacitor to drift. The same applies for leakage
current from the op-amp’s input, as well as the capacitor’s own
internal leakage. Executing PWM occasionally will reset the capaci-
tor voltage to the intended value.

One more thing: The name “PWM” may lead you to expect a neat
train of fixed-width pulses for a given duty value. That’s not the
case. When viewed on an oscilloscope, the PWM output looks like
a noisy jumble of varying pulsewidths. The only guarantee is that
the overall ratio of highs to lows is in the proportion specified by
duty.

Sample Program:

abc:
serin 0,n300,b2 ' Receive serial byte.
PWM 1,b2,20 ' Output an analog voltage proportional to

' the serial byte received

CA5160

0.1µF

2k

+5

7

4
6

2

3
10k

100k
pot

1
5

4.7k

0.47µF

from I/O
pin

Stiff
voltage
output

–

+

Op-amp buffer for PWM.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 55

BASIC Stamp I

1

BASIC Instructions

RANDOM wordvariable

Generate the next pseudo-random number in wordvariable.

• Wordvariable is a variable (0–65535) that acts as the routine’s
workspace and its result. Each pass through Random leaves the
next number in the pseudorandom sequence.

The Stamp uses a sequence of 65535 essentially random numbers to
execute this instruction. When Random executes, the value in
wordvariable determines where to “tap” into the sequence of
random numbers. If the same initial value is always used in
wordvariable, then the same sequence of numbers is generated.
Although this method is not absolutely random, it’s good enough
for most applications.

To obtain truly random results, you must add an element of
uncertainty to the process. For instance, your program might
execute Random continuously while waiting for the user to press a
button.

Sample Program:

loop:
RANDOM w1 ' Generate a 16-bit random number.
sound 1,(b2,10) ' Generate a random tone on pin 1 using the low

' byte of the random number b2 as the note number.
goto loop ' Repeat the process

Page 56 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

READ location,variable

Read EEPROM location and store value in variable.

• Location is a variable/constant (0–255) that specifies which
location in the EEPROM to read from.

• Variable receives the value read from the EEPROM (0–255).

The EEPROM is used for both program storage (which builds
downward from address 254) and data storage (which builds
upward from address 0). To ensure that your program doesn’t
overwrite itself, read location 255 in the EEPROM before writing
any data. Location 255 holds the address of the last instruction in
your program. Therefore, your program can use any space below
the address given in location 255. For example, if location 255 holds
the value 100, then your program can use locations 0–99 for data.

Sample Program:

READ 255,b2 ' Get location of last program instruction.
loop:

b2 = b2 - 1 ' Decrement to next available EEPROM location
serin 0,N300,b3 ' Receive serial byte in b3
write b2,b3 ' Store received serial byte in next EEPROM location

if b2 > 0 then loop ' Get another byte if there's room left to store it.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 57

BASIC Stamp I

1

BASIC Instructions

RETURN

Return from subroutine. Return branches back to the address fol-
lowing the most recent Gosub instruction, at which point program
execution continues.

Return takes no parameters. For more information on using subrou-
tines, see the Gosub listing.

Sample Program:

for b4 = 0 to 10
gosub abc ' Save return address and then branch to abc.
next
abc:

pulsout 0,b4 ' Output a pulse on pin 0.
' Pulse length is b4 x 10 microseconds.

toggle 1 ' Toggle pin 1.
RETURN ' Return to instruction following gosub.

Page 58 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

REVERSE pin

Reverse the data direction of the given pin. If the pin is an input,
make it an output; if it’s an output, make it an input.

• Pin is a variable/constant (0–7) that specifies the I/O pin.

See the Input and Output commands for more information on config-
uring pins’ data directions.

Sample Program:

dir3 = 0 ' Make pin 3 an input.
REVERSE 3 ' Make pin 3 an output.
REVERSE 3 ' Make pin 3 an input.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 59

BASIC Stamp I

1

BASIC Instructions

SERIN pin,baudmode,(qualifier,qualifier,...)

SERIN pin,baudmode,{#}variable,{#}variable,...

SERIN pin, baudmode, (qualifier,qualifier,...), {#}variable, {#}variable,...

Set up a serial input port and then wait for optional qualifiers and/
or variables.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Baudmode is a variable/constant
(0–7) that specifies the serial port
mode. Baudmode can be either the #
or symbol shown in the table. The
other serial parameters are preset to
the most common format: no parity,
eight data bits, one stop bit, often
abbreviated N81. These cannot be changed.

• Qualifiers are optional variables/constants (0–255) which must
be received in exact order before execution can continue.

• Variables (optional) are used to store received data (0–255). If
any qualifiers are given, they must be satisfied before variables
can be filled. If a # character precedes a variable name, then Serin
will convert numeric text (e.g., numbers typed at a keyboard) into
a value to fill the variable.

Serin makes the specified pin a serial input port with the character-
istics set by baudmode. It receives serial data one byte at a time and
does one of two things with it:

• Compares it to a qualifier.

• Stores it to a variable.

In either case, the Stamp will do nothing else until all qualifiers have
been exactly matched in the specified order and all variables have
been filled. A single Serin instruction can include both variables to
fill and qualifiers to match.

Here are some examples:

SERIN 0,T300,b2

Symbol Baud Rate Polarity

0 T2400 2400 true
1 T1200 1200 true
2 T600 600 true
3 T300 300 true
4 N2400 2400 inverted
5 N1200 1200 inverted
6 N600 600 inverted
7 N300 300 inverted

Page 60 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

Stop the program until one byte of data is received serially (true
polarity, 300 baud) through pin 0. Store the received byte into
variable b2 and continue. For example, if the character “A” were
received, Serin would store 65 (the ASCII character code for “A”)
into b2.

SERIN 0, T1200,#w1

Stop the program until a a numeric string is received serially (true
polarity, 1200 baud) through pin 0. Store the value of the numeric
string into variable w1. For example, suppose the following text
were received: “XYZ: 576%.” Serin would ignore “XYZ: ” because
these are non-numeric characters. It would collect the characters
“5”, “7”, “6” up to the first non-numeric character, “%”. Serin would
convert the numeric string “576” into the corresponding value 576
and store it in w1. If the # before w1 were omitted, Serin would
receive only the first character, “X”, and store its ASCII character
code, 88, into w1.

SERIN 0,N2400,("A")

Stop the program until a byte of data is received serially (inverted
polarity, 2400 baud) through pin 0. Compare the received byte to
65, the ASCII value of the letter “A”. If it matches, continue the
program. If it doesn’t match, receive another byte and repeat the
comparison. The program will not continue until “A” is received.
For example, if Serin received “LIMIT 65,A”, program execution
would not continue until the final “A” was received.

SERIN 0,N2400,("SESAME"),b2,#b4

Stop the program until a string of bytes exactly matching “SESAME”
is received serially (inverted polarity, 2400 baud) through pin 0.
Once the qualifiers have been received, store the next byte into b2.
Then receive a numeric string, convert it to a value, and store it into
b4. For example, suppose Serin received, “...SESESAME! *****19*”.
It would ignore the string “...SE”, then accept the matching qualifier
string “SESAME”. Then Serin would put 33, the ASCII value of “!”,
into b2. It would ignore the non-numeric “*” characters, then store
the characters “1” and “9”. When Serin received the first non-
numeric character (“*”), it would convert the text “19” into the
value 19 and store it in b4. Then, having matched all qualifiers and

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 61

BASIC Stamp I

1

BASIC Instructions

filled all variables, Serin would permit the Stamp to go on to the next
instruction.

Speed Considerations. The Serin command itself is fast enough to
catch multiple bytes of data, no matter how rapidly the host
computer sends them. However, if your program receives data,
stores or processes it, then loops back to perform another Serin, it
may miss data or receive it incorrectly because of the time delay.
Use one or more of the following steps to compensate for this:

• Increase the number of stop bits at the sender from 1 to 2 (or
more, if possible).

• Reduce the baud rate.

• If the sender is operating under the control of a program, add
delays between transmissions.

• Reduce the amount of processing that the Stamp performs between
Serins to a bare minimum.

Receiving data from a PC. To
send data serially from your
PC to the Stamp, all you need is
a 22k resistor, some wire and
connectors, and terminal com-
munication software. Wire the
connector as shown in the dia-
gram for Serin. The wires shown
in gray disable your PC’s hard-
ware handshaking, which
would normally require addi-
tional connections to control the
flow of data. These aren’t re-
quired in communication with the Stamp, because you’re not likely
to be sending a large volume of data as you might to a modem
orprinter.

When you write programs to receive serial data using this kind of
hookup, make sure to specify “inverted” baudmodes, such as
N2400.

1

DB-9 Female (PC/AT and later)
(SOLDER SIDE)

5

113

DB-25 Male (PC XT)
(SOLDER SIDE)

22k
I/O pin (SERIN)

I/O pin (SEROUT)

Ground

I/O pin (SERIN)

I/O pin (SEROUT)

Ground

22k

Page 62 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

If you don’t have a terminal program, you can type and run the
following QBASIC program to configure the serial port (2400 baud,
N81) and transmit characters typed at the keyboard. QBASIC is the
PC dialect of BASIC that comes with DOS versions 5 and later.

QBASIC Program to Transmit Data:

' This program transmits characters typed at the keyboard out the PC's
' COM1: serial port. To end the program, press control-break.
' Note: in the line below, the "0" in "CD0,CS0..." is a zero.

OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUT AS #1
CLS
Again:

theChar$ = INKEY$
IF theChar$ = "" then Goto Again
PRINT #1,theChar$;

GOTO Again

Sample Stamp Program:

' To use this program, download it to the Stamp. Connect
' your PC's com1: port output to Stamp pin 0 through a 22k resistor
' as shown in the diagram. Connect a speaker to Stamp pin 7 as
' shown in the Sound entry. Run your terminal software or the QBASIC
' program above. Configure your terminal software for 2400 baud,
' N81, and turn off hardware handshaking. The QBASIC
' program is already configured this way. Try typing random
' letters and numbers--nothing will happen until you enter
' "START" exactly as it appears in the Stamp program.
' Then you may type numbers representing notes and
' durations for the Sound command. Any non-numeric text
' you type will be ignored.

SERIN 0,N2400,("START") ' Wait for "START".
sound 7,(100,10) ' Acknowledging beep.

Again:
SERIN 0,N2400,#b2,#b3 ' Receive numeric text and

' convert to bytes.
sound 7,(b2,b3) ' Play corresponding sound.
goto Again ' Repeat.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 63

BASIC Stamp I

1

BASIC Instructions

SEROUT pin,baudmode,({#}data,{#}data,...)

Set up a serial output port and transmit data.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Baudmode is a variable/constant (0–15) that specifies the
serialport mode. Baudmode can be either the # or symbol shown
in the table. The other serial parameters are preset to the most
common format: no parity, eight data bits, one stop bit, often
abbreviated N81. These
cannot be changed.

• Data are byte
variables/constants (0–
255) that are output by
Serout. If preceded by
the # sign, data items
are transmitted as text
strings up to five
characters long.
Without the #, data
items are transmitted as
a single byte.

Serout makes the specified pin a serial output port with the charac-
teristics set by baudmode. It transmits the specified data in one of two
forms:

• A single-byte value.

• A text string of one to five characters.

Here are some examples:

SEROUT 0,N2400,(65)

Serout transmits the byte value 65 through pin 0 at 2400 baud,
inverted. If you receive this byte on a PC running terminal software,
the character “A” will appear on the screen, because 65 is the ASCII
code for “A”.

SEROUT 0,N2400,(#65)

Serout transmits the text string “65” through pin 0 at 2400 baud,
inverted. If you receive this byte on a PC running terminal software,

0 T2400 2400 true always driven
1 T1200 1200 true always driven
2 T600 600 true always driven
3 T300 300 true always driven
4 N2400 2400 inverted always driven
5 N1200 1200 inverted always driven
6 N600 600 inverted always driven
7 N300 300 inverted always driven
8 OT2400 2400 true open drain (driven high)
9 OT1200 1200 true open drain (driven high)

10 OT600 600 true open drain (driven high)
11 OT300 300 true open drain (driven high)
12 ON2400 2400 inverted open source (driven low)
13 ON1200 1200 inverted open source (driven low)
14 ON600 600 inverted open source (driven low)
15 ON300 300 inverted open source (driven low)

Symbol Baud Rate Polarity and Output Mode

Page 64 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

the text “65” will appear on the screen. When a value is preceded by
the # sign, Serout automatically converts it to a form that reads
correctly on a terminal screen.

When should you use the # sign? If you are sending data from the
Stamp to a terminal for people to read, use #. If you are sending data
to another Stamp, or to another computer for further processing,
it’s more efficient to omit the #.

Sending data to a PC. To send
data serially to your PC from
the Stamp, all you need is some
wire and connectors, and ter-
minal communication soft-
ware. Wire the connector as
shown in the Serout connections
in the diagram at right and use
the inverted baudmodes, such
as N2400. Although the Stamp’s
serial output can only switch
between 0 and +5 volts (not the
±10 volts of legal RS-232), most PCs receive it without problems.

If you don’t have a terminal program, you can type and run the
following QBASIC program to configure the serial port and receive
characters from the Stamp.

QBASIC Program to Receive Data:

' This program receives data transmitted by the Stamp through the PC's
' COM1: serial port and displays it on the screen. To end the program,
' press control-break. Note: in the line below, the "0" in "CD0,CS0..." is a zero.

OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR INPUT AS #1
CLS
Again:

theChar$ = INPUT$(1,#1)
PRINT theChar$;

GOTO Again

Open-drain/open-source signaling. The last eight configuration
options for Serout begin with “O” for open-drain or open-source

1

DB-9 Female (PC/AT and later)
(SOLDER SIDE)

5

113

DB-25 Male (PC XT)
(SOLDER SIDE)

22k
I/O pin (SERIN)

I/O pin (SEROUT)

Ground

I/O pin (SERIN)

I/O pin (SEROUT)

Ground

22k

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 65

BASIC Stamp I

1

BASIC Instructions

signaling. The diagram below shows how to use the open-drain
mode to connect two or more Stamps to a common serial output line
to form a network. You could also use the open-source mode, but
the resistor would have to be connected to ground, and a buffer
(non-inverting driver) substituted for the inverter to drive the PC.

To understand why you must use the “open” serial modes on a
network, consider what would happen if you didn’t. When none of
the Stamps are transmitting, all of their Serout pins are output-high.
Since all are at +5 volts, no current flows between the pins. Then a
Stamp transmits, and switches to output-low. With the other Stamps’
pins output-high, there’s a direct short from +5 volts to ground.
Current flows between the pins, possibly damaging them.

If the Stamps are all set for open-drain output, it’s a different story.
When the Stamps aren’t transmitting, their Serout pins are inputs,
effectively disconnected from the serial line. The resistor to +5 volts
maintains a high on the serial line. When a Stamp transmits, it pulls
the serial line low. Almost no current flows through the other
Stamps’ Serout pins, which are set to input. Even if two Stamps
transmit simultaneously, they can’t damage each other.

Sample Program:

abc:
pot 0,100,b2 ' Read potentiometer on pin 0.
SEROUT 1,N300,(b2) ' Send potentiometer

' reading over serial output.
goto abc ' Repeat the process.

Stamp
one

Stamp
two

Stamp
three +5

1k

1/6th of 74HCT04
(or other CMOS
inverter)

1 2

7 7

I/O pin

PC or
terminal

+5

14

7

Stamps transmitting serial data using
open-drain baudmode, e.g., OT2400

I/O pinI/O pin

Page 66 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

SLEEP seconds

Enter sleep mode for a specified number of seconds.

• Seconds is a variable/constant (1–65535) that specifies the
duration of sleep in seconds. The length of sleep can range from
2.3 seconds (see note below) to slightly over 18 hours. Power
consumption is reduced to about 20 µA, assuming no loads are
being driven.

Note: The resolution of Sleep is 2.304 seconds. Sleep rounds the
seconds up to the nearest multiple of 2.304. Sleep 1 causes 2.3
seconds of sleep, while Sleep 10 causes 11.52 seconds (5 x 2.304).

Sleep lets the Stamp turn itself off, then turn back on after a specified
number of seconds. The alarm clock that wakes the Stamp up is
called the watchdog timer. The watchdog is an oscillator built into
the BASIC interpreter. During sleep, the Stamp periodically wakes
up and adjusts a counter to determine how long it has been asleep.
If it isn’t time to wake up, the Stamp goes back to sleep.

To ensure accuracy of sleep intervals, the Stamp periodically com-
pares the period of the watchdog timer to the more accurate
resonator timebase. It calculates a correction factor that it uses
during sleep. Longer sleep intervals are accurate to ±1 percent.

If your Stamp application is driving loads during sleep, current will
be interrupted for about 18 ms when the Stamp wakes up every 2.3
seconds. The reason is that the reset that awakens the Stamp causes
all of the pins to switch to input mode for approximately 18 ms.
When the BASIC interpreter regains control, it restores the I/O
direction dictated by your program.

If you plan to use End, Nap, or Sleep in your programs, make sure that
your loads can tolerate these periodic power outages. The simplest
solution is to connect resistors high or low (to +5V or ground) as
appropriate to ensure a supply of current during reset.

Sample Program:

SLEEP 3600 ' Sleep for about 1 hour.
goto xyz ' Continue with program

' after sleeping.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 67

BASIC Stamp I

1

BASIC Instructions

SOUND pin,(note,duration,note,duration,...)

Change the specified pin to output, and generate square-wave
notes with given durations. The output pin should be connected as
shown in the diagram. You may sub-
stitute a resistor of 220 ohms or more
for the capacitor, but the speaker coil
will draw current even when the
speaker is silent.

• Pin is a variable/constant (0–7) that
specifies the I/O pin to use.

• Note(s) are variables/constants (0–255) which specify type and
frequency. Note 0 is silent for the given duration. Notes 1-127 are
ascending tones. Notes 128-255 are ascending white noises,
ranging from buzzing (128) to hissing (255).

• Duration(s) are variables/constants (1–255) which specify how
long (in units of 12 ms) to play each note.

The notes produced by Sound can vary in frequency from 94.8 Hz
(1) to 10,550 Hz (127). If you need to determine the frequency
corresponding to a given note value, or need to find the note value
that will give you best approximation for a given frequency, use the
equations below.

Sample Program:

for b2 = 0 to 256
SOUND 1,(25,10,b2,10) ‘ Generate a constant tone (25)

‘ followed by an ascending tone
‘ (b2). Both tones have the

next ‘ same duration(10).

from I/O pin
10µF
+

40Ω

Frequency (Hz) =
1

95 × 10−6 + 127 − Note()× 83×10−6()

Note = 127 −
1

Frequency (Hz) − 95 ×10−6

83 × 10−6

Page 68 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

TOGGLE pin

Make pin an output and toggle state.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

Sample Program:

for b2 = 1 to 25
TOGGLE 5 'Toggle state of pin 5.
next

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 69

BASIC Stamp I

1

BASIC Instructions

WRITE location,data

Store data in EEPROM location.

• Location is a variable/constant (0–255) that specifies which
EEPROM location to write to.

• Data is a variable/constant (0–255) that is stored in the EEPROM
location.

The EEPROM is used for both program storage (which builds
downward from address 254) and data storage (which builds
upward from address 0). To ensure that your program doesn’t
overwrite itself, read location 255 in the EEPROM before writing
any data. Location 255 holds the address of the first instruction in
your program. Therefore, your program can use any space below
the address given in location 255. For example, if location 255 holds
the value 100, then your program can use locations 0–99 for data.

Sample Program:

read 255,b2 ' Get location of last
' program instruction.

loop:
b2 = b2 - 1 ' Decrement to next

' available EEPROM location
serin 0,N300,b3 ' Receive serial byte in b3.
WRITE b2,b3 ' Store received serial

' byte in next EEPROM location.
if b2 > 0 then loop ' Get another byte if there's room.

Page 70 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 71

BASIC Stamp I Application Notes

1

1: LCD User-Interface Terminal

Introduction. This application note presents a program in PBASIC that
enables the BASIC Stamp to operate as a simple user-interface terminal.

Background. Many systems use a central host computer to control
remote functions. At various locations, users communicate with the
main system via small terminals that display system status and accept
inputs. The BASIC Stamp’s ease of programming and built-in support
for serial communications make it a good candidate for such user-
interface applications.

The liquid-crystal display (LCD) used in this project is based on the
popular Hitachi 44780 controller IC. These chips are at the heart of
LCD’s ranging in size from two lines of four characters (2x4) to 2x40.

How it works. When power is first applied, the BASIC program
initializes the LCD. It sets the display to print from left to right, and
enables an underline cursor. To eliminate any stray characters, the
program clears the screen.

After initialization, the program enters a loop waiting for the arrival of
a character via the 2400-baud RS-232 interface. When a character
arrives, it is checked against a short list of special characters (backspace,
control-C, and return). If it is not one of these, the program prints it on
the display, and re-enters the waiting-for-data loop.

If a backspace is received, the program moves the LCD cursor back one

Schematic to accompany program TERMINAL.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2 3 1

10k
(contrast)

6
5 7 8 9 10

+5
10k

1k

SWITCHES 0–3

22k1k

4
14

13
12
11

SERIAL IN

SERIAL OUT

Vdd Vo R/WVss

DB4
DB5
DB6
DB7

DB0 DB1 DB2 DB3E
RS

Page 72 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

space, prints a blank (space) character to blot out the character that was
there, and then moves back again. The second move-back step is
necessary because the LCD automatically advances the cursor.

If a control-C is received, the program issues a clear instruction to the
LCD, which responds by filling the screen with blanks, and returning
the cursor to the leftmost position.

If a return character is received, the program interprets the message as
a query requiring a response from the user. It enters a loop waiting for
the user to press one of the four pushbuttons. When he does, the
program sends the character (“0” through “3”) representing the button
number back to the host system. It then re-enters its waiting loop.

Because of all this processing, the user interface cannot receive charac-
ters sent rapidly at the full baud rate. The host program must put a little
breathing space between characters; perhaps a 3-millisecond delay. If
you reduce the baud rate to 300 baud and set the host terminal to 1.5 or
2 stop bits, you may avoid the need to program a delay.

At the beginning of the program, during the initialization of the LCD,
you may have noticed that several instructions are repeated, instead of
being enclosed in for/next loops. This is not an oversight. Watching the
downloading bar graph indicated that the repeated instructions actu-
ally resulted in a more compact program from the Stamp’s point of
view. Keep an eye on that graph when running programs; it a good
relative indication of how much program space you’ve used. The
terminal program occupies about two-thirds of the Stamp’s EEPROM.

From an electronic standpoint, the circuit employs a couple of tricks.
The first involves the RS-232 communication. The Stamp’s processor, a
PIC 16C56, is equipped with hefty static-protection diodes on its input/
output pins. When the Stamp receives RS-232 data, which typically
swings between -12 and +12 volts (V), these diodes serve to limit the
voltage actually seen by the PIC’s internal circuitry to 0 and +5V. The
22k resistor limits the current through the diodes to prevent damage.

Sending serial output without an external driver circuit exploits an-
other loophole in the RS-232 standard. While most RS-232 devices

1: LCD User-Interface Terminal

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 73

BASIC Stamp I Application Notes

1

expect the signal to swing between at least -3 and +3V, most will accept
the 0 and +5V output of the PIC without problems.

This setup is less noise-immune than circuits that play by the RS-232
rules. If you add a line driver/receiver such as a Maxim MAX232,
remember that these devices also invert the signals. You’ll have to
change the baud/mode parameter in the instructions serin and serout
to T2400, where T stands for true signal polarity. If industrial-strength
noise immunity is required, or the interface will be at the end of a mile-
long stretch of wire, use an RS-422 driver/receiver. This will require the
same changes to serin and serout.

Another trick allows the sharing of input/output pins between the LCD
and the pushbuttons. What happens if the user presses the buttons
while the LCD is receiving data? Nothing. The Stamp can sink enough
current to prevent the 1k pullup resistors from affecting the state of its
active output lines. And when the Stamp is receiving input from the
switches, the LCD is disabled, so its data lines are in a high-impedance
state that’s the next best thing to not being there. These facts allow the
LCD and the switches to share the data lines without interference.

Finally, note that the resistors are shown on the data side of the
switches, not on the +5V side. This is an inexpensive precaution against
damage or interference due to electrostatic discharge from the user’s
fingertips. It’s not an especially effective precaution, but the price is
right.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' PROGRAM: Terminal.bas
' The Stamp serves as a user-interface terminal. It accepts text via RS-232 from a
' host, and provides a way for the user to respond to queries via four pushbuttons.

Symbol S_in = 7 ' Serial data input pin
Symbol S_out = 6 ' Serial data output pin
Symbol E = 5 ' Enable pin, 1 = enabled
Symbol RS = 4 ' Register select pin, 0 = instruction
Symbol keys = b0 ' Variable holding # of key pressed.
Symbol char = b3 ' Character sent to LCD.

1: LCD User-Interface Terminal

Page 74 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Symbol Sw_0 = pin0 ' User input switches
Symbol Sw_1 = pin1 ' multiplexed w/LCD data lines.
Symbol Sw_2 = pin2
Symbol Sw_3 = pin3

' Set up the Stamp’s I/O lines and initialize the LCD.
begin: let pins = 0 ' Clear the output lines

let dirs = %01111111 ' One input, 7 outputs.
pause 200 ' Wait 200 ms for LCD to reset.

' Initialize the LCD in accordance with Hitachi’s instructions for 4-bit interface.
i_LCD: let pins = %00000011 ' Set to 8-bit operation.

pulsout E,1 ' Send data three times
pause 10 ' to initialize LCD.
pulsout E,1
pause 10
pulsout E,1
pause 10
let pins = %00000010 ' Set to 4-bit operation.
pulsout E,1 ' Send above data three times.
pulsout E,1
pulsout E,1
let char = 14 ' Set up LCD in accordance with
gosub wr_LCD ' Hitachi instruction manual.
let char = 6 ' Turn on cursor and enable
gosub wr_LCD ' left-to-right printing.
let char = 1 ' Clear the display.
gosub wr_LCD
high RS ' Prepare to send characters.

' Main program loop: receive data, check for backspace, and display data on LCD.
main: serin S_in,N2400,char ' Main terminal loop.

goto bksp
out: gosub wr_LCD

goto main

' Write the ASCII character in b3 to LCD.
wr_LCD: let pins = pins & %00010000

let b2 = char/16 ' Put high nibble of b3 into b2.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable pin.
let b2 = char & %00001111 ' Put low nibble of b3 into b2.
let pins = pins & %00010000 ' Clear 4-bit data bus.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable.
return

' Backspace, rub out character by printing a blank.

1: LCD User-Interface Terminal

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 75

BASIC Stamp I Application Notes

1

bksp: if char > 13 then out ' Not a bksp or cr? Output character.
if char = 3 then clear ' Ctl-C clears LCD screen.
if char = 13 then cret ' Carriage return.
if char <> 8 then main ' Reject other non-printables.
gosub back
let char = 32 ' Send a blank to display
gosub wr_LCD
gosub back ' Back up to counter LCD’s auto-

' increment.
goto main ' Get ready for another transmission.

back: low RS ' Change to instruction register.
let char = 16 ' Move cursor left.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
return

clear: low RS ' Change to instruction register.
let b3 = 1 ' Clear the display.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
goto main

' If a carriage return is received, wait for switch input from the user. The host
' program (on the other computer) should cooperate by waiting for a reply before
' sending more data.
cret: let dirs = %01110000 ' Change LCD data lines to input.
loop: let keys = 0

if Sw_0 = 1 then xmit ' Add one for each skipped key.
let keys = keys + 1
if Sw_1 = 1 then xmit
let keys = keys + 1
if Sw_2 = 1 then xmit
let keys = keys + 1
if Sw_3 = 1 then xmit
goto loop

xmit: serout S_out,N2400,(#keys,10,13)
let dirs = %01111111 ' Restore I/O pins to original state.
goto main

1: LCD User-Interface Terminal

Page 76 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 77

BASIC Stamp I Application Notes

1

2: Interfacing an A/D Convertor

Introduction. This application note presents the hardware and soft-
ware required to interface an 8-bit serial analog-to-digital converter to
the Parallax BASIC Stamp.

Background. The BASIC Stamp's instruction pot performs a limited
sort of analog-to-digital conversion. It lets you interface nearly any kind
of resistive sensor to the Stamp with a minimum of difficulty. However,
many applications call for a true voltage-mode analog-to-digital con-
verter (ADC). One that’s particularly suited to interfacing with the
Stamp is the National Semiconductor ADC0831, available from Digi-
Key, among others.

Interfacing the ’831 requires only three input/output lines, and of these,
two can be multiplexed with other functions (or additional ’831’s). Only
the chip-select (CS) pin requires a dedicated line. The ADC’s range of
input voltages is controlled by the VREF and VIN(–) pins. VREF sets the
voltage at which the ADC will return a full-scale output of 255, while
VIN(–) sets the voltage that will return 0.

In the example application, VIN(–) is at ground and VREF is at +5;
however, these values can be as close together as 1 volt without harming
the device’s accuracy or linearity. You may use diode voltage references
or trim pots to set these values.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

1k

ADC
0831

1

2

3

4

8

7

6

5

CS

Vin(+)

Vin(–)

GND

Vcc

CLK

DO

Vref

0–5V in

SERIAL
OUT

Schematic to accompany program AD_CONV.BAS.

Page 78 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' PROGRAM: ad_conv.bas
' BASIC Stamp program that uses the National ADC0831 to acquire analog data and
' output it via RS-232.

Symbol CS = 0
Symbol AD = pin1
Symbol CLK = 2
Symbol S_out = 3
Symbol data = b0
Symbol i = b2

setup: let pins = 255 ' Pins high (deselect ADC).
let dirs = %11111101 ' S_out, CLK, CS outputs; AD

' input.

loop: gosub conv ' Get the data.
serout S_out,N2400,(#b0,13,10) ' Send data followed by a return

How it works. The sample program reads the voltage at the ’831’s input
pin every 2 seconds and reports it via a 2400-baud serial connection. The
subroutine conv handles the details of getting data out of the ADC. It
enables the ADC by pulling the CS line low, then pulses the clock (CLK)
line to signal the beginning of a conversion. The program then enters a
loop in which it pulses CLK, gets the bit on pin AD, adds it to the received
byte, and shifts the bits of the received byte to the left. Since BASIC
traditionally doesn’t include bit-shift operations, the program multi-
plies the byte by 2 to perform the shift.

When all bits have been shifted into the byte, the program turns off the
ADC by returning CS high. The subroutine returns with the conversion
result in the variable data. The whole process takes about 20 millisec-
onds.

Modifications. You can add more ’831’s to the circuit as follows:
Connect each additional ADC to the same clock and data lines, but
assign it a separate CS pin. Modify the conv subroutine to take the
appropriate CS pin low when it needs to acquire data from a particular
ADC. That’s it.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

2: Interfacing an A/D Convertor

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 79

BASIC Stamp I Application Notes

1

' and linefeed.
pause 2000 ' Wait 2 seconds
goto loop ' Do it forever.

conv: low CLK ' Put clock line in starting state.
low CS ' Select ADC.
pulsout CLK, 1 ' 10 us clock pulse.
let data = 0 ' Clear data.
for i = 1 to 8 ' Eight data bits.
let data = data * 2 ' Perform shift left.
pulsout CLK, 1 ' 10 us clock pulse.
let data = data + AD ' Put bit in LSB of data.
next ' Do it again.
high CS ' Deselect ADC when done.
return

2: Interfacing an A/D Convertor

Page 80 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 81

BASIC Stamp I Application Notes

1

3: Hardware Solution for Keypads

Introduction. This application note presents a program in PBASIC that
enables the BASIC Stamp to read a keypad and display keypresses on
a liquid-crystal display.

Background. Many controller applications require a keypad to allow
the user to enter numbers and commands. The usual way to interface a
keypad to a controller is to connect input/output (I/O) bits to row and
column connections on the keypad. The keypad is wired in a matrix
arrangement so that when a key is pressed one row is shorted to one
column. It’s relatively easy to write a routine to scan the keypad, detect
keypresses, and determine which key was pressed.

The trouble is that a 16-key pad requires a minimum of eight bits (four
rows and four columns) to implement this approach. For the BASIC
Stamp, with a total of only eight I/O lines, this may not be feasible, even
with clever multiplexing arrangements. And although the program-
ming to scan a keypad is relatively simple, it can cut into the Stamp’s 255
bytes of program memory.

An alternative that conserves both I/O bits and program space is to use
the 74C922 keypad decoder chip. This device accepts input from a 16-
key pad, performs all of the required scanning and debouncing, and

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2 3 1

10k
(contrast)

6
5 7 8 9 10

+5

4
14

13
12
11

10k
all

+5
Matrix keypad (pressing

a key shorts a row
connection to a column)

available

1x16-character LCD module, Hitachi 44780 controller

Vdd Vo R/WVss

DB4
DB5
DB6
DB7

DB0 DB1 DB2 DB3E
RS

.1µF

1µF

74C922

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

row 3

row 4

scan

debounce

col 4

col 3

gnd

d0

d1

d2

d3

out enable

data avail

col 1

col 2

Vccrow 1

row 2

Schematic to accompany
program KEYPAD.BAS.

Page 82 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 3: Hardware Solution for Keypads

outputs a “data available” bit and 4 output bits representing the
number of the key pressed from 0 to 15. A companion device, the
74C923, has the same features, but reads a 20-key pad and outputs 5
data bits.

Application. The circuit shown in the figure interfaces a keypad and
liquid-crystal display (LCD) module to the BASIC Stamp, leaving two
I/O lines free for other purposes, such as bidirectional serial communi-
cation. As programmed, this application accepts keystrokes from 16
keys and displays them in hexadecimal format on the LCD.

When the user presses a button on the keypad, the corresponding hex
character appears on the display. When the user has filled the display
with 16 characters, the program clears the screen.

The circuit makes good use of the electrical properties of the Stamp, the
LCD module, and the 74C922. When the Stamp is addressing the LCD,
the 10k resistors prevent keypad activity from registering. The Stamp
can easily drive its output lines high or low regardless of the status of
these lines. When the Stamp is not addressing the LCD, its lines are
configured as inputs, and the LCD’s lines are in a high-impedance state
(tri-stated). The Stamp can then receive input from the keypad without
interference.

The program uses the button instruction to read the data-available line
of the 74C922. The debounce feature of button is unnecessary in this
application because the 74C922 debounces its inputs in hardware;
however, button provides a professional touch by enabling delayed
auto-repeat for the keys.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' PROGRAM: Keypad.bas
' The Stamp accepts input from a 16-key matrix keypad with the help of
' a 74C922 keypad decoder chip.
Symbol E = 5 ' Enable pin, 1 = enabled
Symbol RS = 4 ' Register select pin, 0 = instruction

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 83

BASIC Stamp I Application Notes

1

3: Hardware Solution for Keypads

Symbol char = b1 ' Character sent to LCD.
Symbol buttn = b3 ' Workspace for button command.
Symbol lngth = b5 ' Length of text appearing on LCD.
Symbol temp = b7 ' Temporary holder for input character.

' Set up the Stamp's I/O lines and initialize the LCD.
begin: let pins = 0 ' Clear the output lines

let dirs = %01111111 ' One input, 7 outputs.
pause 200 ' Wait 200 ms for LCD to reset.
let buttn = 0
let lngth = 0
gosub i_LCD
gosub clear

keyin: let dirs = %01100000 ' Set up I/O directions.
loop: button 4,1,50,10,buttn,0,nokey ' Check pin 4 (data available) for

' keypress.
lngth = lngth + 1 ' Key pressed: increment position

counter.
let temp = pins & %00001111 ' Strip extra bits to leave only key data.
if temp > 9 then hihex ' Convert 10 thru 15 into A thru F (hex).
let temp = temp + 48 ' Add offset for ASCII 0.

LCD: let dirs = %01111111 ' Get ready to output to LCD.
if lngth > 16 then c_LCD ' Screen full? Clear it.

cont: let char = temp ' Write character to LCD.
gosub wr_LCD

nokey: pause 10 ' Short delay for nice auto-repeat
' speed.

goto keyin ' Get ready for next key.

hihex: let temp = temp + 55 ' Convert numbers 10 to 15 into A - F.
goto LCD

c_LCD: let lngth = 1 ' If 16 characters are showing on LCD,
gosub clear ' clear the screen and print at left edge.
goto cont

' Initialize the LCD in accordance with Hitachi's instructions
' for 4-bit interface.
i_LCD: let pins = %00000011 ' Set to 8-bit operation.

pulsout E,1 ' Send above data three times
pause 10 ' to initialize LCD.
pulsout E,1
pulsout E,1
let pins = %00000010 ' Set to 4-bit operation.
pulsout E,1 ' Send above data three times.
pulsout E,1
pulsout E,1
let char = 12 ' Set up LCD in accordance w/

Page 84 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

gosub wr_LCD ' Hitachi instruction manual.
let char = 6 ' Turn off cursor, enable
gosub wr_LCD ' left-to-right printing.
high RS ' Prepare to send characters.
return

' Write the ASCII character in b3 to the LCD.
wr_LCD: let pins = pins & %00010000

let b2 = char/16 ' Put high nibble of b3 into b2.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable pin.
let b2 = char & %00001111 ' Put low nibble of b3 into b2.
let pins = pins & %00010000 ' Clear 4-bit data bus.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable.
return

' Clear the LCD screen.
clear: low RS ' Change to instruction register.

let char = 1 ' Clear display.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
return

3: Hardware Solution for Keypads

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 85

BASIC Stamp I Application Notes

1

4: Controlling and Testing Servos

Introduction. This application note presents a program in PBASIC that
enables the BASIC Stamp to control pulse-width proportional servos
and measure the pulse width of other servo drivers.

Background. Servos of the sort used in radio-controlled airplanes are
finding new applications in home and industrial automation, movie
and theme-park special effects, and test equipment. They simplify the
job of moving objects in the real
world by eliminating much of the
mechanical design. For a given sig-
nal input, you get a predictable
amount of motion as an output.

Figure 1 shows a typical servo. The
three wires are +5 volts, ground,
and signal. The output shaft accepts
a wide variety of prefabricated disks
and levers. It is driven by a geared-
down motor and rotates through 90
to 180 degrees. Most servos can ro-
tate 90 degrees in less than a half second. Torque, a measure of the
servo’s ability to overcome mechanical resistance (or lift weight, pull
springs, push levers, etc.), ranges from 20 to more than 100 inch-ounces.

To make a servo move, connect it to a 5-volt power supply capable of
delivering an ampere or more of peak current, and supply a positioning

Figure 1. A typical servo.

Figure 2. Schematic to accompany program SERVO.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2 3 1

10k
(contrast)

6
5 7 8 9 10

+5
10k

1k

Toggle Function

4
14

13
12
11

Servo signal in

Servo signal out

1x16-character LCD module, Hitachi 44780 controller

Vdd Vo R/WVss

DB4
DB5
DB6
DB7

DB0 DB1 DB2 DB3E
RS

Page 86 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

signal. The signal is generally a 5-volt, positive-going pulse between 1
and 2 milliseconds (ms) long, repeated about 50 times per second. The
width of the pulse determines the position of the servo. Since servos’
travel can vary, there isn’t a definite correspondence between a given
pulse width and a particular servo angle, but most servos will move to
the center of their travel when receiving 1.5-ms pulses.

Servos are closed-loop devices. This means that they are constantly
comparing their commanded position (proportional to the pulse width)
to their actual position (proportional to the resistance of a potentiom-
eter mechanically linked to the shaft). If there is more than a small
difference between the two, the servo’s electronics will turn on the
motor to eliminate the error. In addition to moving in response to
changing input signals, this active error correction means that servos
will resist mechanical forces that try to move them away from a
commanded position. When the servo is unpowered or not receiving
positioning pulses, you can easily turn the output shaft by hand. When
the servo is powered and receiving signals, it won’t budge from its
position.

Application. Driving servos with the BASIC Stamp is simplicity itself.
The instruction pulsout pin, time generates a pulse in 10-microsecond
(µs) units, so the following code fragment would command a servo to
its centered position and hold it there:

servo: pulsout 0,150
pause 20
goto servo

The 20-ms pause ensures that the program sends the pulse at the
standard 50 pulse-per-second rate.

The program listing is a diagnostic tool for working with servos. It has
two modes, pulse measurement and pulse generation. Given an input
servo signal, such as from a radio-control transmitter/receiver, it
displays the pulse width on a liquid-crystal display (LCD). A display of
“Pulse Width: 150” indicates a 1.5-ms pulse. Push the button to toggle
functions, and the circuit supplies a signal that cycles between 1 and 2
ms. Both the pulse input and output functions are limited to a resolution

4: Controlling and Testing Servos

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 87

BASIC Stamp I Application Notes

1

4: Controlling and Testing Servos

of 10µs. For most servos, this equates to a resolution of better than 1
degree of rotation.

The program is straightforward Stamp BASIC, but it does take advan-
tage of a couple of the language’s handy features. The first of these is the
EEPROM directive. EEPROM address,data allows you to stuff tables of
data or text strings into EEPROM memory. This takes no additional
program time, and only uses the amount of storage required for the
data. After the symbols, the first thing that the listing does is tuck a
couple of text strings into the bottom of the EEPROM. When the
program later needs to display status messages, it loads the text strings
from EEPROM.

The other feature of the Stamp’s BASIC that the program exploits is the
ability to use compound expressions in a let assignment. The routine
BCD (for binary-coded decimal) converts one byte of data into three
ASCII characters representing values from 0 (represented as “000”) to
255.

To do this, BCD performs a series of divisions on the byte and on the
remainders of divisions. For example, when it has established how
many hundreds are in the byte value, it adds 48, the ASCII offset for
zero. Take a look at the listing. The division (/) and remainder (//)
calculations happen before 48 is added. Unlike larger BASICs which
have a precedence of operators (e.g., multiplication is always before
addition), the Stamp does its math from left to right. You cannot use
parentheses to alter the order, either.

If you’re unsure of the outcome of a calculation , use the debug directive
to look at a trial run, like so:

let BCDin = 200
let huns = BCDin/100+48
debug huns

When you download the program to the Stamp, a window will appear
on your computer screen showing the value assigned to the variable
huns (50). If you change the second line to let huns = 48+BCDin/100,
you’ll get a very different result (2).

Page 88 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 4: Controlling and Testing Servos

By the way, you don’t have to use let, but it will earn you Brownie points
with serious computer-science types. Most languages other than BASIC
make a clear distinction between equals as in huns = BCDin/100+48
and if BCDin = 100 then...

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' PROGRAM: Servo.bas
' The Stamp works as a servo test bench. It provides a cycling servo signal
' for testing, and measures the pulse width of external servo signals.

Symbol E = 5 ' Enable pin, 1 = enabled
Symbol RS = 4 ' Register select pin, 0 = instruction
Symbol char = b0 ' Character sent to LCD.
Symbol huns = b3 ' BCD hundreds
Symbol tens = b6 ' BCD tens
Symbol ones = b7 ' BCD ones
Symbol BCDin = b8 ' Input to BCD conversion/display
routine.
Symbol buttn = b9 ' Button workspace
Symbol i = b10 ' Index counter

' Load text strings into EEPROM at address 0. These will be used to display
' status messages on the LCD screen.
EEPROM 0,("Cycling... Pulse Width: ")

' Set up the Stamp's I/O lines and initialize the LCD.
begin: let pins = 0 ' Clear the output lines

let dirs = %01111111 ' One input, 7 outputs.
pause 200 ' Wait 200 ms for LCD to reset.

' Initialize the LCD in accordance with Hitachi's instructions
' for 4-bit interface.
i_LCD: let pins = %00000011 ' Set to 8-bit operation.

pulsout E,1 ' Send above data three times
pause 10 ' to initialize LCD.
pulsout E,1
pulsout E,1
let pins = %00000010 ' Set to 4-bit operation.
pulsout E,1 ' Send above data three times.
pulsout E,1
pulsout E,1
let char = 12 ' Set up LCD in accordance w/

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 89

BASIC Stamp I Application Notes

1

gosub wr_LCD ' Hitachi instruction manual.
let char = 6 ' Turn off cursor, enable
gosub wr_LCD ' left-to-right printing.
high RS ' Prepare to send characters.

' Measure the width of input pulses and display on the LCD.
mPulse: output 3

gosub clear ' Clear the display.
for i = 11 to 23 ' Read "Pulse Width:" label
 read i, char
 gosub wr_LCD ' Print to display
next
pulsin 7, 1, BCDin ' Get pulse width in 10 us units.
gosub BCD ' Convert to BCD and display.
pause 500
input 3 ' Check button; cycle if down.
button 3,1,255,10,buttn,1,cycle
goto mPulse ' Otherwise, continue measuring.

' Write the ASCII character in b3 to LCD.
wr_LCD: let pins = pins & %00010000

let b2 = char/16 ' Put high nibble of b3 into b2.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable pin.
let b2 = char & %00001111 ' Put low nibble of b3 into b2.
let pins = pins & %00010000 ' Clear 4-bit data bus.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable.
return

clear: low RS ' Change to instruction register.
let char = 1 ' Clear display.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
return

' Convert a byte into three ASCII digits and display them on the LCD.
' ASCII 48 is zero, so the routine adds 48 to each digit for display on the LCD.
BCD: let huns= BCDin/100+48 ' How many hundreds?

let tens= BCDin//100 ' Remainder of #/100 = tens+ones.
let ones= tens//10+48 ' Remainder of (tens+ones)/10 = ones.
let tens= tens/10+48 ' How many tens?
let char= huns ' Display three calculated digits.
gosub wr_LCD
let char = tens
gosub wr_LCD
let char = ones
gosub wr_LCD
return

4: Controlling and Testing Servos

Page 90 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Cycle the servo back and forth between 0 and 90 degrees. Servo moves slowly ' in
one direction (because of 20-ms delay between changes in pulse width) and quickly
' in the other. Helps diagnose stuck servos, dirty feedback pots, etc.
cycle: output 3

gosub clear
for i = 0 to 9 ' Get "Cycling..." string and
 read i, char ' display it on LCD.
 gosub wr_LCD
next i

reseti: let i = 100 ' 1 ms pulse width.
cyloop: pulsout 6,i ' Send servo pulse.

pause 20 ' Wait 1/50th second.
let i = i + 2 ' Move servo.
if i > 200 then reseti ' Swing servo back to start position.
input 3 ' Check the button; change function if

' down.
button 3,1,255,10,buttn,1,mPulse
goto cyloop ' Otherwise, keep cycling.

4: Controlling and Testing Servos

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 91

BASIC Stamp I Application Notes

1

5: Practical Pulse Measurements

Introduction. This application note explores several applications for
the BASIC Stamp's unique pulsin command, which measures the
duration of incoming positive or negative pulses in 10-microsecond
units.

Background. The BASIC Stamp’s pulsin command measures the width
of a pulse, or the interval between two pulses. Left at that, it might seem
to have a limited range of obscure uses. However, pulsin is the key to
many kinds of real-world interfacing using simple, reliable sensors.
Some possibilities include:

tachometer
speed trap
physics demonstrator
capacitance checker
duty cycle meter
log input analog-to-digital converter

Pulsin works like a stopwatch that keeps time in units of 10 microsec-
onds (µs). To use it, you must specify which pin to monitor, when to
trigger on (which implies when to trigger off), and where to put the
resulting 16-bit time measurement. The syntax is as follows:

pulsin pin, trigger condition, variable

waiting to trigger

triggered on

triggered off

6924 µs

w3 holds 692w3 holds 0

Figure 1. Timing diagram for pulsin 7,0,w3 .

Page 92 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 5: Practical Pulse Measurements

Pin is a BASIC Stamp input/output pin (0 to 7). Trigger condition is a
variable or constant (0 or 1) that specifies the direction of the transition
that will start the pulsin timer. If trigger is 0, pulsin will start measuring
when a high-to-low transition occurs, because 0 is the edge’s destina-
tion. Variable can be either a byte or word variable to hold the timing
measurement. In most cases, a word variable is called for, because
pulsin produces 16-bit results.

Figure 1 shows how pulsin works. The waveform represents an input
at pin 7 that varies between ground and +5 volts (V).

A smart feature of pulsin is its ability to recognize a no-pulse or out-of-
range condition. If the specified transition doesn’t occur within 0.65535
seconds (s), or if the pulse to be measured is longer than 0.65535 s, pulsin
will give up and return a 0 in the variable. This prevents the program
from hanging up when there’s no input or out-of-range input.

Let’s look at some sample applications for pulsin, starting with one
inspired by the digital readout on an exercise bicycle: pulsin as a
tachometer.

Tachometer. The most obvious way to measure the speed of a wheel
or shaft in revolutions per minute (rpm) is to count the number of

Figure 2. Schematic to accompany listing 1, TACH.BAS.

Q

Q

CLK

D

1/2 4013

11

9

13

12

(ground unused
inputs, pins 8 & 10)

1k

+5

+5

Hall-effect switch
UGN3113U

or
equivalent

To BASIC Stamp
pulsin pin

Magnet on
rotating
shaft or disk

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 93

BASIC Stamp I Application Notes

1

revolutions that occur during 1 minute. The trouble is, the user prob-
ably wouldn’t want to wait a whole minute for the answer.

For a continuously updated display, we can use pulsin to measure the
time the wheel takes to make one complete revolution. By dividing this
time into 60 seconds, we get a quick estimate of the rpm. Listing 1 is a
tachometer program that works just this way. Figure 2 is the circuit that
provides input pulses for the program. A pencil-eraser-sized magnet
attached to the wheel causes a Hall-effect switch to generate a pulse
every rotation.

We could use the Hall switch output directly, by measuring the interval
between positive pulses, but we would be measuring the period of
rotation minus the pulses. That would cause small errors that would be
most significant at high speeds. The flip-flop, wired to toggle with each
pulse, eliminates the error by converting the pulses into a train of square
waves. Measuring either the high or low interval will give you the
period of rotation.

Note that listing 1 splits the job of dividing the period into 60 seconds
into two parts. This is because 60 seconds expressed in 10-µs units is 6
million, which exceeds the range of the Stamp’s 16-bit calculations. You
will see this trick, and others that work around the limits of 16-bit math,
throughout the listings.

Using the flip-flop’s set/reset inputs, this circuit and program could
easily be modified to create a variety of speed-trap instruments. A steel
ball rolling down a track would encounter two pairs of contacts to set
and reset the flip-flop. Pulsin would measure the interval and compute
the speed for a physics demonstration (acceleration). More challenging
setups would be required to time baseballs, remote-control cars or
aircraft, bullets, or model rockets.

The circuit could also serve as a rudimentary frequency meter. Just
divide the period into 1 second instead of 1 minute.

Duty cycle meter. Many electronic devices vary the power they deliver
to a load by changing the duty cycle of a waveform; the proportion of
time that the load is switched fully on to the time it is fully off. This

5: Practical Pulse Measurements

Page 94 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 5: Practical Pulse Measurements

approach, found in light dimmers, power supplies, motor controls and
amplifiers, is efficient and relatively easy to implement with digital
components. Listing 2 measures the duty cycle of a repetitive pulse
train by computing the ratio of two pulsin readings and presenting
them as a percentage. A reading approaching 100 percent means that
the input is mostly on or high. The output of figure 2’s flip-flop is 50
percent. The output of the Hall switch in figure 2 was less than 10
percent when the device was monitoring a benchtop drill press.

Capacitor checker. The simple circuit in figure 3 charges a capacitor,
and then discharges it across a resistance when the button is pushed.
This produces a brief pulse for pulsin to measure. Since the time
constant of the pulse is determined by resistance (R) times capacitance
(C), and R is fixed at 10k, the width of the pulse tells us C. With the
resistance values listed, the circuit operates over a range of .001 to 2.2 µF.
You may substitute other resistors for other ranges of capacitance; just

be sure that the charging resistor (100k in this case) is about 10 times the
value of the discharge resistor. This ensures that the voltage at the
junction of the two resistors when the switch is held down is a definite
low (0) input to the Stamp.

Log-input analog-to-digital converter (ADC). Many sensors have
convenient linear outputs. If you know that an input of 10 units

+5

Cunk

100k

10k

Press to
test To BASIC Stamp

pulsin pin

Figure 3. Schematic for listing 3, CAP.BAS.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 95

BASIC Stamp I Application Notes

1

5: Practical Pulse Measurements

(degrees, pounds, percent humidity, or whatever) produces an output
of 1 volt, then 20 units will produce 2 volts. Others, such as thermistors

and audio-taper potentiometers, produce logarithmic outputs. A Radio
Shack thermistor (271-110) has a resistance of 18k at 10° C and 12k at
20°C. Not linear, and not even the worst cases!

While it’s possible to straighten out a log curve in software, it’s often

easier to deal with it in hardware. That’s where figure 4 comes in. The
voltage-controlled oscillator of the 4046 phase-locked loop chip, when

Figure 4. Schematic for listing 4, VCO.BAS.

Fin

1/2 4046
To BASIC Stamp
pulsin pin

inh
5

1M

10k0.001µF

Input
voltage

outV9 4

cap

cap

6

7

Fmin

Fmax

12

11

Input voltage

0

250

500

750

1000

1250

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

O
ut

pu
t v

al
ue

Figure 5. Log response curve of the VCO.

Page 96 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 5: Practical Pulse Measurements

wired as shown, has a log response curve. If you play this curve against
a log input, you can effectively straighten the curve. Figure 5 is a plot of
the output of the circuit as measured by the pulsin program in listing 4.
It shows the characteristic log curve.

The plot points out another advantage of using a voltage-controlled
oscillator as an ADC; namely, increased resolution. Most inexpensive
ADCs provide eight bits of resolution (0 to 255), while the VCO
provides the equivalent of 10 bits (0 to 1024+). Admittedly, a true ADC
would provide much better accuracy, but you can’t touch one for
anywhere near the 4046’s sub-$1 price.

The 4046 isn’t the only game in town, either. Devices that can convert
analog values, such as voltage or resistance, to frequency or pulse width
include timers (such as the 555) and true voltage-to-frequency convert-
ers (such as the 9400). For sensors that convert some physical property
such as humidity or proximity into a variable capacitance or induc-
tance, pulsin is a natural candidate for sampling their output via an
oscillator or timer.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

A Note about the Program Listings
All of the listings output results as serial data. To receive it, connect Stamp pin 0 to your
PC’s serial input, and Stamp ground to signal ground. On 9-pin connectors, pin 2 is
serial in and pin 5 is signal ground; on 25-pin connectors, pin 3 is serial in and pin 7 is
signal ground. Set terminal software for 8 data bits, no parity, 1 stop bit.

' Listing 1: TACH.BAS
' The BASIC Stamp serves as a tachometer. It accepts pulse input through pin 7,
' and outputs rpm measurements at 2400 baud through pin 0.

input 7
output 0

Tach: pulsin 7,1,w2 ' Read positive-going pulses on pin 7.
let w2 = w2/100 ' Dividing w2/100 into 60,000 is the

' same as dividing
let w2 = 60000/w2 ' w2 into 6,000,000 (60 seconds in 10

' us units).

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 97

BASIC Stamp I Application Notes

1

' Transmit data followed by carriage return and linefeed.
serout 0,N2400,(#w2," rpm",10,13)
pause 1000 ' Wait 1 second between readings
goto Tach

' Listing 3: CAP.BAS
' The BASIC Stamp estimates the value of a capacitor by the time required for it to
' discharge through a known resistance.

input 7
output 0

Cap: pulsin 7,1,w1
if w1 = 0 then Cap ' If no pulse, try again.
if w1 > 6553 then Err ' Avoid overflows.
let w1 = w1*10
let w1 = w1/14 ' Apply calibration value.
if w1 > 999 then uF ' Use uF for larger caps.
serout 0,N2400,(#w1," nF",10,13)
goto Cap

uF: let b4 = w1/1000 ' Value left of decimal point.
let b6 = w1//1000 ' Value right of decimal point.
serout 0,N2400,(#b4,".",#b6," uF",10,13)
goto Cap

' Listing 2: DUTY.BAS
' The BASIC Stamp calculates the duty cycle of a repetitive pulse train.
' Pulses in on pin 7; data out via 2400-baud serial on pin 0.

input 7
output 0

Duty: pulsin 7,1,w2 ' Take positive pulse sample.
if w2 > 6553 then Error ' Avoid overflow when w2 is multiplied

by 10.
pulsin 7,0,w3 ' Take negative pulse sample.
let w3 = w2+w3
let w3 = w3/10 ' Distribute multiplication by 10 into two
let w2 = w2*10 ' parts to avoid an overflow.
let w2 = w2/w3 ' Calculate percentage.
serout 0,N2400,(#w2," percent",10,13)
pause 1000 ' Update once a second.
goto Duty

' Handle overflows by skipping calculations and telling the user.
Error: serout 0,N2400,("Out of range",10,13)

pause 1000
goto Duty

5: Practical Pulse Measurements

Page 98 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Err: serout 0,N2400,("out of range",10,13)
goto Cap

' Listing 4: VCO.BAS
' The BASIC Stamp uses input from the VCO of a 4046 phase-locked loop as a
logarithmic
' A-to-D converter. Input on pin 7; 2400-baud serial output on pin 0.

input 7
output 0

VCO: pulsin 7,1,w2 ' Put the width of pulse on pin 7 into w2.
let w2 = w2-45 ' Allow a near-zero minimum value

' without underflow.
serout 0,N2400,(#w2,10,13)
pause 1000 ' Wait 1 second between measure-

' ments.
goto VCO

5: Practical Pulse Measurements

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 99

BASIC Stamp I Application Notes

1

6: A Serial Stepper Controller

Introduction. This application note demonstrates simple hardware
and software techniques for driving and controlling common four-coil
stepper motors.

Background. Stepper motors translate digital switching sequences
into motion. They are used in printers, automated machine tools, disk
drives, and a variety of other applications requiring precise motions
under computer control.

Unlike ordinary dc motors, which spin freely when power is applied,
steppers require that their power source be continuously pulsed in
specific patterns. These patterns, or step sequences, determine the
speed and direction of a stepper’s motion. For each pulse or step input,
the stepper motor rotates a fixed angular increment; typically 1.8 or 7.5
degrees.

The fixed stepping angle gives steppers their precision. As long as the
motor’s maximum limits of speed or torque are not exceeded, the
controlling program knows a stepper’s precise position at any given
time.

Steppers are driven by the interaction (attraction and repulsion) of
magnetic fields. The driving magnetic field “rotates” as strategically
placed coils are switched on and off. This pushes and pulls at perma-
nent magnets arranged around the edge of a rotor that drives the output

Figure 1. Schematic for the serial stepper controller.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

ULN 2003
TO PIN 11

TO PIN 10

TO PIN 1

TO PIN 4

NCNC

1k

1k 1k

1k

BLK

BRN

YEL

ORG

GRN

RED

+5

+12

Stepper Motor

NC

1

8

16

9

IN 1

IN 2

IN 3

IN 4

IN 5

IN 6

IN 7

GND

OUT 1

OUT 2

OUT 3

OUT 4

OUT 5

OUT 6

OUT 7

TEST
Serial Input

22k

+5

AIRPAX COLOR CODE:
RED & GREEN = COMMON

Serial Output

Page 100 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 6: A Serial Stepper Controller

shaft. When the on-off pattern of the magnetic fields is in the proper
sequence, the stepper turns (when it’s not, the stepper sits and quivers).

The most common stepper is the four-coil unipolar variety. These are
called unipolar because they require only that their coils be driven on
and off. Bipolar steppers require that the polarity of power to the coils
be reversed.

The normal stepping sequence for four-coil unipolar steppers appears
in figure 2. There are other, special-purpose stepping sequences, such
as half-step and wave drive, and ways to drive steppers with multi-
phase analog waveforms, but this application concentrates on the
normal sequence. After all, it’s the sequence for which all of the
manufacturer’s specifications for torque, step angle, and speed apply.

If you run the stepping sequence in figure 2 forward, the stepper rotates
clockwise; run it backward, and the stepper rotates counterclockwise.
The motor’s speed depends on how fast the controller runs through the
step sequence. At any time the controller can stop in mid sequence. If it
leaves power to any pair of energized coils on, the motor is locked in
place by their magnetic fields. This points out another stepper motor
benefit: built-in brakes.

Many microprocessor stepper drivers use four output bits to generate
the stepping sequence. Each bit drives a power transistor that switches
on the appropriate stepper coil. The stepping sequence is stored in a
lookup table and read out to the bits as required.

This design takes a slightly different approach. First, it uses only two
output bits, exploiting the fact that the states of coils 1 and 4 are always

1 2 3 4 1

coil 1 1 1 0 0 1
coil 2 0 0 1 1 0
coil 3 1 0 0 1 1
coil 4 0 1 1 0 0

Step Sequence

Figure 2. Normal stepping sequence.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 101

BASIC Stamp I Application Notes

1

6: A Serial Stepper Controller

the inverse of coils 2 and 3. Look at figure 2 again. Whenever coil 2 gets
a 1, coil 1 gets a 0, and the same holds for coils 3 and 4. In Stamp designs,
output bits are too precious to waste as simple inverters, so we give that
job to two sections of the ULN2003 inverter/driver.

The second difference between this and other stepper driver designs is
that it calculates the stepping sequence, rather than reading it out of a
table. While it’s very easy to create tables with the Stamp, the calcula-
tions required to create the two-bit sequence required are very simple.
And reversing the motor is easier, since it requires only a single
additional program step. See the listing.

How it works. The stepper controller accepts commands from a termi-
nal or PC via a 2400-baud serial connection. When power is first applied
to the Stamp, it sends a prompt to be displayed on the terminal screen.
The user types a string representing the direction (+ for forward, – for
backward), number of steps, and step delay (in milliseconds), like this:

step>+500 20

As soon as the user presses enter, return, or any non-numerical charac-
ter at the end of the line, the Stamp starts the motor running. When the
stepping sequence is over, the Stamp sends a new step> prompt to the
terminal. The sample command above would take about 10 seconds
(500 x 20 milliseconds). Commands entered before the prompt reap-
pears are ignored.

On the hardware side, the application accepts any stepper that draws
500 mA or less per coil. The schematic shows the color code for an
Airpax-brand stepper, but there is no standardization among different

YELLOW

ORANGE

RED

BROWN

BLACK

GREEN

Figure 3. Color code for Airpax steppers.

Page 102 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 6: A Serial Stepper Controller

brands. If you use another stepper, use figure 3 and an ohmmeter to
translate the color code. Connect the stepper and give it a try. If it
vibrates instead of turning, you have one or more coils connected
incorrectly. Patience and a little experimentation will prevail.

' Program STEP.BAS
' The Stamp accepts simply formatted commands and drives a four-coil stepper.
Commands
' are formatted as follows: +500 20<return> means rotate forward 500 steps with 20
' milliseconds between steps. To run the stepper backward, substitute - for +.

Symbol Directn = b0
Symbol Steps = w1
Symbol i = w2
Symbol Delay = b6
Symbol Dir_cmd = b7

dirs = %01000011 : pins = %00000001 ' Initialize output.
b1 = %00000001 : Directn = "+"
goto Prompt ' Display prompt.

' Accept a command string consisting of direction (+/-), a 16-bit number
' of steps, and an 8-bit delay (milliseconds) between steps. If longer
' step delays are required, just command 1 step at a time with long
' delays between commands.

Cmd: serin 7,N2400,Dir_cmd,#Steps,#Delay ' Get orders from terminal.
if Dir_cmd = Directn then Stepit ' Same direction? Begin.
b1 = b1^%00000011

' Else reverse (invert b1).

Stepit: for i = 1 to Steps
' Number of steps.

pins = pins^b1
' XOR output with b1, then invert b1

b1 = b1^%00000011
' to calculate the stepping sequence.

pause Delay ' Wait commanded delay between
' steps.

next
Directn = Dir_cmd

' Direction = new direction.

Prompt: serout 6,N2400,(10,13,"step> ") ' Show prompt, send return
goto Cmd ' and linefeed to terminal.

Program listing: As with the other appli-
cation notes, this program may be down-
loaded from our Internet ftp site at
ftp.parallaxinc.com. The ftp site may be
reached directly or through our web site
at http://www.parallaxinc.com.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 103

BASIC Stamp I Application Notes

1

7: Using a Thermistor

Introduction. This application note shows how to measure tempera-
ture using an inexpensive thermistor and the BASIC Stamp’s pot
command. It also discusses a technique for correcting nonlinear data.

Background. Radio Shack offers an inexpensive and relatively precise
thermistor—a component whose resistance varies with temperature.
The BASIC Stamp has the built-in ability to measure resistance with the
pot command and an external capacitor. Put them together, and your
Stamp can measure the temperature, right? Not without a little math.

The thermistor’s resistance decreases as the temperature increases, but
this response is not linear. There is a table on the back of the thermistor
package that lists the resistance at various temperatures in degrees
celsius (°C). For the sake of brevity, we won’t reproduce that table here,
but the lefthand graph of figure 1 shows the general shape of the
thermistor response curve in terms of the more familiar Fahrenheit
scale (°F).

The pot command throws us a curve of its own, as shown in figure 1
(right). Though not as pronounced as the thermistor curve, it must be
figured into our temperature calculations in order for the results to be
usable.

One possibility for correcting the combined curves of the thermistor
and pot command would be to create a lookup table in the Stamp’s
EEPROM. The table would have to be quite large to cover a reasonable
temperature range at 1° precision. An alternative would be to create a
smaller table at 10° precision, and figure where a particular reading

Figure 1. Response curves of the thermistor and pot command.

0

10

20

30

40

50

60

0 50 100 150
Temperature °F

T
he

rm
is

to
r

(k
Ω

)

0

50

100

150

200

250

0 10 20 30 40 50
Input resistance (k Ω)

P
ot

 c
om

m
an

d
ou

tp
ut

Page 104 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

 might lie within its 10° range. This is interpolation, and it can work quite
well. It would still use quite a bit of the Stamp’s limited EEPROM space,
though.

Another approach, the one used in the listing, is to use a power-series
polynomial to model the relationship between the pot reading and
temperature. This is easier than it sounds, and can be applied to many
nonlinear relationships.

Step 1: Prepare a table. The first step is to create a table of a dozen or
so inputs and outputs. The inputs are resistances and outputs are
temperatures in °F. Resistance values in this case are numbers returned
by the pot function. To equate pot values with temperatures, we
connected a 50k pot and a 0.01 µF capacitor to the Stamp and performed
the calibration described in the Stamp manual. After obtaining a scale
factor, we pressed the space bar to lock it in.

Now we could watch the pot value change as the potentiometer was
adjusted. We disconnected the potentiometer from the Stamp and
hooked it to an ohmmeter. After setting the potentiometer to 33.89k
(corresponding to a thermistor at 23 °F or –5 °C), we reconnected it to
the Stamp, and wrote down the resulting reading. We did this for each
of the calibration values on the back of the thermistor package, up to
149 °F (65 °C).

Step 2: Determine the coefficients. The equation that can approximate
our nonlinear temperature curve is:

Temperature = C0 + C1 • (Pot Val) + C2 • (Pot Val)2 + C3 • (Pot Val)3

where C0, C1, C2, and C3 are coefficients supplied by analytical
software, and each Cn • (Pot Val)n is called a term. The equation above
has three terms, so it is called a third-order equation. Each additional
term increases the range over which the equation’s results are accurate.
You can increase or decrease the number of terms as necessary, but each
additional coefficient requires that Pot Val be raised to a higher power.
This can make programming messy, so it pays to limit the number of
terms to the fewest that will do the job.

7: Using a Thermistor

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 105

BASIC Stamp I Application Notes

1

The software that determines the coefficients is called GAUSFIT.EXE and is
available from the Parallax ftp site. To use it, create a plain text file called
GF.DAT. In this file, which should be saved to the same subdirectory as
GAUSFIT, list the inputs and outputs in the form in,out<return>. If there
are values that require particular precision, they may be listed more
than once. We wanted near-room-temperature values to be right on, so
we listed 112,68 (pot value at 68 °F) several times.

To run the program, type GAUSFIT n where n is the number of terms
desired. The program will compute coefficients and present you with
a table showing how the computed data fits your samples. The fit will
be good in the middle, and poorer at the edges. If the edges are
unacceptable, you can increase the number of terms. If they are OK, try
rerunning the program with fewer terms. We were able to get away
with just two terms by allowing accuracy to suffer outside a range of 50
°F to 90 °F.

Step 3: Factor the coefficients. The coefficients that GAUSFIT produces
are not directly useful in a BASIC Stamp program. Our coefficients
were: C0 = 162.9763, C1 = –1.117476, and C2 = 0.002365991. We plugged
the values into a spreadsheet and computed temperatures from pot
values and then started playing with the coefficients. We found that the
following coefficients worked almost as well as the originals: C0 = 162,
C1 = –1.12, and C2 = 0.0024.

The problem that remained was how to use these values in a Stamp
program. The Stamp deals in only positive integers from 0 to 65,535. The
trick is to express the numbers to the right of the decimal point as
fractions. For example, the decimal number 0.75 can be expressed as 3/
4. So to multiply a number by 0.75 with the BASIC Stamp, first multiply
the number by 3, then divide the result by 4. For less familiar decimal
values, it may take some trial and error to find suitable fractions. We
found that the 0.12 portion of C1 was equal to 255/2125, and that
C2 (0.0024) = 3/1250.

Step 4: Plan the order of execution. Just substituting the fractions for the
decimal portions of the formula still won’t work. The problem is that
portions of terms, such as 3•Pot Val2/1250, can exceed the 65,535 limit.
If Pot Val were 244, then 3•2442 would equal 178,608; too high.

7: Using a Thermistor

Page 106 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

The solution is to factor the coefficients and rearrange them into smaller
problems that can be solved within the limit. For example (using PV to
stand for Pot Val):

PV•PV•3
1250

 =
PV•PV•3
5•5•5•5•2

 =
PV
25

 •
PV•3
50

The program in the listing is an example of just such factoring and
rearrangement. Remember to watch out for the lower limit as well. Try
to keep intermediate results as high as possible within the Stamp’s
integer limits. This will reduce the effect of truncation errors (where any
value to the right of the decimal point is lost).

Conclusion. The finished program, which reports the temperature to
the PC screen via the debug command, is deceptively simple. An
informal check of its output found that it tracks within 1 °F of a
mercury/glass bulb thermometer in the range of 60 °F to 90 °F. Addi-
tional range could be obtained at the expense of a third-order equation;
however, current performance is more than adequate for use in a
household thermostat or other noncritical application. Cost and com-
plexity are far less than that of a linear sensor, precision voltage
reference, and analog-to-digital converter.

If you adapt this application for your own use, component tolerances
will probably produce different results. However, you can calibrate the
program very easily. Connect the thermistor and a stable, close-toler-
ance 0.1-µF capacitor to the Stamp as shown in figure 2. Run the
program and note the value that appears in the debug window.
Compare it to a known accurate thermometer located close to the
thermistor. If the thermometer says 75 and the Stamp 78, reduce the
value of C0 by 3. If the thermometer says 80 and the Stamp 75, increase
the value of C0 by 5. This works because the relationship between the
thermistor resistance and the temperature is the same, only the value of
the capacitor is different. Adjusting C0 corrects this offset.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

7: Using a Thermistor

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 107

BASIC Stamp I Application Notes

1
Figure 2. Schematic to accompany THERM.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

Radio Shack
Thermistor
(271-110)

0.1µF

' Program THERM.BAS
' This program reads a thermistor with the BASIC
' pot command, computes the temperature using a
' power-series polynomial equation, and reports
' the result to a host PC via the Stamp cable
' using the debug command.

' Symbol constants represent factored portions of
' the coefficients C0, C1, and C2. "Top" and "btm"
' refer to the values' positions in the fractions;
' on top as a multiplier or on the bottom as a
' divisor.
Symbol co0 = 162
Symbol co1top = 255
Symbol co1btm = 2125
Symbol co2bt1 = 25
Symbol co2top = 3
Symbol co2btm = 50

' Program loop.
Check_temp:

pot 0,46,w0 ' 46 is the scale factor.

' Remember that Stamp math is computed left to
' right--no parentheses, no precedence of
' operators.

let w1 = w0*w0/co2bt1*co2top/co2btm
let w0 = w0*co1top/co1btm+w0
let w0 = co0+w1-w0
debug w0
pause 1000 ' Wait 1 second for next

goto Check_temp ' temperature reading.

7: Using a Thermistor

Page 108 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 109

BASIC Stamp I Application Notes

1

Introduction. This application note presents a technique for using the
BASIC Stamp to send short messages in Morse code. It demonstrates the
Stamp’s built-in lookup and sound commands.

Background. Morse code is probably the oldest serial communication
protocol still in use. Despite its age, Morse has some virtues that make
it a viable means of communication. Morse offers inherent compres-
sion; the letter E is transmitted in one-thirteenth the time required to
send the letter Q. Morse requires very little transmitting power and
bandwidth compared to other transmitting methods. And Morse may
be sent and received by either human operators or automated equip-
ment.

Although Morse has fallen from favor as a means for sending large
volumes of text, it is still the legal and often preferred way to identify
automated repeater stations and beacons. The BASIC Stamp, with its
ease of programming and minuscule power consumption, is ideal for
this purpose.

The characters of the Morse code are represented by sequences of long
and short beeps known as dots and dashes (or dits and dahs). There are
one to six beeps or elements in the characters of the standard Morse
code. The first step in writing a program to send Morse is to devise a
compact way to represent sequences of elements, and an efficient way
to play them back.

8: Sending Morse Code

Schematic to accompany program MORSE.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC
Speaker

0.047µF

To keying
circuitry

Page 110 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

The table on the next page shows the encoding scheme used in this
program. A single byte represents a Morse character. The highest five
bits of the byte represent the actual dots(0s) and dashes (1s), while the
lower three bits represent the number of elements in the character. For
example, the letter F is dot dot dash dot, so it is encoded 0010x100,
where x is a don’t-care bit. Since Morse characters can contain up to six
elements, we have to handle the exceptions. Fortunately, we have some
excess capacity in the number-of-elements portion of the byte, which
can represent numbers up to seven. So we assign a six-element charac-
ter ending in a dot the number six, while a six-element character ending
in a dash gets the number seven.

The program listing shows how these bytes can be played back to
produce Morse code. The table of symbols at the beginning of the
program contain the timing data for the dots and dashes themselves. If
you want to change the program’s sending speed, just enter new values
for dit_length , dah_length , etc. Make sure to keep the timing

8: Sending Morse Code

Char Morse Binar y Decimal
A •– 01000010 66
B –••• 10000100 132
C –•–• 10100100 164
D –•• 10000011 131
E • 00000001 1
F ••–• 00100100 36
G ––• 11000011 195
H •••• 00000100 4
I •• 00000010 2
J •––– 01110100 116
K –•– 10100011 163
L •–•• 01000100 68
M –– 11000010 194
N –• 10000010 130
O ––– 11100011 227
P •––• 01100100 100
Q ––•– 11010100 212
R •–• 01000011 67

S ••• 00000011 3
T – 10000001 129
U ••– 00100011 35
V •••– 00010100 20
W •–– 01100011 99
X –••– 10010100 148
Y –•–– 10110100 180
Z ––•• 11000100 196
0 ––––– 11111101 253
1 •–––– 01111101 125
2 ••––– 00111101 61
3 •••–– 00011101 29
4 ••••– 00001101 13
5 ••••• 00000101 5
6 –•••• 10000101 133
7 ––••• 11000101 197
8 –––•• 11100101 229
9 ––––• 11110101 245

Char Morse Binar y Decimal

Morse Characters and their Encoded Equivalents

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 111

BASIC Stamp I Application Notes

1

relationships roughly the same; a dash should be about three times as
long as a dot.

The program uses the BASIC Stamp’s lookup function to play se-
quences of Morse characters. Lookup is a particularly modern feature
of Stamp BASIC in that it is an object-oriented data structure. It not only
contains the data, it also “knows how” to retrieve it.

Modifications. The program could readily be modified to transmit
messages whenever the Stamp detects particular conditions, such as
“BATTERY LOW.” With some additional programming and analog-to-
digital hardware, it could serve as a low-rate telemetry unit readable by
either automated or manual means.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program MORSE.BAS
' This program sends a short message in Morse code every
' minute. Between transmissions, the Stamp goes to sleep
' to conserve battery power.
Symbol Tone = 100
Symbol Quiet = 0
Symbol Dit_length = 7 ' Change these constants to
Symbol Dah_length = 21 ' change speed. Maintain ratios
Symbol Wrd_length = 42 ' 3:1 (dah:dit) and 7:1 (wrd:dit).
Symbol Character = b0
Symbol Index1 = b6
Symbol Index2 = b2
Symbol Elements = b4

Identify:
output 0: output 1
for Index1 = 0 to 7
' Send the word "PARALLAX" in Morse:

lookup Index1,(100,66,67,66,68,68,66,148),Character
gosub Morse

next
sleep 60
goto Identify

Morse:

8: Sending Morse Code

Page 112 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

let Elements = Character & %00000111
if Elements = 7 then Adjust1
if Elements = 6 then Adjust2
Bang_Key:
for Index2 = 1 to Elements

if Character >= 128 then Dah
goto Dit

 Reenter:
let Character = Character * 2

next
gosub char_sp
return
Adjust1:
Elements = 6
goto Bang_Key

Adjust2:
Character = Character & %11111011
goto Bang_Key
end

Dit:
high 0
sound 1,(Tone,Dit_length)
low 0
sound 1,(Quiet,Dit_length)
goto Reenter

Dah:
high 0
sound 1,(Tone,Dah_length)
low 0
sound 1,(Quiet,Dit_length)
goto Reenter

Char_sp:
sound 1,(Quiet,Dah_length)
return

Word_sp:
sound 1,(Quiet,Wrd_length)
return

8: Sending Morse Code

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 113

BASIC Stamp I Application Notes

1

Introduction. This application note describes an electronic dice game
based on the BASIC Stamp. It shows how to connect LED displays to the
Stamp, and how to multiplex inputs and outputs on a single Stamp pin.

Background. Much of BASIC’s success as a programming language is
probably the result of its widespread use to program games. After all,
games are just simulations that happen to be fun.

How it works. The circuit for the dice game uses Stamp pins 0 through
6 to source current to the anodes of two sets of seven LEDs. Pin 7 and
the switching transistors determine which set of LEDs is grounded.
Whenever the lefthand LEDs are on, the right are off, and vice versa.
To light up the LEDs, the Stamp puts die1’s pattern on pins 0-6, and
enables die1 by making pin 7 high. After a few milliseconds, it puts
die2’s pattern on pins 0-6 and takes pin 7 low to enable die2.

In addition to switching between the dice, pin 7 also serves as an input
for the press-to-roll pushbutton. The program changes the pin to an
input and checks its state. If the switch is up, a low appears on pin 7
because the base-emitter junction of the transistor pulls it down to about
0.7 volts. If the switch is pressed, a high appears on pin 7. The 1k resistor
puts a high on pin 7 when it is an input, but pin 7 is still able to pull the
base of the transistor low when it is an output. As a result, holding the
switch down doesn’t affect the Stamp’s ability to drive the display.

9: Constructing a Dice Game

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2N2222

47k

+5

1k

1k

2N2222

Roll

Green LEDs arranged in “pip” pattern with cathodes (–)
connected together, anodes (+) to Stamp pins as shown.

1k (all)

1k

0 1

5 2

4 3

6

0 1

5 2

4 3

6

Schematic to accompany program DICE.BAS.

Page 114 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 9: Constructing a Dice Game

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program DICE.BAS
' An electonic dice game that uses two sets of seven LEDs
' to represent the pips on a pair of dice.

Symbol die1 = b0 ' Store number (1-6) for first die.
Symbol die2 = b1 ' Store number (1-6) for ssecond die.
Symbol shake = w3 ' Random word variable
Symbol pippat = b2 ' Pattern of "pips" (dots) on dice.
Symbol Select = 7 ' Pin number of select transistors.

high Select
let dirs = 255 ' All pins initially outputs.
let die1 = 1 ' Set lucky starting value for dice (7).
let die2 = 4 ' (Face value of dice = die1+1, die2+1.)

Repeat: ' Main program loop.
let pippat = die1
gosub Display ' Display die 1 pattern.
let pippat = die2 ' Now die 2.
gosub Display
input Select ' Change pin 7 to input.
if pin7 = 1 then Roll ' Switch closed? Roll the dice.
let w3 = w3+1 ' Else stir w3.
Reenter: ' Return from Roll subroutine.
output Select ' Restore pin 7 to output.
goto Repeat

Display: ' Look up pip pattern.
lookup pippat,(64,18,82,27,91,63),pippat
let pins = pins&%10000000
toggle Select ' Invert Select.
let pins = pins|pippat ' OR pattern into pins.
pause 4 ' Leave on 4 milliseconds.
return

Roll:
random shake ' Get random number.
let die1 = b6&%00000111 ' Use lower 3 bits of each byte.
let die2 = b7&%00000111
if die1 > 5 then Roll ' Throw back numbers over 5 (dice>6).
if die2 > 5 then Roll
goto Reenter ' Back to the main loop.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 115

BASIC Stamp I Application Notes

1

Introduction. This application note shows how to interface an inexpen-
sive humidity/temperature sensor kit to the Stamp.

Background. When it’s hot, high humidity makes it seem hotter. When
it’s cold, low humidity makes it seem colder. In areas where electronic
components are handled, low humidity increases the risk of electro-
static discharge (ESD) and damage. The relationship between tempera-
ture and humidity is a good indication of the efficiency of heavy-duty
air-conditioning equipment that uses evaporative cooling.

Despite the value of knowing temperature and humidity, it can be hard
to find suitable humidity sensors. This application solves that problem
by borrowing a sensor kit manufactured for computerized home weather
stations.

The kit, available from the source listed at the end of this application
note for $25, consists of fewer than a dozen components and a small (0.5"
x 2.75") printed circuit board. Assembly entails soldering the compo-
nents to the board. When it’s done, you have two sensors: a tempera-
ture-dependent current source and a humidity-dependent oscillator.

Once the sensor board is complete, connect it to the Stamp using the
circuit shown in the figure and download the software in the listing. The

10: Humidity and Temperature

Schematic to accompany program HUMID.BAS.

220

2 7

4024
counter
(÷128)

13

14

+50.1µF

4 (RH clock output)

1 (Temp –)

2 (Temp +)

5 (RH clock enable)

6

+5

3

Humidity/Temperature
Board

0

1

2
3

BASIC
Stamp I/O

pins

4024
counter
(÷128)

Page 116 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

debug window will appear on your PC screen showing values repre-
senting humidity and temperature. To get a feel for the board’s sensi-
tivity, try this: Breathe on the sensor board and watch the debug values
change. The humidity value should increase dramatically, while the
temperature number (which decreases as the temperature goes up) will
fall a few counts.

How it works. The largest portion of the program is devoted to
measuring the temperature, so we’ll start there. The temperature sensor
is an LM334Z constant-current source. Current through the device
varies at the rate of 0.1µA per 1° C change in temperature. The program
in the listing passes current from pin 2 of the Stamp through the sensor
to a capacitor for a short period of time, starting with 5000 µs. It then
checks the capacitor’s state of charge through pin 1. If the capacitor is
not charged enough for pin 1 to see a logical 1, the Stamp discharges the
capacitor and tries again, with a slightly wider pulse of 5010 µs.

It stays in a loop, charging, checking, discharging, and increasing the
charging pulse until the capacitor shows as a 1 on pin 1’s input. Since the
rate of charge is proportional to current, and the current is proportional
to temperature, the width of the pulse that charges the capacitor is a
relative indication of temperature.

Sensing humidity is easier, thanks to the design of the kit’s hardware.
The humidity sensor is a capacitor whose value changes with relative
humidity (RH). At a relative humidity of 43 percent and a temperature
of 77° F, the sensor has a value of 122 pF ± 15 percent. Its value changes
at a rate of 0.4 pF ± 0.05 pF for each 1-percent change in RH.

The sensor controls the period of a 555 timer wired as a clock oscillator.
The clock period varies from 225 µs at an arid 10-percent RH to 295 µs
at a muggy 90-percent RH. Since we’re measuring this change with the
Stamp’s pulsin command, which has a resolution of 10 µs, we need to
exaggerate those changes in period in order to get a usable change in
output value. That’s the purpose of the 4024 counter.

We normally think of a counter as a frequency divider, but by definition
it’s also a period multiplier. By dividing the clock output by 128, we
create a square wave with a period 128 times as long. Now humidity is

10: Humidity and Temperature

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 117

BASIC Stamp I Application Notes

1

10: Humidity and Temperature

represented by a period ranging from 28.8 to 37.8 milliseconds. Since
pulsin measures only half of the waveform, the time that it’s high, RH
values range from 14.4 to 18.9 milliseconds. At 10-µs resolution, pulsin
expresses these values as numbers ranging from 1440 to 1890. (Actually,
thanks to stray capacitance, the numbers returned by the circuit will
tend to be higher than this.)

In order to prevent clock pulses from interfering with temperature
measurements, the RH clock is disabled when not in use. If you really
need the extra pin, you can tie pin 5 of the sensor board high, leaving the
clock on continuously. You may need to average several temperature
measurements to eliminate the resulting jitter, however.

Since the accuracy of both of the measurement techniques is highly
dependent on the individual components and circuit layout used, we’re
going to sidestep the sticky issue of calibration and conversion to units.
A recent article in Popular Electronics (January 1994 issue, page 62,
“Build a Relative-Humidity Gauge”) tells how to calibrate RH sensors
using salt solutions. Our previous application note (Stamp #7, “Sensing
Temperature with a Thermistor”) covers methods for converting raw
data into units, even if the data are nonlinear.

Program listing and parts source. These programs may be down-
loaded from our ftp site at ftp.parallaxinc.com, or through our web site
at http://www.parallaxinc.com. The sensor kit (#WEA-TH-KIT) is
available for $25 plus shipping and handling from Fascinating Elec-
tronics, PO Box 126, Beaverton, OR 97075-0126; phone, 1-800-683-5487.

' Program HUMID.BAS
' The Stamp interfaces to an inexpensive temperature/humidity
' sensor kit.

Symbol temp = w4 ' Temperature
Symbol RH = w5 ' Humidity

' The main program loop reads the sensors and displays
' the data on the PC screen until the user presses a key.

Loop:
input 0:input 2: output 3

Page 118 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

low 2: low 3
let temp = 500 ' Start temp at a reasonable value.

ReadTemp:
output 1: low 1
pause 1 ' Discharge the capacitor.
input 1 ' Get ready for input.
pulsout 2,temp ' Charge cap thru temp sensor.
if pin1 = 1 then ReadRH ' Charged: we’re done.
let temp = temp + 1 ' Else try again
goto ReadTemp ' with wider pulse.

ReadRH:
high 3 ' Turn on the 555 timer
pause 500 ' and let it stabilize.
pulsin 0,1,RH ' Read the pulse width.
low 3 ' Kill the timer.
debug temp:debug RH ' Display the results.
goto Loop ' Do it all again.

10: Humidity and Temperature

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 119

BASIC Stamp I Application Notes

1

11: Infrared Communication

Introduction. This application note shows how to build a simple and
inexpensive infrared communication interface for the BASIC Stamp.

Background. Today’s hottest products all seem to have one thing in
common; wireless communication. Personal organizers beam data into
desktop computers and wireless remotes allow us to channel surf from
our couches. Not wanting the BASIC Stamp to be left behind, we
devised a simple infrared data link. With a few inexpensive parts from
your neighborhood electronics store you can communicate at 1200
baud over distances greater than 10 feet indoors. The circuit can be
modified for greater range by the use of a higher performance LED.

How it works. As the name implies, infrared (IR) remote controls
transmit instructions over a beam of IR light. To avoid interference from
other household sources of infrared, primarily incandescent lights, the
beam is modulated with a 40-kHz carrier. Legend has it that 40 kHz was
selected because the previous generation of ultrasonic remotes worked

Schematic to accompany program IR.BAS.

4.7k

PC RS-232
output

pin 4 of
555 timer

GP1U52X
output

PC RS-232
input

CMOS inverter
(1/6 74HCT04)

PC Interfaces

Transmit Receive

+5

Trigger
GND

Output

TLC555

1

Threshold

Discharge

Reset

Control VDD

85

4

RB
10k

CT
0.001µF

1k

7

6

2

3

100Ω

2N2222

IR LEDSerial input
to 1200 bps

GP1U52X

+5
3
2
1

4.7k

+5

Serial
output

10 feet
or more
indoors

10k

10k pot

RA

1N914

Page 120 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

at this frequency. Adapting their circuits was just a matter of swapping
an LED for the ultrasonic speaker.

The popularity of IR remotes has inspired several component manufac-
turers to introduce readymade IR receiver modules. They contain the
necessary IR detector, amplifier, filter, demodulator, and output stages
required to convert a 40-kHz IR signal into 5-volt logic levels. One such
module is the GP1U52X, available from your local Radio Shack store as
part no. 276-137. As the schematic shows, this part is all that’s required
for the receiving section of our application.

For the transmitting end, all we need is a switchable source of 40-kHz
modulation to drive an IR LED. That’s the purpose of the timer circuit
in the schematic. Putting a 1 on the 555’s reset pin turns the 40-kHz
modulation on; a 0 turns it off. You may have to fiddle with the values
of RA, RB, and CT. The formula is Frequency = 1.44/((RA+2*RB)*CT).
With RB at 10k, the pot in the RA leg of the circuit should be set to about
6k for 40-kHz operation. However, capacitor tolerances being what
they are, you may have to adjust this pot for optimum operation.

To transmit from a Stamp, connect one of the I/O pins directly to pin 4
of the ’555 timer. If you use pin 0, your program should contain code
something like this:

low 0 ' Turn off pin 0's output latch.
output 0 ' Change pin 0 to output.
... ' other instructions
serout 0,N1200,("X") ' Send the letter "X"

To receive with another Stamp, connect an I/O pin to pin 1 of the
GP1U52X. If the I/O pin is pin 0, the code might read:

input 0 ' Change pin 0 to input.
... ' other instructions
serin 0,T1200,b2 ' Receive data in variable b2.

To receive with a PC, you’ll need to verify that the PC is capable of
receiving 5-volt RS-232. If you have successfully sent RS-232 from your
Stamp to the PC, then it’s compatible. As shown in the schematic, you’ll
need to add a CMOS inverter to the output of the GP1U52X. Don’t use

11: Infrared Communication

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 121

BASIC Stamp I Application Notes

1

11: Infrared Communication

a TTL inverter; its output does not have the required voltage swing.
To transmit from a PC, you’ll need to add a diode and resistor ahead of
the ’555 timer as shown in the schematic. These protect the timer from
the negative voltage swings of the PC’s real RS-232 output.

Modifications. I’m sure you’re already planning to run the IR link at
2400 baud, the Stamp’s maximum serial speed. Go ahead, but be
warned that there’s a slight detection delay in the GP1U52X that causes
the start bit of the first byte of a string to be shortened a bit. Since the
serial receiver bases its timing on the leading edge of the start bit, the
first byte will frequently be garbled.

If you want more range or easier alignment between transmitter and
receiver, consider using more or better LEDs. Some manufacturers’
data sheets offer instructions for using peak current, duty cycle, thermal
characteristics, and other factors to calculate optimum LED power right
up to the edge of burnout. However, in casual tests around the work-
shop, we found that a garden-variety LED driven as shown could
reliably communicate with a receiver more than 10 feet away. A simple
reflector or lens arrangement might be as beneficial as an exotic LED for
improving on this performance.

If you find that your IR receiver occasionally produces “garbage
characters” when the transmitter is off, try grounding the metal case of
the GP1U52X. It is somewhat sensitive to stray signals. If you build the
transmitter and receiver on the same prototyping board for testing, you
are almost certain to have this problem. Bypass all power connections
with 0.1-µF capacitors and use a single-point ground. And be encour-
aged by the fact that the circuit works much better in its intended
application, with the transmitter and receiver several feet apart.

Program listing. There’s no program listing this time; however, you
may download programs for other application notes from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Page 122 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 123

BASIC Stamp I Application Notes

1

12: Sonar Rangefinding

Introduction. This application note presents a circuit that allows the
BASIC Stamp to measure distances from 1 to 12 feet using inexpensive
ultrasonic transducers and commonly available parts.

Background. When the November 1980 issue of Byte magazine pre-
sented Steve Ciarcia’s article Home in on the Range! An Ultrasonic
Ranging System, computer hobbyists were fascinated. The project, based
on Polaroid’s SX-70 sonar sensor, allowed you to make real-world
distance measurements with your computer. We’ve always wanted to
build that project, but were put off by the high cost of the Polaroid
sensor ($150 in 1980, about $80 today).

If you’re willing to give up some of the more advanced features of the

Figure 1. Schematic to accompany program SONAR.BAS.

CA5160

+5

Trigger
GND

Output

TLC555

1

Threshold

Discharge

Reset

Control VDD

85

4

10k

RB
10k

CT
0.001µF

40-kHz
transmitter

7

6

2

3

From
Stamp
pin 0

10k pot

RA

40-kHz
receiver

10k

0.022µF

1M

–

+

+5

7

4
6

2

3

10k
10k

+5

18k 18k

10k pot

CT
0.001µF

5

6 7

3

1 2

+5

4

0.022µF

0.01µF

LM567

VDD

Output
8

+5

10k

To
Stamp
pin 1

Output
filter

Loop
filter

Input

Timing R

Timing C GND

+5

Optional:
detection LED

1k

Page 124 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Polaroid sensor (35-foot range, multi-frequency chirps to avoid false
returns, digitally controlled gain) you can build your own experimental
sonar unit for less than $10. Figure 1 shows how.

Basically, our cheap sonar consists of two sections; an ultrasonic trans-
mitter based on a TLC555 timer wired as an oscillator, and a receiver
using a CMOS op-amp and an NE567 tone decoder. The Stamp controls
these two units to send and receive 40-kHz ultrasonic pulses. By
measuring the elapsed time between sending a pulse and receiving its
echo, the Stamp can determine the distance to the nearest reflective
surface. Pairs of ultrasonic transducers like the ones used in this project
are available from the sources listed at the end of this application note
for $2 to $3.50.

Construction. Although the circuits are fairly self-explanatory, a few
hints will make construction go more smoothly. First, the transmitter
and receiver should be positioned about 1 inch apart, pointing in the
same direction. For reasons we’ll explain below, the can housing the
transmitter should be wrapped in a thin layer of sound-deadening
material. We used self-adhesive felt from the hardware store. Cloth tape
or thin foam would probably work as well. Don’t try to enclose the
transducers or block the receiver from hearing the transmitter directly;
we count on this to start the Stamp’s timing period. More on this later.
For best performance, the oscillation frequency of the TLC555 and the
NE567 should be identical and as close to 40 kHz as possible. There are
two ways to achieve this. One way is to adjust the circuits with a
frequency counter. For the ’555, temporarily connect pin 4 to +5 volts
and measure the frequency at pin 3. For the ’567, connect the counter to
pin 5.

If you don’t have a counter, you’ll have to use ±5-percent capacitors for
the units marked CT in the ’555 and ’567 circuits. Next, you’ll need to
adjust the pots so that the timing resistance is as close as possible to the
following values. For the ’555: Frequency = 1.44/((RA + 2*RB)* CT),
which works out to 40x103 = 1.44/((16x103+ 20x103) x 0.001x10-6).

Measure the actual resistance of the 10k resistors labeled RA and RB in
the figure and adjust the 10k pot in the RA leg so that the total of the
equation RA + 2*RB is 36k. Once the resistances are right on, the

12: Sonar Rangefinding

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 125

BASIC Stamp I Application Notes

1

12: Sonar Rangefinding

frequency of oscillation will depend entirely on CT. With 5-percent
tolerance, this puts you in the ballpark; 38.1 to 42.1 kHz.

For the ’567 the math comes out like so: Frequency = 1/(1.1*R*CT);
40x103 = 1/(1.1 x 22.73x103 x 0.001x10-6)

Adjust the total resistance of the 18k resistor and the pot to 22.73k.
Again, the actual frequency of the ’567 will depend on CT. With 5-
percent tolerance, we get the same range of possible frequencies as for
the ’555; 38.1 to 42.1 kHz.

Once you get close, you can fine-tune the circuits. Connect the LED and
resistor shown in the figure to the ’567. Temporarily connect pin 4 of the
’555 to +5 volts. When you apply power to the circuits, the LED should
light. If it doesn’t, gradually adjust the pot on the ’555 circuit until it
does. When you’re done, make sure to reconnect pin 4 of the ’555 to
Stamp pin 0. Load and run the program in the listing. For a test run,
point the transducers at the ceiling; a cluttered room can cause a lot of
false echoes. From a typical tabletop to the ceiling, the Stamp should
return echo_time values in the range of 600 to 900. If it returns mostly
0s, try adjusting the RA pot very, very slightly.

Figure 2. Timing diagram of the sonar-ranging process.

Stamp
pin 0

’555
output

’567 output,
Stamp pin 1

pulsout

Time for sound to travel
from transmitter to
receiver plus decode
delay

End of pulse reaches receiver

Decoder turns off

Echoes reach
receiver and are
decoded

pulsin measures this
time—from the end of detection
of the outgoing pulse to the
beginning of the return echoes

pulsin
starts

Page 126 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

How it works. In figure 1, the TLC555 timer is connected as a oscillator;
officially an astable multivibrator. When its reset pin is high, the circuit
sends a 40-kHz signal to the ultrasonic transmitter, which is really just
a specialized sort of speaker. When reset is low, the ’555 is silenced.

In the receiving section, the ultrasonic receiver—a high-frequency
microphone—feeds the CA5160 op amp, which amplifies its signal 100
times. This signal goes to an NE567 tone decoder, which looks for a close
match between the frequency of an incoming signal and that of its
internal oscillator. When it finds one, it pulls its output pin low.

Figure 2 illustrates the sonar ranging process. The Stamp activates the
’555 to send a brief 40-kHz pulse out through the ultrasonic transmitter.
Since the receiver is an inch away, it hears this initial pulse loud and
clear, starting about 74 µs after the pulse begins (the time required for
sound to travel 1 inch at 1130 feet per second). After the ’567 has heard
enough of this pulse to recognize it as a valid 40-kHz signal, it pulls its
output low.

After pulsout finishes, the transmitter continues to ring for a short
time. The purpose of the felt or cloth wrapping on the transmitter is to
damp out this ringing as soon as possible. Meanwhile, the Stamp has
issued the pulsin command and is waiting for the ’567 output to go
high to begin its timing period. Thanks to the time required for the end
of the pulse to reach the receiver, and the pulse-stretching tendency of
the ’567 output filter, the Stamp has plenty of time to catch the rising
edge of the ’567 output.

That’s why we have to damp the ringing of the transmitter. If the
transmitter were allowed to ring undamped, it would extend the
interval between the end of pulsout and the beginning of pulsin ,
reducing the minimum range of the sonar. Also, if the ringing were
allowed to gradually fade away, the output of the ’567 might chatter
between low and high a few times before settling high. This would fool
pulsin into a false, low reading.

On the other hand, if we prevented the receiver from hearing the
transmitter at all, pulsin would not get a positive edge to trigger on.
It would time out and return a reading of 0.

12: Sonar Rangefinding

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 127

BASIC Stamp I Application Notes

1

Once pulsin finds the positive edge that marks the end of the NE567’s
detection of the outgoing pulse, it waits. Pulsin records this waiting
time in increments of 10 µs until the output of the ’567 goes low again,
marking the arrival of the first return echo. Using debug , the program
displays this delay on your PC screen.

To convert this value to distance, first remember that the time pulsin
measures is the round-trip distance from the sonar to the wall or other
object, and that there’s an offset time peculiar to your homemade sonar
unit. To calibrate your sonar, carefully measure the distance in inches
between the transmitter/receiver and the nearest wall or the ceiling.
Multiply that number by two for the roundtrip, then by 7.375 (at 1130
feet/second sound travels 1 inch in 73.746 µs; 7.375 is the number of
10-µs pulsin units per inch). Now take a Stamp sonar reading of the
distance. Subtract your sonar reading from the calculated reading.
That’s the offset.

Once you have the offset, add that value to pulsin ’s output before
dividing by 7.375 to get the round-trip distance in inches. By the way,
to do the division with the Stamp’s integer math, multiply the value
plus offset by 10, then divide by 74. The difference between this and
dividing by 7.375 will be about an inch at the sonar’s maximum range.
The result will be the round-trip distance. To get the one-way distance,
divide by two.

Modifications. The possibilities for modifications are endless. For
those who align the project without a frequency counter, the most
beneficial modification would be to borrow a counter and precisely
align the oscillator and tone decoder.

Or eliminate the need for frequency alignment by designing a transmit-
ter oscillator controlled by a crystal, or by the resonance of the ultrasonic
transducer itself.

Try increasing the range with reflectors or megaphone-shaped baffles
on the transmitter and/or receiver.

Soup up the receiver’s amplifier section. The Polaroid sonar unit uses
variable gain that increases with the time since the pulse was transmit-
ted to compensate for faint echoes at long distances.

12: Sonar Rangefinding

Page 128 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Make the transmitter louder. Most ultrasonic transmitters can with-
stand inputs of 20 or more volts peak-to-peak; ours uses only 5.

Tinker with the tone decoder, especially the loop and output filter
capacitors. These are critical to reliable detection and ranging. We
arrived at the values used in the circuit by calculating reasonable
starting points, and then substituting like mad. There’s probably still
some room for improvement.

Many ultrasonic transducers can work as both a speaker and micro-
phone. Devise a way to multiplex the transmit and receive functions to
a single transducer. This would simplify the use of a reflector or baffle.

Parts sources. Suitable ultrasonic transducers are available from All
Electronics, 1-800-826-5432. Part no. UST-23 includes both transmitter
and receiver. Price was $2 at the time of this writing. Marlin P. Jones and
Associates, 1-800-652-6733, stock #4726-UT. Price was $3.95 at the time
of this writing. Hosfelt Electronics, 1-800-524-6464, carries a slightly
more sensitive pair of transducers as part no. 13-334. Price was $3.50 at
the time of this writing.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: SONAR.BAS
' The Stamp runs a sonar transceiver to measure distances
' up to 12 feet.

Symbol echo_time = w2 ' Variable to hold delay time

setup: let pins = 0 ' All pins low
output 0 ' Controls sonar xmitter
input 1 ' Listens to sonar receiver

ping: pulsout 0,50 ' Send a 0.5-ms ping
pulsin 1,1,echo_time ' Listen for return
debug echo_time ' Display time measurement
pause 500 ' Wait 1/2 second
goto ping ' Do it again.

12: Sonar Rangefinding

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 129

BASIC Stamp I Application Notes

1

13: Using Serial EEPROMs

Introduction. This application note shows how to use the 93LC66
EEPROM to provide 512 bytes of nonvolatile storage. It provides a tool
kit of subroutines for reading and writing the EEPROM.

Background. Many designs take advantage of the Stamp’s ability to
store data in its EEPROM program memory. The trouble is that the
more data, the smaller the space left for code. If only we could expand
the Stamp’s EEPROM!

This application note will show you how to do the next best thing; add
a separate EEPROM that your data can have all to itself.

The Microchip 93C66 and 93LC66 electrically erasable PROMs
(EEPROMs) are 512-byte versions of the 93LC56 used as the Stamp’s
program memory. (Before you ask: No, dropping a ’66 in place of the
Stamp’s ’56 will not double your program memory!) Serial EEPROMs
communicate with a processor via a three- or four-wire bus using a
simple synchronous (clocked) communication protocol at rates of up to
2 million bits per second (Mbps).

Data stored in the EEPROM will be retained for 10 years or more,
according to the manufacturer. The factor that determines the EEPROM’s
longevity in a particular application is the number of erase/write
cycles. Depending on factors such as temperature and supply voltage,
the EEPROM is good for 10,000 to 1
million erase/write cycles. For a thor-
ough discussion of EEPROM endur-
ance, see the Microchip Embedded
Control Handbook, publication num-
ber DS00092B, November 1993.

How it works. The circuit in the fig-
ure specifies a 93LC66 EEPROM, but
a 93C66 will work as well. You can
also subsitute the 256-byte ’56, pro-
vided you restrict the highest ad-
dress to 255. The difference between
the C and LC models is that the LC
has a wider Vcc range (2.5–5.5 V,

CS

CK

DI

DO

Vcc

NC

ORG

Vss

93C66

+5

2.2k

22k

Stamp
Pins

0
1
2

6

7

To PC serial in

From PC serial out

Signal ground

512-byte
Serial

EEPROM

Schematic to accompany
EEPROM.BAS.

Page 130 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

versus 4–5.5 V), lower current consumption (3 mA versus 4 mA), and
can be somewhat slower in completing internal erase/write operations,
presumably at lower supply voltages. In general, the LC type is less
expensive, and a better match for the operating characteristics of the
Stamp.

The schematic shows the data in and data out (DI, DO) lines of the
EEPROM connected together to a single Stamp I/O pin. The 2.2k
resistor prevents the Stamp and DO from fighting over the bus during
a read operation. During a read, the Stamp sends an opcode and an
address to the EEPROM. As soon as it has received the address, the
EEPROM activates DO and puts a 0 on it. If the last bit of the address is
a 1, the Stamp could end up sourcing current to ground through the
EEPROM. The resistor limits the current to a reasonable level.

The program listing is a collection of subroutines for reading and
writing the EEPROM. All of these rely on Shout , a routine that shifts
bits out to the EEPROM. To perform an EEPROM operation, the
software loads the number of clock cycles into clocks and the data to
be output into ShifReg . It then calls Shout , which does the rest.

The demonstration program calls for you to connect the Stamp to your
PC serial port, type in up to 512 characters of text, and hit return when
you’re done. Please type this sample text rather than downloading a file
to the Stamp. The Stamp will miss characters of a rapidly downloaded
file, though it’s more than fast enough to keep up with typing. As you
type in your message, the Stamp will record each character to EEPROM.

When you’re finished typing, the Stamp will repeat your text back to the
PC serial port. In fact, it will read all 512 bytes of the EEPROM contents
back to the PC.

If you don’t have the EEPROM data handy (Microchip Data Book,
DS00018D, 1991), you should know about a couple of subtleties. First,
when the EEPROM powers up, it is write protected. You must call
Eenable before trying to write or erase it. It’s a good idea to call
Edisbl (disable writes) as soon as possible after you’re done. Other-
wise, a power glitch could alter the contents of your EEPROM.

13: Using Serial EEPROMs

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 131

BASIC Stamp I Application Notes

1

13: Using Serial EEPROMs

The second subtle point is that National Semiconductor makes a series
of EEPROMs with the same part numbers as the Microchip parts
discussed here. However, the National parts use a communication
protocol that’s sufficiently different to prevent them from working with
these routines. Make sure to ask for Microchip parts, or be prepared to
rewrite portions of the code.

Modifications. If you’re using PBASIC interpreter chips as part of a
finished product, you may be contemplating buying a programmer to
duplicate EEPROMs for production. If you’d prefer to avoid the ex-
pense, why not build a Stamp-based EEPROM copier? Just remember
to include a 2-millisecond delay or read the busy flag between sequen-
tial writes to an EEPROM. This is required to allow the internal
programming process to finish. These topics are covered in more detail
in the EEPROM documentation.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: EEPROM.BAS
' This program demonstrates subroutines for storing data in a
' Microchip 93LC66 serial EEPROM. This program will not work
' with the National Semiconductor part with the same number.
' Its serial protocol is substantially different.

Symbol CS = 0 ' Chip-select line to pin 0.
Symbol CLK = 1 ' Clock line to pin 1.
Symbol DATA = pin2 ' Destination of Shout; input to Shin
Symbol DATA_N = 2 ' Pin # of DATA for "input" & "output"
Symbol ReadEE = $C00 ' EEPROM opcode for read.
Symbol Enable = $980 ' EEPROM opcode to enable writes.
Symbol Disable = $800 ' EEPROM opcode to disable writes.
Symbol WriteEE = $A00 ' EEPROM opcode for write.
Symbol GetMSB = $800 ' Divisor for getting msb of 12-bit no.
Symbol ShifReg = w1 ' Use w1 to shift out 12-bit sequences.
Symbol EEaddr = w2 ' 9-bit address for reads & writes.
Symbol EEdata = b6 ' Data for writes; data from reads.
Symbol i = b7 ' Index counter for EEPROM routines.
Symbol clocks = b10 ' Number of bits to shift with Shout.

output DATA_N ' EEPROM combined data connection.
output CLK ' EEPROM clock.

Page 132 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

output CS ' EEPROM chip select.

' Demonstration program to exercise EEPROM subroutines:
' Accepts serial input at 2400 baud through pin 7. Type a
' message up to 512 characters long. The Stamp will store
' each character in the EEPROM. When you reach 512 characters
' or press return, the Stamp will read the message back from
' the EEPROM and transmit it serially through pin 6
' at 2400 baud.

output 6 ' For serial output.
input 7 ' For serial input.
gosub Eenabl ' Remove EEPROM write protection.
let EEaddr=0 ' Start at 1st (0th) address.

CharIn: serin 7,N2400,EEdata ' Get character.
if EEdata<32 then Done ' If it's return, done.
gosub Ewrite ' Otherwise, write to EEPROM.
let EEaddr=EEaddr+1 ' Increment addr for next write.
if EEaddr=512 then Done ' Memory full? Done.
goto CharIn

Done: gosub Edisbl ' Protect EEPROM.
for w4 = 0 to 511 ' Show all 512 bytes.
let EEaddr = w4 ' Point to EEPROM address.
gosub Eread ' Retrieve the data.
serout 6,N2400,(EEdata) ' Send it out serial port.
next ' Next character.
End ' Demo over.

' Write the data in EEdata to the address EEaddr.
Ewrite: let ShifReg=WriteEE ' Get the write opcode.

let ShifReg=ShifReg|EEaddr ' OR in the address bits.
let clocks = 12 ' Send 12 bits to EEPROM.
high CS ' Chip select on.
gosub Shout ' Send the opcode/address.
let ShifReg = EEdata*16 ' Move bit 7 to bit 11.
let clocks = 8 ' Eight data bits.
gosub Shout ' Send the data.
low CS ' Deselect the EEPROM.
return

' Read data from EEPROM address EEaddr into EEdata.
Eread: let ShifReg=ReadEE ' Get the read opcode.

let ShifReg=ShifReg|EEaddr ' OR in the address bits.
let clocks=12 ' Send 12 bits to EEPROM.
high CS ' Chip select on.
gosub Shout ' Send the opcode/address.
gosub Shin ' Receive the byte.
low CS ' Deselect the EEPROM.

13: Using Serial EEPROMs

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 133

BASIC Stamp I Application Notes

1

return

' Enable writes to the EEPROM. Upon power-up the EEPROM is
' write-protected, so this routine must be called before
' first writing to the EEPROM.
Eenabl: let ShifReg=Enable ' Get the write-enable opcode.

high CS ' Chip select on.
let clocks = 12 ' Send 12 bits to EEPROM.
gosub Shout ' Send the opcode.
low CS ' Deselect the EEPROM.
return

' Disable writes to the EEPROM.
Edisbl: let ShifReg=Disable ' Get the write-disable opcode.

high CS ' Chip select on.
let clocks = 12 ' Send 12 bits to EEPROM.
gosub Shout ' Send the opcode
low CS ' Deselect the EEPROM
return

' Shift data into EEdata.
Shin: input DATA_N ' Change the data line to input.

let EEdata=0 ' Clear data byte.
for i = 1 to 8 ' Prepare to get 8 bits.
let EEdata=EEdata*2 ' Shift EEdata to the left.
high CLK ' Data valid on rising edge.
let EEdata=EEdata+DATA ' Move data to lsb of variable.
low CLK ' End of clock pulse.
next i ' Get another bit.
output DATA_N ' Restore data line to output.
return

' Shift data out of ShifReg.
Shout: for i = 1 to clocks ' Number of bits to shift out.

let DATA=ShifReg/GetMSB ' Get bit 12 of ShifReg.
pulsout CLK,10 ' Output a brief clock pulse.
let ShifReg=ShifReg*2 ' Shift register to the left.
next i ' Send another bit.
return

13: Using Serial EEPROMs

Page 134 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 135

BASIC Stamp I Application Notes

1

14: Networking Multiple Stamps

Introduction. This application note shows how to connect multiple
Stamps together in a simple network. It explains the use of the serout
open-drain and open-source baudmodes.

Background. Many Parallax customers are interested in connecting
multiple Stamps together to form a network. Their applications include
intelligent home control, security sytems, small-scale robotics, and
distributed sensing arrangements. For these applications, the Stamp
has built-in serial networking capabilities requiring a minimum of
external components. Better yet, participation in a network requires
only a couple of lines of Stamp code and one additional I/O line at most.

How it works. The first question that comes to mind is: “Why not just
connect multiple Stamps to one serial port and make them talk one at
a time? That would be a good enough network for most jobs.” That’s
true, for the most part, but the Stamp’s normal serial outputs would
destroy each other. Figure 1 shows why.

In output mode, the Stamp’s I/O pins act like switches connected to the
power-supply rails. When the Stamp outputs a 1, it’s turning on the
switch connected to the +5-volt rail while turning off the one going to
ground. To output a 0, it does the reverse. If you connect multiple Stamp
outputs together, you set up the situation in figure 1b: a direct short to
ground through a pair of Stamp output switches. This would damage
the Stamp’s PBASIC interpreter chip.

Now, before you run
off to design a system
of logic gates or diodes
to fix this, listen up: The
Stamp can be config-
ured to use only one of
the two switches for se-
rial output. This elimi-
nates the possibility of
a short circuit and
opens up the possibil-
ity of network hook-
ups. See figure 2.

+5 +5

One-Stamp serial
hookup, normal

(N2400) baudmode

to serial port
input

Stamp
I/O pin

Consequences of
connecting Stamps
together in normal

baudmode

+5

SHORT TO
GROUND!

a b

Figure 1

Page 136 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 14: Networking Multiple Stamps

To use this technique,
your program should
begin by setting the se-
rial pin to input in or-
der to turn off the out-
put switches. Then,
when it’s time for the
Stamp to put some data
onto the network using
serout , the baudmode
argument should begin
with OT, as in OT2400.
This is known as an open-drain configuration, in honor of the portion
of the PBASIC interpreter’s output MOSFET switch left “open” at the
pin connection.

When connected Stamp pins are in different states there’s no problem,
because no current flows. No data flows, either, because the pins are
incapable of outputting a logical 1 (+5 volts). That’s easily remedied by
adding a pullup resistor, however, as shown in figure 3.

The inverter/line driver shown in figure 3 can either be a CMOS type
like one-sixth of a 74HCT04 or an actual RS-232 line driver, such as a
MAX-232. If the Stamps will be talking to each other instead of reporting
to a host computer, you can eliminate the line driver entirely.

The Stamp also supports an open baudmode that switches to +5 only
instead of ground. This is the open-source configuration, selected by an
argument beginning with ON, such as ON2400. To make this work, you
must reverse the polarity of everything shown in figure 3. The resistor

would go to ground. A
non-inverting buffer (or
additional inverter)
would be used to
straighten out the sig-
nal polarity.

Now that we have a
way to safely connect

One-Stamp serial
hookup, open-drain
(OT2400) baudmode

Stamp
I/O pin

Consequences of
connecting Stamps

together in open
baudmode

a b

no
problem!

Figure 2

+5

1k

True RS-232
or RS-422
output

inverting line
driver IC

multiple pins
driven by open
baudmode (e.g.,
OT2400)

Figure 3

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 137

BASIC Stamp I Application Notes

1

14: Networking Multiple Stamps

multiple Stamp serial pins to a single line, how do we ensure that only
one Stamp talks at once? The possibilities seem endless, and depend
primarily on the nature of the data to be sent through the net. For
example, each Stamp could alternate between talking and listening on
the net. You could use a system of qualifiers that each Stamp would
have to receive via serin before it could transmits onto the net. That
way, one Stamp would send its data, then turn the net over to the next.
That is the approach used in the demonstration programs.

Of course, if you have I/O pins available on each of the Stamps in the
net, you could just have each Stamp wait for a particular logic level to
tell it to transmit. Another approach would be to have one Stamp trigger
its neighbor. As I said, the possibilities go on and on. If you get stuck for
ideas, just look at a diagram of a local-area network (LAN). LAN
designers have invented all kinds of schemes, called “network topolo-
gies,” for determining who talks when. They’ve dreamed up good
names, too, like token rings, stars, hubs, etc.

The example we present is a variation on the token-ring idea. Three
Stamps named Moe, Larry, and Curly will share a single serial line.
When they are first powered up, Moe will transmit a message conclud-
ing with “Larry.” Larry, recognizing his name, will transmit a message
concluding with “Curly.” Curly will transmit a message, concluding
with “Moe.” Moe will start the process all over again. Even though the
Stamps are communicating among themselves, we’ll still use an in-
verter/driver in order to monitor the process with a PC running

Stamp
“Moe”

Stamp
“Larry”

Stamp
“Curly”

+5

1k
1/6th of
74HCT04

1 2

7 7 7

PC or
terminal:
2400bps

N,8,1
+5

14

7

Figure 4. Serial network of Stamps using open-drain output.

Page 138 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 14: Networking Multiple Stamps

terminal software. Figure 4 shows the circuit; the program listing shows
the code used in the Stamps.

For your application, you’d simply substitute a real message (based on
data gathered by the Stamps) for the sample messages. Make sure that
your data messages cannot contain the names of the other Stamps, or
you’ll create chaos. A safe bet is to restrict data to numbers, and names
to text. Make sure that the individual Stamps can gather data quickly
enough to be ready when their names are called. If they’re not ready,
they may miss their cues. This can cause the entire net to hang up.
Likewise, simple failure of one of the Stamps will hang the net. For
critical applications, you might want to consider making one of the
Stamps a supervisor whose job it is to handle these emergencies.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: Moe
' Stamp participant in a simple ring-type network. This Stamp has the job of
' starting the network up by passing an initial message before receiving a cue.
' Thereafter, Moe only transmits when cued by Curly, the last Stamp on the net.

input 7 ' Set pin 7 to input.
pause 1000 ' Give others time to wake up.
serout 7,OT2400,(10,13,"Three ") ' Say the line.
serout 7,OT2400,("Larry",10,13) ' Cue next.

' Now enter the main program loop.
Loop:

serin 7,T2400,("Moe",10,13) ' Wait for cue.
serout 7,OT2400,(10,13,"Three ") ' Say the line.
serout 7,OT2400,("Larry",10,13) ' Cue next.

goto Loop

' Program: Larry
' Stamp participant in a simple ring-type network. Only transmits when cued
' by Moe, the first Stamp on the net.

input 7 ' Set pin 7 to input.

' Main program loop:

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 139

BASIC Stamp I Application Notes

1

Loop:
serin 7,T2400,("Larry",10,13) ' Wait for cue.
serout 7,OT2400,("Blind ") ' Say your line.
serout 7,OT2400,("Curly",10,13) ' Cue next

goto Loop

' Program: Curly
' Stamp participant in a simple ring-type network. Only transmits when cued
' by Larry, the middle Stamp in the net.

input 7 ' Set pin 7 to input.

' Main program loop:
Loop:

serin 7,T2400,("Curly",10,13) ' Wait for cue.
serout 7,OT2400,("Mice ") ' Say your line.
serout 7,OT2400,("Moe",10,13) ' Cue next

goto Loop

14: Networking Multiple Stamps

Page 140 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 141

BASIC Stamp I Application Notes

1

15: Using PWM for Analog Output

Introduction. This application note explains how to convert digital
values to analog voltages using the BASIC Stamp command pwm.

Background. There’s probably some misunderstanding about the
pulse-width modulation (pwm) command. Most Stamp users know that
it generates a waveform whose duty cycle (ratio of on time to off time)
can be varied from 0 to 100 percent by varying the duty input from 0
to 255. But experience with other devices probably leads them to expect
the output to look like figure 1. This is the sort of variable duty cycle

output you get from most timer and counter
circuits.

The Stamp uses a different, more efficient
algorithm to generate pwm. Its output is
just as useful for generating analog volt-
ages, but when displayed on an oscillo-
scope, it can look like a mess; see figure 2.

The proportion of on time to off time is the
same, but instead of being separated into
neat chunks, Stamp pwm is distributed
over a large number of pulses of varying
width.

Without getting too far into the details, the reason is this: The Stamp
generates pwm by adding the duty cycle into an internal variable that
we’ll call the “accumulator.” It doesn’t care
what the accumulator contains, only
whether or not it overflows (generates a
carry-the-one operation). If it does, the pwm
pin goes high; otherwise, low.

The Stamp does this addition quite a few
times. The larger the duty cycle is, the more
often carries occur, and the higher the pro-
portion of highs to lows. However, the car-
ries occur with an irregular rhythm, so the
output waveform, while perfect duty-cycle
pwm, looks like fruit salad on the ’scope.

“PWM”

20% on

80% off

Figure 1. What
users think pwm

looks like.

“PWM”

total off = 80%

total on = 20%

Figure 2. What pwm
really looks like.

Page 142 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 15: Using PWM for Analog Output

Using pwm. The primary application
for pwm is to generate a voltage from 0
to 5 volts proportional to the duty cycle.
An even simpler use is to control the
brightness of an LED. See figure 3.

If, as shown in the figure, the LED is
connected to pin 0, the following frag-
ment of a Stamp program will gradu-
ally raise the brightness of the LED
from off to fully on:

low 0 ' LED completely off.
for b2 = 0 to 255 ' Loop from off to on.

pwm 0, b2,1 ' Output one burst of pwm.
next
high 0 ' Leave LED on.

Although the Stamp is sending a stream of 1s and 0s to the LED, it
appears to be steadily on at varying levels of brightness. That’s because
your eyes integrate (smooth) the rapid flickering, just as they do the
frames of a movie or television picture.

If you look at the pwm writeup in the Stamp manual, you’ll see that in
most applications you need a resistor and capacitor to integrate the
output to a smoothly varying voltage. What the manual doesn’t show
is the effect that connected circuits can have on a simple resistor/
capacitor (RC) integrator.

The fact is that if you try to draw too much current from the RC circuit,
your program will have to output many cycles of pwm, and do so quite
often in order to maintain the charge on the capacitor. Otherwise, the
voltage level set by pwm will begin to droop.

Figure 4 shows one way to overcome this. The CA5160E operational
amplifier (op amp) has an extremely high input impedance, so it draws
very little current from the capacitor. Since its gain is set to 1 by the
accompanying components, the voltage at its output is the same as the
voltage at its input, with one big exception: The current drawn from the

470
Stamp

pin 0 LED

Figure 3. Controlling
the brightness of an

LED with pwm.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 143

BASIC Stamp I Application Notes

1

15: Using PWM for Analog Output

CA5160

0.1µF

2k

+5

7

4
6

2

3
10k

–

+

100k
pot

1
5

4.7k

0.47µF

Stamp
pwm

output

Stiff
voltage
source

Figure 4. Example op-amp buffer circuit.

output of the op amp does not affect the charge on the capacitor in the
RC integrator.

According to the op amp’s specs, you can draw up to 12 mA from its
output. Other op amps may offer higher current outputs, but make sure
to check all the specifications. The CA5160 was used here because it is
happy operating from a 5-volt, single-ended supply. Supply current is
typically 50 µA (ignoring current drawn from the output). Other op
amps may require split supplies of ±15 volts or more.

To drive the op-amp circuit properly, the pin used for pwm output must
actually be defined as an input. This ensures that once pwm establishes
a voltage level on the capacitor it disconnects itself from the circuit. The
code we used to set the circuit to approximately 2.5 volts is:

input 0 ' Make pin 0 an input.
pwm 0, 127,1 ' Output one burst of pwm.

In our tests, one burst of pwm was sufficient to charge the capacitor to
the desired voltage. Once set, the voltage at the op amp’s output
(driving a 1k resistor load) remained steady for more than 15 minutes.
It actually drifted slowly upward, probably due to slight current

Page 144 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 15: Using PWM for Analog Output

leakage from the Stamp I/O pin. In a real application, you should try to
reestablish the voltage level more often than once every 15 minutes.

A few final notes about the circuit. The 100k pot allows you to fine-tune
the op amp’s output offset. Connect the circuit with an accurate voltme-
ter at the output. Program the Stamp to kick out a burst of PWM. The
voltage appearing at the op amp output should be (duty/255) times the
supply voltage (5 volts from the Stamp’s regulated supply). So if the
duty is 127, the output voltage should be (127/255) * 5 = 2.49 volts.
Adjust the pot until the actual voltage agrees with your calculation.

You may find that your op amp won’t track the input voltage all the way
to +5 volts. One solution is to simply ignore this limitation, and just
work within the range you do get. Another is to connect the + supply
pin of the op amp (pin 7) to unregulated +9 volts from the battery. As
the battery dies, you’ll eventually have the same problem again, but
you will get rail-to-rail performance for most of the battery’s life.

Program listing. There’s no program listing this time; however, you
may download programs for other application notes our Internet ftp
site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 145

BASIC Stamp I Application Notes

1

16: Keeping Stamp Programs Private

Introduction. This application note explains how to use the BASIC
Stamp directive bsave and the program BSLOAD.EXE to enable custom-
ers to update Stamp programs without access to the source code. It also
shows a method by which the Stamp can reload its own program
memory from data received over RS-232.

Background. Try this: Phone Microsoft and tell them you own Excel™
or another product of theirs, and you’d like a copy of the source code.
Be generous; tell them you are willing to pay for the disks and the
shipping charges.

You’ll probably find out how people working at a big corporation react
to pranks. You’ll also learn a lot of new ways to gently say “no.”

If you want to keep your Stamp source code private, but still allow
customers to download alternative functions, change EEPROM data, or
update firmware, you need to know about bsave .

Using bsave. When you run a Stamp program using the latest versions
of STAMP.EXE, the software looks for the directive bsave on a line by
itself anywhere in the source-code listing. If bsave is present, the
software saves a 256-byte file called CODE.OBJ to the current directory.
That file contains a copy of the binary data written to the Stamp’s
EEPROM. You can rename and distribute that file, along with a pro-
gram called BSLOAD.EXE that’s available from the Parallax bulletin-
board system.

If you renamed your code file UPDATE.OBJ (it’s smart to retain the
extension .OBJ because that is the default recognized by BSLOAD) you
could distribute it, the BSLOAD software, and a Stamp cable to your
customer. Instruct the customer to connect the cable from a PC to the
Stamp-based product, connect power, and type BSLOAD UPDATE. A
status message appears on the screen to indicate the success of the
download.

This technique eliminates the need to distribute your source files and
STAMP.EXE in order to update Stamp firmware.

Page 146 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 16: Keeping Stamp Programs Private

Self-replacing programs. This is going to sound like do-it-yourself
brain surgery, but it’s possible to write Stamp programs that replace
themselves in EEPROM program memory. This means you can down-
load a new program to the Stamp via a serial link.

Program listings 1 and 2 are examples of self-replacing programs. The
trick lies in the fact that both contain identical startup code. This code,
with the assistance of the serial hookup depicted in the figure, deter-
mines whether or not a serial output is connected to the Stamp at
startup. If no serial connection is present, the Stamp goes about its
business—in the cases of list-
ings 1 and 2, flashing an LED in
two different ways. If a serial
connection is present at startup,
the Stamp receives 256 bytes of
data and uses them to replace
the entire contents of its
EEPROM.

This means that the program
overwrites itself. It doesn’t
crash, however, because the re-
placement program contains the same code in the same place; at the
very beginning of the program.

Listing 3 is a QBASIC program that performs the serial downloading.
You may copy and modify this program to fit your own requirements.
When you write your own version, be sure to note that QBASIC must
open the .OBJ file as binary data. Otherwise, chances are good that a
control-Z character (ASCII 26) somewhere in the .OBJ file would cause
QBASIC to end the download.

Here’s how to make this demonstration work: Construct the circuit
shown in the figure, but do not connect your PC’s serial port to the
Stamp yet. Load and run the Stamp program THROB.BAS. Because the
file contains bsave , the Stamp software will write its binary image to
the file CODE.OBJ. Make a mental note of the DOS path to this file; you’ll
need it for the downloading step. Next load and run BLINK.BAS. Since it
does not contain bsave , this will not generate an object file.

330Ω

LED

Stamp pin 0

Stamp pin 7

47k

+5

22k
PC serial out
(DB9 = pin 3
DB25 = pin 2)

PC signal gnd
(DB9 = pin 5
DB25 = pin 7)

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 147

BASIC Stamp I Application Notes

1

16: Keeping Stamp Programs Private

Now, quit the Stamp software and disconnect the Stamp from its
battery or power supply. Remember, the Stamp only looks for the serial
connection at startup, otherwise, it goes into its normal loop.

Boot QBASIC or QuickBASIC and load the program REPROG.BAS. Before
you run the program, type your path name into the command
OPEN "D:\CODE.OBJ" FOR BINARY AS #1 . Connect the PC’s serial
output as indicated in the figure and apply power to the Stamp. Now
run the program.

As the download proceeds, the program will display the current byte
number on the screen of your PC, and the Stamp will blink its LED in
time to the arriving data. A large FOR/NEXT delay has been added to the
downloading loop to prevent it from outrunning the EEPROM pro-
gramming process.

When the download is over, the Stamp will begin running THROB.BAS.
If you like, you can create an object file of BLINK.BAS and follow the
procedures above to replace THROB. Or you can write your own pro-
gram, include the downloading code, and replace either program with
your program.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Listing 1: Blink.BAS
' This program can replace itself with a new program
' downloaded via a serial connection. It is part of a
' demonstration described in Stamp application note 16.
if pin7 = 1 then Loop ' No serial hookup so skip.
for b2 = 255 to 0 step -1 ' Download 256 bytes

serin 7,N2400,b4 ' Get a byte.
write b2,b4 ' Write to EEPROM.
toggle 0 ' Flash LED.

next

Loop: ' Main program loop:
toggle 0 ' blink LED.
pause 50

goto Loop

Page 148 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Listing 2: Throb.BAS
' This program can replace itself with a new program
' downloaded via a serial connection. It is part of a
' demonstration described in Stamp application note 16.
if pin7 = 1 then Loop ' No serial hookup so skip.
for b2 = 255 to 0 step -1 ' Download 256 bytes

serin 7,N2400,b4 ' Get a byte.
write b2,b4 ' Write to EEPROM.
toggle 0 ' Flash LED.

next

Loop: ' Main program loop:
for b2 = 0 to 255 step 5 ' make LED "throb"
pwm 0,b2,1 ' by varying its brightness
next ' using pwm.
for b2 = 255 to 0 step -3
pwm 0,b2,1
next

goto Loop

' Listing 3: REPROG.BAS (NOT a Stamp program)
' This is a QBASIC program that will download a Stamp
' object file via an RS-232 serial hookup. Be sure to
' enter the correct path to your CODE.OBJ file in the
' OPEN command below.
DEFINT A-Z:CLS
DIM code(255) AS INTEGER
' Load the contents of the CODE.OBJ into a variable.
' Replace "D:\CODE.OBJ" with your file's path.
OPEN "D:\CODE.OBJ" FOR BINARY AS #1
FOR i = 0 TO 255

code(i) = ASC(INPUT$(1, 1))
NEXT i
CLOSE #1
' Send the code bytes out the serial port.
OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR RANDOM AS #1
FOR i = 0 TO 255

CLS: PRINT "Sending: "; i
PRINT #1, CHR$(code(i));
FOR j = 1 TO 20000: NEXT j ' Large delay.

NEXT i
CLOSE #1
END

16: Keeping Stamp Programs Private

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 149

BASIC Stamp I Application Notes

1

17: Solar-Powered Stamp

Introduction. This application note shows how to operate the Stamp 24
hours a day from the power provided by a 1.5" x 2.5" solar battery. The
example application takes outdoor temperature measurements every
12 seconds, then relays them to a computer indoors via an infrared link.

Background. A standard 9-volt battery can power the Stamp for a long
time with the use of the sleep and nap commands. But eventually the
battery will die, if only from old age.

Although it’s usually no problem to just replace the battery, there are
applications that require long periods of unattended operation. Imag-
ine a mountaintop weather station, forest wildlife counter, or floating
sensor buoy, drifting in the currents at sea. Now imagine the cost of
mounting an expedition to replace the Stamp’s battery. Whew!

There are also less exotic places in which independence from batteries
would be a good idea. How about pollution-measuring instruments at
the top of a pole, or an electronic bicycle speedometer?

Schematic to accompany program SOLAR.BAS

PC
RS-232
input

CMOS inverter
(1/6 74HCT04)

Trigger
GND

Output

TLC555

1

Threshold

Discharge

Reset

Control VDD

85

4

10k

0.001µF

1k7

6

2

3

220Ω

2N2222

IR LED

Stamp
pin 2 +5

3
2
1

4.7k

+5

10k

5k pot
(adjust for

40kHz)

0.1µF

10k
thermistor
(Radio
Shack
271-110)

Stamp
pin 0

Stamp
pin 1

High-efficiency solar cell
(Edmund G52,169)

RED

BLK

Stamp
+9V

1-Farad, 5.5 V Super Cap
(Digi-Key P6955)

Stamp
+5V

GP1U52X
(Radio
Shack

276-137)

Page 150 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Solar batteries can solve these problems, but only during the daytime.
At night, the Stamp would have to run off an alternative power source,
such as a rechargeable battery. However, rechargeables are notoriously
fussy about proper care and feeding, which might become more of a job
than the Stamp’s primary mission.

In keeping with the minimalist philosophy of the Stamp itself, we
decided to try the simplest conceivable combination of round-the-clock
power; a solar battery and a really big capacitor.

How it works. For a trial application, we borrowed from two previous
application notes. We took the thermistor temperature measurement
scheme of note #7 and wedded it to the infrared communication setup
of note #11. That way, we could show that the Stamp and some fairly
current-hungry peripherals could both share our 24-hour power source.
See the schematic.

For our test of the project, the Stamp, 40-kHz transmitter, and super
capacitor were mounted outdoors in a small cardboard box taped to a
window on the shady side of a building. The box helped protect the
circuit from the elements, and provided a dark background for the IR
LED. The solar battery was mounted outside the box, angled upward.
On the indoor side of the window, a breadboard holding the IR receiver,
CMOS inverter and power supply was pointed at the IR LED on the
other side of the glass.

The project works like this: Every 12 seconds the Stamp takes a tempera-
ture reading by executing a pot command on pin 0, the pin to which the
thermistor is connected. It converts the resulting byte of data into the
current temperature using the power-series technique described in app
note #7. Then the Stamp applies power to the ’555 transmitter circuit.
The Stamp sends a byte of data at 1200 baud to the pin 4 of the ’555,
causing it to transmit the data as an on/off-keyed 40-kHz infrared
signal.

The infrared remote-control receiver (GP1U52X) converts the modu-
lated light beam back into bits. A CMOS inverter reverses the polarity
of the bits and provides sufficient voltage swing for reception through

17: Solar-Powered Stamp

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 151

BASIC Stamp I Application Notes

1

17: Solar-Powered Stamp

a PC serial port. The PC receives the data, adds a time tag, and records
it to a file on the hard drive.

When the serial transmission is done, the PIC turns off the ’555 and goes
to sleep for another 12 seconds.

From the standpoint of the project’s solar power source, there isn’t
much to explain. The specified solar battery produces up to 10 volts at
9 mA in direct sunlight, or 8 volts and 0.075 mA in typical indoor
lighting. We split the difference and mounted the battery outdoors on
the shady side of a building. At noon in this location we got 10 volts at
about 1 mA.

Before installing the 1-Farad super capacitor, we charged it to about
4 volts by leaving it connected to a 5-volt power supply through a 4.7k
resistor for several hours. This limited the amount of charging current
that the capacitor would demand from the Stamp’s voltage regulator
when first connected. Once the capacitor was installed, the solar battery
kept it charged.

We ran the project ’round the clock for several days, periodically
reviewing the time-tagged data files for breaks or erratic data that
would indicate a power failure. None occurred. The lowest voltage
across the super cap, which occurred after about 10 hours of darkness,
was 3.65 volts, just enough to keep the Stamp going. Less than an hour
after sunrise the cap would charge back up to 5 volts.

The solar battery has plenty of excess capacity for this type of applica-
tion. An interesting challenge would be to find ways to exploit this. For
example, in a telemetry application, the Stamp might store data over
night, then transmit it during daylight when power would be abun-
dant.

Parts sources. The solar battery is available from Edmund Scientific,
609-573-6250. The super cap is available from Digi-Key, 800-344-4539.
Many of the other components used in the circuit are available from
Radio Shack electronics stores.

Program listing. These programs may be downloaded from our Internet

Page 152 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: SOLAR.BAS
' Program to demonstrate that the Stamp can operate 24 hours a day
' from a solar battery and 1-Farad memory-backup capacitor (super
' cap). Every 12 seconds the Stamp wakes up, takes a temperature
' reading from a thermistor, converts it to degrees F and
' transmits it (as a single byte of data) over a 1200-bps
' infrared link.

' Coefficients for the thermistor conversion/linearization routine.
' For more information, see Stamp app note #7.
Symbol co0 = 171 ' Adjusted to match capacitor.
Symbol co1top = 255
Symbol co1btm = 2125
Symbol co2bt1 = 25
Symbol co2top = 3
Symbol co2btm = 50

' Change pins 1 and 2 to outputs and take them low. Pin 1 controls
' power to the '555 timer/40-kHz transmitter. Pin 2 is serial output
' to the 40-kHz transmitter.
low 1:low 2

' Main program loop.
Loop:
' Take a thermistor measurement using pot.

pot 0,46,w0
' Linearize it and convert to degrees F with the equation from
' Stamp application note #6.

let w1 = w0*w0/co2bt1*co2top/co2btm
let w0 = w0*co1top/co1btm+w0
let w0 = co0+w1-w0

' Now turn on the '555 timer and give it a little time to get ready.
high 1
pause 100

' Transmit the data.
serout 2,N1200,(b0)

' Turn off the '555.
low 1

' Go back to sleep.
sleep 10

goto Loop

17: Solar-Powered Stamp

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 153

BASIC Stamp I Application Notes

1

' Program DATA_LOG.BAS
' This is a QBASIC program to display and record the data
' from the Stamp program SOLAR.BAS. To quit this program,
' either press control-break, or press any key and wait
' for the next Stamp transmission.

DEFINT A-Z
OPEN "com1:1200,N,8,1,CD0,CS0,DS0,OP0" FOR INPUT AS #1
OPEN "c:\data.log" FOR OUTPUT AS #2
CLS
Again:

 temp$ = INPUT$(1, 1)
 PRINT ASC(temp$); CHR$(9); TIME$
 PRINT #2, ASC(temp$); CHR$(9); TIME$

IF INKEY$ = "" THEN GOTO Again
CLOSE
END

17: Solar-Powered Stamp

Page 154 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 155

BASIC Stamp I Application Notes

1

18: One Pin, Many Switches

Introduction. This application note shows how to read multiple switches
through a single input/output (I/O) pin by using the pot command.

Background. If your BASIC Stamp application needs to check the
status of more than a few switches, you have probably considered using
external hardware to do the job. The trouble is that most hardware
solutions still use more than one I/O pin, and often require consider-
able program overhead.

Now, consider the pot command. It reads a resistance and returns a
proportional number. What if you wired your switches to vary the
resistance measured by pot? With an appropriate lookup routine, you’d
be able to determine which switch was pressed.

That’s exactly the method we’re going to demonstrate here.

How it works. As the figure shows, we wired up eight switches and
eight 1k resistors in a sort of pushbutton-pot arrangement. When no
switch is pressed, the circuit’s resistance is the sum of all of the resistors
in series; 8k. If you press the switch closest to the pot pin (S0), the
network is shorted out, so the resistance is 0. Press S1, and the resistance
is 1k. And so on.

To see this effect in action, follow these steps: Wire up the circuit in the
figure, connect the Stamp to your PC, run STAMP.EXE, and press ALT-P
(calibrate pot). Select the appropriate I/O pin; in this case pin 0. The PC
screen will display a dialog box showing a suggested value for the pot
scale factor—the number that ensures a full-scale response for the
connected combination of the resistor(s) and capacitor.

Schematic to accompany program MANY_SW.BAS

1k 1k 1k 1k 1k 1k 1k 1k

S0 S1 S2 S3 S4 S5 S6 S7

0.1µF

Stamp pin 0

Page 156 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 18: One Pin, Many Switches

Press the space bar to lock in the scale factor. Now the screen displays
the actual value returned by the pot command. Press the switches and
watch the value change. Write down the scale factor and the numbers
returned by pressing S0 through S7. As you do so, you’ll notice that the
numbers vary somewhat. They tend to be steadier in the lower resis-
tance ranges, and jumpier at higher resistances. Write down the highest
number returned for each switch.

Armed with this calibration data, you can write PBASIC code to
determine which switch was pressed just by looking at the pot value.
The program listing shows an example. We took the numbers recorded
in the step above, added a fixed amount to each, and put them in a
lookup table. To identify a switch by its resistance value, the program
starts searching at the lowest resistance, represented by switch 0. The
program asks, “is this resistance less than or equal to the lookup entry
for switch 0?” If it is, then switch 0 was pressed; if not, the program
increments the switch number and repeats the question until it deter-
mines which switch was pressed.

In creating the lookup table, we added 10 to the maximum value for
each of the switches. This serves as a safety margin to prevent errors in
case the capacitance and resistance values wander a bit with tempera-
ture.

This scheme has some drawbacks, mostly related to the way pot works.
Pot makes resistance readings by charging up the capacitor, then
gradually discharging it through the series-connected pot or resistor.
By measuring the time required to discharge the cap, pot can provide
a pretty accurate estimate of the relative resistance. This process takes
several milliseconds to complete.

If one of the switches is pressed during the pot timing cycle, the rate at
which the capacitor discharges will change. The pot measurement will
be wrong, and the switch number returned by the program will be
wrong. To guard against this, the program ignores the first several
readings after an initial switch closure. This isn’t completely foolproof,
but it makes misidentified switches a relatively rare event.

Another potential drawback is that the program cannot detect more

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 157

BASIC Stamp I Application Notes

1

18: One Pin, Many Switches

than one switch closure at a time. If two switches are closed at the same
time, the program will correctly identify the lower of the two switches.
For example, if switches 2 and 5 are both closed, the program will
recognize switch 2. You can understand this by analyzing the circuit.
Switch 2 effectively shorts out all of the resistor/switch network
beyond itself. Additional closed switches have no effect.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: MANY_SW.BAS (Read switches with POT command)

' This program illustrates a method for reading eight switches using
' one I/O pin by using the POT command. The switches are wired as
' shown in the accompanying application note to cut out portions of
' a network of series-connected 1k resistors. The POT command reads
' the resulting resistance value. The subroutine ID_sw compares the
' value to a table of previously determined values to determine
' which switch was pushed.

Clear: ' Clear counter that determines how many
let b0 = 0 ' readings are taken before switch is ID'ed.

Again:
pot 0,148,b2 ' Take the resistance reading.
if b2 >= 231 then Clear ' Higher than 230 means no switch pushed.
goto ID_sw ' Value in range: identify the switch.

Display:
debug b3 ' Show the switch number on PC screen.

goto Clear ' Repeat.

' ID_sw starts with the lowest switch-value entry in the table (the 0th
' entry) and compares the POT value to it. If the POT value is less than
' or equal, then that's the switch that was pushed. If it's not
' lower, the routine checks the next switch-value entry.

' There's nothing magical about the switch values in the table below. They
' were obtained by pressing the switches and recording their POT
' values, then adding an arbitrary amount--in this case 10. The idea
' was to select numbers that would always be higher than the highest
' POT value returned when the corresponding switch was pressed, but
' lower than the lowest value returned by the next switch. This keeps

Page 158 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' the comparison/search required to identify the switch as simple as
' possible.

ID_sw:
if b0 > 8 then skip ' Take 8 readings before trying to
b0 = b0+1 ' identify the switch.
goto Again

skip:
for b3 = 0 to 7 ' Compare table entries to the current reading.

lookup b3,(10,45,80,114,146,175,205,230),b4
if b2 <= b4 then done ' Match? Then done.

next
done: goto Display ' Switch identified; display its number.

18: One Pin, Many Switches

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 159

BASIC Stamp I Application Notes

1

19: Using Button Effectively

Introduction. This application note explains the button command and
presents an example program that uses button in its immediate and
delay/autorepeat modes.

Background. The idea is simple enough—a single command allows
your PBASIC programs to read and debounce a switch. However,
button’s myriad features and its lack of an equivalent in other BASIC
dialects have led to considerable misunderstanding among Stamp
users. An explanation is in order.

First of all, button is intended to be used inside a loop. The idea is that
the program goes about its normal business, periodically checking the
state of the button. If conditions set up by the button command are met,
then the program goes to the address included in the button command.

Second, we should define a slippery
term that’s important to understand-
ing what button does. That term is
“debounce.” When you press a
switch, the contacts smack into each
other with the action of a micro-
scopic earthquake. For several milli-
seconds they bounce and shudder
and grind against one another be-
fore finally settling into solid con-
tact. This bouncing shows up as sev-
eral milliseconds of rapid on/off
switching that can be detected by a
relatively fast device like the Stamp.

In order to keep switch bounce from
seeming like several deliberate
switch presses, the button command
ignores these very rapid changes in
the switch state. So, when we talk
about switch “debouncing” in the
discussions that follow, we mean
button’s effort to clean up the switch
output.

10µF

+5

470

470

470

470

470

Tune 0

Tune 1

Tune 2

Tune 3

Tune 4

10k (both)

Play

Select

40Ω

Stamp
pins

7

6

5

4

3

2

1

0

Schematic to accompany
program listings 1 and 2.

Page 160 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 19: Using Button Effectively

Now, let’s take a look at the parameters of button in detail. The syntax,
as described in the instruction manual, is this:

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address

Pin is a variable or constant in the range of 0 to 7 that specifies which pin
the button is connected to. Remember to use the number of the pin and
not its pin name (e.g., Pin3 or Pins.3). The pin name will return the state
of the specified pin (0 or 1), which is probably not what you want.

Downstate is a variable or constant that specifies what state the button
will be in (0 or 1) when it is pressed.

Delay is used with button’s autorepeat capability. If you hold down the
A key on your PC keyboard, there’s a small pause before the PC goes
into machine-gun mode and starts rapidly filling the screen with
AAAAAAA... With button, delay sets the length of this pause as a
variable or constant number of loops (1 to 254) through the button
command. So, if you set delay to 100, your Stamp program must loop
through the button command 100 times after the initial press before
autorepeat will begin. How long will this take? It depends on your
program. If the delay is too short for your taste, insert a short pause in
the loop that contains the button command.

You can also use the delay setting to change the way button works. A
delay of 0 turns off debounce and autorepeat. A delay of 255 turns on
debounce, but turns off autorepeat.

Rate is a variable or constant that specifies how fast the autorepeat will
occur. Like delay, it is also specified in terms of the number of loops
through the button command.

Bytevariable is button’s workspace—a variable in which button stores
the current state of the delay or rate counters. Make sure to give each
button command you use a different workspace variable, or your
buttons will interact in bizarre and undesirable ways. Also make sure
that byte variables used by button commands are cleared to 0 before
they are first used. After that, button will take care of them.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 161

BASIC Stamp I Application Notes

1

19: Using Button Effectively

Targetstate is a variable or constant (0 or 1) that specifies whether the
program should take action when the button is pressed (1), or when it’s
not pressed (0). Why the heck would you want to go to some address
when the button isn’t pressed? In some cases, it’s simpler to skip over
part of your program unless the button is pushed. This reverse logic can
be a little hard to get used to, but it can help reduce the “spaghetti code”
of multiple gotos for which BASIC is so frequently condemned.

Address is the program label that you want to go to when all of the
conditions set by the button command are met.

To illustrate how all of these parameters make button work, we’ve
designed a sample application called BTN_JUKE.BAS. It’s a five-selection
jukebox that uses one button to select which tune to play by scrolling
through five LEDs, and a second button to trigger the currently selected
tune.

How it works. The circuit in the figure should be pretty self-explana-
tory, but note that the switches are wired so that the Stamp pins see
highs (+5 volts) when the switches are open and lows (0 volts) when
they’re pressed.

Now look at listing 1. The program begins by defining the variable
Select, which will hold the number of the currently selected tune. It then
sets up the pins’ I/O directions. It clears both of the byte variables that
will be used in the button commands (b0 and b1) at one time by clearing
the word variable to which they belong (w0). As a final setup step, it
turns on the LED corresponding to a selection of 0.

The program then enters its main loop containing the button com-
mands. The first is:

button 7,0,0,0,b0,0,no_play

This command translates to: “Read the button on pin 7. When it is
pressed, there will be a logical 0 on the pin. Don’t debounce or autorepeat
(delay = 0). With autorepeat turned off, rate doesn’t matter, so set it to
0. Use b0 as your byte workspace. When the button is not pressed (0), go
to no_play.”

Page 162 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 19: Using Button Effectively

So as long as the button is not pressed, the button command will skip
over the code that plays the selected tune. When the button is pressed,
the tune will play.

This button command doesn’t require debounce or autorepeat, because
the tunes are relatively long. By the time a tune is finished playing, the
user has probably already released the button. If he hasn’t, the tune will
simply play again without delay.

The second button command is:

button 6,0,200,60,b1,1,Pick

This translates to: “Read the button on pin 6. When it is pressed, there
will be a logical 0 on the pin. Debounce the switch and delay 200 cycles
through this command before starting autorepeat. Once autorepeat
begins, delay 60 cycles through button between repeats. Use b1 as a
workspace. When the button is pressed (1) go to the label Pick.”

From the user’s standpoint, this means that a single press of the select
button lights the next LED in the sequence. Holding down the button
makes the LEDs scan rapidly. Releasing the switch causes the currently
lit LED to remain on.

It’s hard to describe what an important difference debounce and
autorepeat make in the ease and quality of a user interface. The best way
is to offer a comparison. Listing 2 is the same jukebox program as listing
1, but without the button command to debounce the switches. It uses
the same circuit as listing 1, so you can alternately download the two
programs for an instant comparison.

When you run NO_BTN.BAS, you’ll find no difference in the operation of
the play button. Remember that button’s debounce and autorepeat
features were turned off in the original program anyway. If you need to
economize on variables, you can substitute a simple if/then for button in
cases that don’t use these features.

The select button is a different story. It becomes almost impossible to
select the LED you want. To make the comparison fair, we even added

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 163

BASIC Stamp I Application Notes

1

a brief pause to the Pick routine as a sort of debouncing. It helps, but not
enough to make the button action feel solid and predictable. This is the
kind of case that requires button.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

19: Using Button Effectively

Listing 1: BTN_JUKE.BAS (Demonstration of the Button command)

' The Stamp serves as a tiny jukebox, allowing you to pick from one of
' five musical (?) selections created with the sound command. The point
' of the program is to demonstrate the proper way to use the button
' command. The juke has two buttons--one that lets you pick the tune
' by "scrolling" through five LEDs, and the other that plays the tune
' you selected. The selection button uses the debounce and autorepeat
' features of button, while the play button is set up for immediate
' response without delay or autorepeat.

SYMBOL Select = b2 ' Variable to hold tune selection, 0-4.

let dirs = %00111111 ' Pins 6 & 7 are inputs for buttons.
let w0 = 0 ' Initialize all variables to zero
let w1 = 0 ' (includes clearing the button variables b0,b1)
let pins = %00000010 ' Turn on the first selection LED.

' The main program loop. Main scans the two buttons and branches to
' no_play or Pick, depending on which button was pressed. Note the two
' different ways the button command is used. In the first case,
' button skips over the branch instruction that jumps to the
' appropriate tune routine _unless_ the button is pushed.
' The tunes are fairly long, so no debounce is needed, and
' autorepeat isn't appropriate (the next trip through main will
' play the tune again, anyway). The second button command, which
' scrolls through the selection LEDs, uses both debounce and auto-
' repeat. Switch bounce could cause the display to seem to skip
' over selections, and autorepeat is a nice, professional touch
' for rapidly scrolling through the display.

Main:
 button 7,0,0,0,b0,0,no_play ' Don't play tune unless button is pushed.
 branch Select,(Tune0,Tune1,Tune2,Tune3,Tune4)
no_play:
 button 6,0,200,60,b1,1,Pick ' When button is pushed, change selection.
goto Main

Page 164 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 19: Using Button Effectively

' Pick increments the variable Selection, while limiting it to a maximum
' value of 4. If Selection exceeds 4, the code resets it to 0.

Pick:
 let Select = Select + 1 ' Increment selection.
 if Select < 5 then skip ' If Select = 5, then Select = 0.
 let Select = 0 ' Skip this line if Select is < 3.
skip:
 lookup Select,(2,4,8,16,32),pins ' Light appropriate LED.
goto Main ' Return to main program loop.

' The tunes. Not necessarily music.

Tune0: sound 0,(100,10,110,100): goto main

Tune1: sound 0,(98,40,110,10,100,40): goto main

Tune2: sound 0,(100,10,80,100): goto main

Tune3: sound 0,(100,10,110,50,98,10): goto main

Tune4: sound 0,(98,40,100,10,110,40): goto main

' Listing 2: NO_BTN.BAS (Demonstration of poor debouncing)

' This program is identical to BTN_JUKE.BAS, except that it does not
' use button commands to read the state of the switches. Contrasting
' the operation of this program to BTN_JUKE will give you a good idea
' of the benefits of button.

' The Stamp serves as a tiny jukebox, allowing you to pick from one of
' five musical (?) selections created with the sound command. The point
' of the program is to demonstrate the proper way to use the button
' command. The juke has two buttons--one that lets you pick the tune
' by "scrolling" through five LEDs, and the other that plays the tune
' you selected.

SYMBOL Select = b2 ' Variable to hold tune selection, 0-4.

let dirs = %00111111 ' Pins 6 & 7 are inputs for buttons.
let b2 = 0 ' Clear the selection.
let pins = %00000010 ' Turn on the first selection LED.

' The main program loop. Main scans the two buttons and takes the
' appropriate action. If the play button on pin 7 is not pressed,
' the program skips over the code that plays a tune. If the select

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 165

BASIC Stamp I Application Notes

1

' button is pressed, the program goes to the routine Pick, which
' increments the current tune selection and LED indicator.

Main:
 if pin7 = 1 then no_play ' Don't play tune unless pin 7 button is pushed.
 branch Select,(Tune0,Tune1,Tune2,Tune3,Tune4)
no_play:
 if pin6 = 0 then Pick ' When pin 6 button is pushed, change tune.
goto Main

' Pick increments the variable Selection, while limiting it to a maximum
' value of 4. Note that it begins with a pause of 0.15 seconds. This
' prevents the code from executing so fast that the LEDs become a blur.
' However, it's no substitute for the button command. You'll find that
' it is hard to select the particular LED you want.

Pick:
 pause 150 ' Attempt to debounce by delaying .15 sec.
 let Select = Select + 1 ' Increment selection.
 if Select < 5 then skip ' If Select = 5, then Select = 0.
 let Select = 0 ' Skip this line if Select is < 3.
skip:
 lookup Select,(2,4,8,16,32),pins ' Light appropriate LED.
goto Main ' Return to main program loop.

' The tunes. Not necessarily music.

Tune0: sound 0,(100,10,110,100): goto main

Tune1: sound 0,(98,40,110,10,100,40): goto main

Tune2: sound 0,(100,10,80,100): goto main

Tune3: sound 0,(100,10,110,50,98,10): goto main

Tune4: sound 0,(98,40,100,10,110,40): goto main

19: Using Button Effectively

Page 166 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 167

BASIC Stamp I Application Notes

1

20: An Accurate Timebase

Introduction. This application note describes an inexpensive and
accurate timebase for Stamp applications.

Background. The Stamp has remarkable timing functions for dealing
with microseconds and milliseconds, but it stumbles a little when it
comes to minutes, hours, and days.

The reason for this is twofold: First, the Stamp’s ceramic resonator
timebase is accurate to about ±1 percent, so the longer the timing
interval, the larger the error. A clock that was off by 1 percent would
gain or lose almost 15 minutes a day.

Second, Stamp instructions take varying amounts of time. For example,
the Pot command reads resistance by measuring the length of time
required to discharge a capacitor. The higher the resistance, the longer
Pot takes. The math operators also take varying amounts of time
depending on the values supplied to them.

The result is that even the most carefully constructed long-term timing
programs end up being less accurate than a cheap clock.

An obvious cure for this might be to interface a real-time clock to the
Stamp. Available units have all kinds of neat features, including calen-
dars with leap-year compensation, alarms, etc. The trouble here is that
once you write a program to handle their synchronous serial interfaces,
acquire the time from the user, set the clock, read the time and convert

Figure 1. Schematic to accompany TIC_TOC.BAS

10M

32,768 Hz
XTAL

4060
counter/
oscillator

11

10

220k128

33pF

33pF

16

+5

3Stamp pin 0
2 Hz

Fast/Slow
adjust

4060
counter/
oscillator

Page 168 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 20: An Accurate Timebase

it to a usable form, you have pretty much filled the Stamp’s EEPROM.
A compromise approach is to provide the Stamp with a very accurate
source of timing pulses, and let your program decide how to use them.
The circuit and example program presented here do just that. For this
demonstration, the Stamp counts the passing seconds and displays
them using debug.

How it works. The circuit in figure 1 shows how to construct a crystal-
controlled, 2-pulse-per-second timebase from a common digital part,
the CD4060B. This part costs less than $1 from mail-order companies
like the one listed at the end of this note. The 32,768-Hz crystal is also
inexpensive, at just over 50 cents.

The 4060 is a 14-stage binary counter with an onboard oscillator.
Although the oscillator can be used with a resistor/capacitor timing
circuit, we’re going for accuracy; hence the crystal. Why 32,768 Hz and
not some other value, like 1 MHz? It just happens that 32,768 = 215, so it’s
easy to use a binary counter like the 4060 to divide it down to easy
fractions of one second. Since the 4060 is a 14-stage counter, the best it
can do is divide by 214. The program further divides the resulting twice-
a-second pulses to produce one count per second.

Take a look at the program listing. It consists of a main loop and a
routine to increment the clock. In an actual application, the main loop
would contain most of the program instructions. For accurate timing,
the instructions within the main loop must take less than 250 millisec-
onds total. Even with the timing problems we’ve discussed, that’s
pretty easy to do.

Let’s walk through the program’s logic. In the main loop, the program
compares the state of pin0 to bit0. If they’re equal (both 0 or both 1) it
jumps to the tick routine.

In tick, the program toggles bit0 by adding 1 to the byte it belongs to, b0.
This makes sure that bit0 is no longer equal to the state of pin0, so the
program won’t return to tick until pin0 changes again.

B0 also serves as a counter. If it is less than 4, the program returns to the
main loop. When b0 reaches 4, tick clears it, adds 1 to the running total

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 169

BASIC Stamp I Application Notes

1

20: An Accurate Timebase

of seconds, displays the number of seconds on the screen, and jumps
back to the main loop.

This is pretty elementary programming, but there’s one detail that may
be bothering you: If we’re using a 2-Hz timebase, why count to 4 before
incrementing the seconds? The reason is that we’re counting transi-
tions—changes in the state of
pin0—not cycles. Figure 2
shows the difference.

This stems from our use of bit0
to track changes in the timing
pulses. As soon as pin0 = bit0,
we drop into tick and toggle the state of bit0. This keeps us from visiting
tick more than once during the same pulse. The next time pin0 changes—
the next transition—pin0 = bit0, and tick executes again. A side effect of
this approach is that we increment the counter twice per cycle.

Construction notes. The circuit in figure 1 draws only about 0.5 mA,
so you can power it from the Stamp’s +5V supply without any problem.
The resistor and capacitor values shown are a starting point, but you
may have to adjust them somewhat for most reliable oscillator startup
and best frequency stability. You may substitute a fixed capacitor for
the adjustable one shown, but you’ll have to determine the best value
for accurate timing. The prototype was right on the money with a 19-pF
capacitor, but your mileage may vary due to stray capacitance and parts
tolerances.

Parts source. The CD4060B and crystal are available from Digi-Key
(800-344-4539) as part numbers CD4060BE-ND and SE3201,
respectively.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Transitions: T T T T

C CCycles:

Figure 2.

Page 170 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Program: TIC_TOC.BAS (Increment a counter in response to a
' precision 2-Hz external clock.)

' The 2-Hz input is connected to pin0. Bit0 is the lowest bit of b0,
' so each time b0 is incremented (in tick), bit0 gets toggled. This
' ensures that tick gets executed only once per transition of pin0.

Main:
if pin0 = bit0 then tick
 ' Other program activities--
 ' up to 250 ms worth--
 ' go here.
goto Main

' Tick maintains a 16-bit counter to accumulate the number of seconds.
' The maximum time interval w1 can hold is 65535 seconds--a bit over
' 18 hours. If you want a minute count instead, change the second
' line of tick to read: "if b0 < 240 then Main". There are 1440 minutes
' in a day, so w1 can hold up to 65535/1440 = 45.5 days worth of to-the-
' minute timing information.

tick:
let b0 = b0 + 1 ' Increment b0 counter.
if b0 < 4 then Main ' If b0 hasn't reached 4, back to Main.
let b0 = 0 ' Else clear b0,
let w1 = w1 + 1 ' increment the seconds count,
debug cls,#w1," sec." ' and display the seconds.
goto Main ' Do it again.

20: An Accurate Timebase

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 171

BASIC Stamp I Application Notes

1

21: Fun with Trains

Introduction. This application note describes a simple model train
project that we showed at the Embedded Systems Conference in 1994.
The project uses a Stamp to control the speeds of three N-scale trains.
The speeds are displayed on an LCD display, and can be changed using
three buttons: track select, up, and down.

Background. Several months before the Conference, we decided that
we should have an interesting example of the Stamp’s capabilities. We
determined that it should be something physical, something simple,
and something that people would relate to. We looked at various toys,
including Legos, Erector Sets, electric race cars, and model trains. They
all had their good and bad points, but we finally decided upon model
trains. I always liked model trains as a child, and I was the one who had
to build it, anyway.

Trains are somewhat simple to control and detect, and many people like
them (more than we expected). The only drawback was the amazingly
high cost of constructing a complete train set. A complete train set, with
three loops of track, three trains, several buildings, and lots of trees, cost
about $700! (the trains my parents bought were much less expensive).
It didn’t seem like that much, because I purchased the track one day,
and the engines a week later, and the buildings a week later, etc. But the
bookkeeper was keeping track, and indeed the simple train display was
getting expensive. But, alas, it was too late to go back.

Having decided upon a train set, I had the harder task of deciding what

The completed Stamp-
controlled train set
(buildings and trees
were added later).

Page 172 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

to do with it. I had some really neat ideas, like having a Stamp in each
engine, thus making each train intelligent. With a brain in each train, I
would then have infrared “markers” along the track, so the trains
would know their position and act accordingly. In fact, perhaps they
could even communicate with a master Stamp, which could then
modify their path and communicate with other trains. The possibilities
were endless, especially since I hadn’t run into reality, yet.

After some humbling thought, I tapered my ideas to a simple two-part
goal: to control the speed of three trains, and to detect the position of the
trains. I didn’t know exactly how to accomplish these goals, but they
seemed possible. I knew that high-current drivers existed, and could be
used to run the trains. As for detecting the trains, my thoughts ranged
from LED/detector pairs to Hall-effect sensors. The Hall-effect sensors
seemed better, since they could be hidden (LEDs would be too obvious).

Preliminary research. Not knowing much about high-current drivers,
I called Scott Edwards. He knows something about everything, and he
was happy to fax a pinout of the Motorola ULN2803. The Motorola chip
is an 18-pin device described as an “octal high-voltage, high-current
Darlington transistor array.” Other people refer to it as a “low-side
driver,” since it’s used to drive the low (GND) side of a load. Each
driver can sink 500 mA, and as you might guess from the word “octal”
in the name, the ULN2803 has eight separate drivers, so you can really
drive a lot of current with one chip. The chip even has internal clamping
diodes to suppress transients that occur when “noisy” devices turn on
and off (“noisy” devices include motors, relays, solenoids, etc.). With-
out diodes to suppress transients, the digital control circuitry (in this
case, the Stamp) may go crazy (I think this is caused by fluctuations on
the I/O pins and/or power pins). In any case, the ULN2803 makes a
previously messy task very clean, simple, and inexpensive (the chips
are under $1).

As for Hall-effect sensors, I ordered a selection from Digi-Key and then
went to Radio Shack to buy some magnets. If you’re not familiar with
them, Hall-effect sensors are 3-pin, transistor-sized devices that sense
magnetic fields. They sense the presence of a north or south magnetic
field, depending on the individual sensor’s design. Some even act as a
mechanical switch: they trigger when a magnetic field is present, and

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 173

BASIC Stamp I Application Notes

1

21: Fun with Trains

then remain activated until power is removed. Others remain active
until they sense another magnetic field of the same or opposite polarity.
And all of the ones I found had TTL-level outputs, which was perfect for
the Stamp. All in all, if you need to sense a magnetic field, there’s
probably one for you.

For me, the only question was: will the train’s engine generate a strong
enough field to trigger the sensor? After all, I wanted to place the sensor
under the track, or even under the wooden board on which the train set
was built. This would place the sensor 0.25 to 0.75 inches from the
underside of the train. Unfortunately, the train didn’t produce an
adequate field at any distance, no matter how small. So, I purchased a
selection of “super strong” magnets at a nearby electronics store. These
small magnets were strong enough to keep themselves secured to my
hand by placing one in my palm and the other on the back of my hand
(fairly impressive, since my hand is at least an inch thick). And they
were strong enough to activate the most sensitive Hall-effect sensor
through the track and the wooden board! This was great, because placing
the sensors on the “back” of the train set would be much easier than
drilling holes in the board.

Starting construction. Having done a little preliminary research, it
was time to start making something. It seemed logical to construct the
basic track layout first, and then start integrating the Stamp. So, I
constructed a simple layout of three oval tracks. The distance separat-
ing each track from the next was about half an inch. I thought this
closeness would look attractive when all three trains were running at
the same time; I even reversed the polarity of the middle track, just to
make the display look especially interesting (all trains going the same
direction might get boring).

With the physical layout complete, I turned to speed control. I remem-
bered that the ULN2803 was used on our Stamp Experiment Board, so
I used the experiment board for initial testing. Using a handful of
micrograbber cables, I quickly connected the on-board Stamp circuit to
the ULN2803 and then to the first loop of track. And, of course, nothing
worked. I examined the circuit for several hours, and discovered two or
three stupid mistakes. The mistakes were truly stupid (like missing
ground connections), but one of them reminded me of why the ULN2803

Page 174 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

is called a low-side driver: the driver provides a switchable ground, so
my circuit must therefore provide a constant “supply” voltage to one
side of the tracks (in this case, 12 VDC). With the minor bugs corrected,
it worked, or at least somewhat. I hadn’t written much code, so the
necessary PWM routines weren’t in place to vary the train’s speed.
However, I could toggle a Stamp I/O pin, which drove the ULN2803,
which powered the train. A miracle was upon us (at least for me): the
BASIC Stamp could make the train start and stop.

A foundation was forming, but there were still basic human-interface
questions (how many buttons would control the system?, would there
be an LCD display?, etc.). I decided upon the following design:

• Three buttons (track select, up, down)
• LCD display for track speeds

I ordered a selection of push-buttons from Digi-Key and called Scott
about his new serial LCD module (it was new at the time). He had
designed a 1x16 character LCD which was controlled with one line
(plus power and ground). The serial LCD was a godsend, because I was
running out of I/O lines on the Stamp. Controlling the track voltages
took three lines, and the buttons were going to take three more. This left
only two unused I/O lines, which would usually fall short of the six
lines required to drive a regular intelligent LCD. But, again, the serial
LCD saved the day. With the tracks, buttons, and LCD, I had one I/O
line left unused.

The buttons arrived the next day, and I chose the ones that seemed best
for the job (large button, small footprint). I soldered the ULN2803 and
three buttons onto a BASIC Stamp, and then connected the Stamp to the
train set.

Programming custom PWM. It was time to do some real BASIC
programming. Earlier, when Scott sent the ULN2803 data, he also
included some routines to make the Stamp perform “custom” pulse-
width-modulation (PWM). The Stamp has a built-in PWM command,
but it’s meant for purposes other than driving the ULN2803. To control
the speed of the trains, I would need to write a program that pulsed the
voltage to the tracks. Instead of varying the voltage to the tracks, which

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 175

BASIC Stamp I Application Notes

1

21: Fun with Trains

would require more complex hardware, the Stamp could simply pulse
the tracks with a set voltage. Pulse-width-modulation has that name
because you are varying, or modulating, the width of a pulse. If the pulse
is on half the time and off half the time, then you have a duty cycle of
0.5, which would theoretically make the train run at half speed (of
course, the engine’s performance is probably not linear). Using Scott’s
example as a guide, I wrote a subroutine that pulsed all three tracks
according to the speed set by the user. I still don’t fully understand real
PWM, but the basic theory of the train routine makes sense:

• A counter (or accumulator) is maintained for each track.

• The user sets a speed (0-99) for each track.

• For every pass through the PWM routine, the speed is added to
the accumulator. The high bit (bit 7) of the accumulator is then
copied to the I/O pin for the appropriate track. If the bit is a ‘1’,
then the train will receive power; if the bit is a ‘0’, then power
is removed.

• The Stamp executes the PWM routine many times per second,
so the train receives a number of ‘on’ and ‘off’ states. A higher
speed value causes the accumulator to overflow more often,
which results in more frequent ‘on’ states. If power to the tracks
is ‘on’ more often, then the trains move more quickly. If power
is ‘off’ more often, then the trains slow down.

Connecting push-buttons. With the PWM routine working relatively
well, it was time to move on to other concerns. The push-buttons and
LCD were waiting to be used. The buttons seemed like the obvious
thing to work on next.

The BASIC Stamp has a particularly handy instruction called BUTTON,
which is used to read push-buttons and perform otherwise tedious
functions, such as debounce and auto-repeat. Debounce is necessary to
convert one button press into one electrical pulse (many pulses actually
occur when the button’s contacts are closed); auto-repeat allows the
user to hold down the button and have the system act as if he were
repeatedly pressing the button (most computer keyboards do this). I

Page 176 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

had never used the BUTTON instruction before, but it was relatively
simple to experiment with and understand.

But, I noticed that the buttons seemed unstable; sometimes the Stamp
would act as if I were still pressing a button long after I had stopped.
Then I realized that I had forgotten pull-up resistors on the button
inputs. In my circuit, when a button was pressed, it connected the
associated I/O pin to ground, which read as ‘0’ to the BASIC program.
However, when the button was not pressed, the I/O pin would “float,”
since it wasn’t connected to anything. Since the pin was floating, it
would randomly read as ‘0’ or ‘1’. This was solved by adding pull-up
resistors to the button inputs; the resistors provide a weak connection
to the 5-volt supply, so the inputs read as ‘1’ when their buttons are not
pressed. The last step involving the buttons was to adjust the auto-
repeat rate until it seemed right (not too fast, not too slow). The repeat
rate is controlled by one of the values given in the BUTTON instruction,
so it just took a few quick downloads to arrive at the right value.

Connecting the LCD display. With the buttons working, the next item
was the LCD. I connected the LCD to the Stamp and then entered the
sample program provided with the LCD. After some minor trouble-
shooting, the LCD worked, and worked well! Printing text was almost
as easy as using the normal PRINT instruction found in other versions
of BASIC. But, since the Stamp has no PRINT instruction, the LCD is
controlled with simple SEROUT instructions. For instance, SEROUT
0,N2400,(“hello”) prints the word “hello” on an LCD module connected
to pin 0.

7

6

5

4

3

2

1

0

+5V

Vin

GND
© 1993

REV D

BASIC Stamp
TM

ULN2803A

SEL

+

–

Completed Stamp with ULN2803 and buttons

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 177

BASIC Stamp I Application Notes

1

21: Fun with Trains

I wanted the LCD to display something fancy, but reality came into play
for two reasons: 16 characters isn’t that much, especially if you want to
display three speeds, and I was quickly running out of program space
in the Stamp. So, I decided upon a simple display of the track speeds,
as shown below:

>00 00 00

The pairs of digits represent the speed of the trains, and the arrow
indicates which train is currently selected (pressing the up and down
buttons affects the speed of the currently selected train). This arrange-
ment was simple to operate, and made good use of available resources.

Streamlining the program. After a day or so, I had a program that was
nearly finished; it read the buttons, updated the LCD, and ran the trains.
But, as I finished the LCD routine, I noticed that the performance of the
trains was getting progressively worse. The trains had run smoothly
before, even at slow speeds, but now they were very jerky, even at
medium and fast speeds. The problem was that the LCD took a fairly
long time to update. Updating the LCD meant sending 22 bytes of data,
which took about 0.1 seconds. One-tenth of a second isn’t much to us,
but it’s an eternity to the Stamp, and was quite noticeable in the trains.
I spent the evening making the program more efficient, which resulted
in more acceptable operation. The two changes that really helped were:

• Updating the LCD only when something changed, which looks
better, anyway (less flicker).

• Calling the train PWM routine several times from within the
LCD routine.

I was finally nearing the end of the project. I did a few downloading
tests, and realized that I only had a few more bytes of program space in
the Stamp.

There was one more function I wanted: the trains derailed a few times
while running continuously, so I felt that a panic button would be a
good idea. The purpose of the button would be to stop the trains in the
event of an accident. Without the panic button, the operator would have

Page 178 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

to set each speed to zero, which would take some time (I imagined trains
strewn about the board). The panic button was easy: all I needed to add
was a single line in the beginning of the main loop, which would check
the panic button and jump to an earlier line that set the speeds to zero
(something that the program did upon start-up). This seemed straight-
forward, but it proved to be more difficult than I thought. The concept
was fine, but I was short a few bytes of program space.

A few more bytes. Squeezing a few more bytes out of my program was
painfully difficult. Finally, everything did fit, but only after resorting to
extreme measures. For instance, if you look at the first few lines of code,
you’ll see the following:

symbol track1_speed=b2
symbol track1_accum=b1

symbol track2_speed=b3
symbol track2_accum=b7

symbol track3_speed=b4
symbol track3_accum=b6

symbol current_track = b5
.
.
.
reset: w1 = 0: w2 = 0

You might wonder why I didn’t just use the variables b1-b7 in order,
which is how I originally had them. The order shown seems random,
but it actually saves program space later. The last line shown resets the
track speeds and current track variable. The word variable w1 includes
b2 and b3, and the word variable w2 includes b4 and b5. So, by clearing
two word variables, the program clears four byte variables, which saves
a byte or two of program space.

If you’re really wondering about variable allocation, you might also
wonder why the program doesn’t store anything in b0. This is because
b0 has a special role in the train PWM routine:

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 179

BASIC Stamp I Application Notes

1

21: Fun with Trains

.

.

.
b0 = track1_accum
pin3 = bit7

In this piece of code, b0 is loaded with the accumulator for track #1. You
may recall that the high bit (bit 7) of the accumulator is used to drive the
track. But, how do we isolate the high bit? The easiest way, at least on
the Stamp, is to copy the 8-bit accumulator value into b0, and then use
the unique bit-addressable quality of b0 to drive the track I/O pin. The
statement pin3 = bit7 means make pin 3 the same state as bit 7 of b0. The only
variable that’s bit-addressable is b0, so it should be saved for such cases.

Conclusion. In the end, the train project was fun and educational. It
wasn’t nearly as elaborate as I originally intended, but it was a good
example of what the BASIC Stamp could do. We now offer a larger
Stamp, which would have made the programming portion much
easier. But, it wouldn’t have been nearly as much fun.

The finished train
set schematic.

TRACK SELECT

DOWN

UP

RESET

10K

+5V

DATA

+5V

+12V

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

8

7

6

11

12

13

109

ULN2803

Page 180 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

' Program: TRAIN.BAS
' Uses simple 4-button interface and LCD to control voltages to three N-scale trains.

symbol track1_speed=b2 'set up variable names
symbol track1_accum=b1

symbol track2_speed=b3
symbol track2_accum=b7

symbol track3_speed=b4
symbol track3_accum=b6

symbol current_track = b5

symbol track_btn = b8
symbol up_btn = b9
symbol down_btn = b10

pause 2000 'wait for lcd to wake up

serout 6,n2400,(254,1,254," ") 'clear lcd

dirs = %00111000 'make track driver pins
'outputs; all others are
'inputs

reset: w1 = 0: w2 = 0 'set track speeds and
'current track # to 0

goto update_lcd 'update lcd

main_loop:

if pin7 = 0 then reset 'reset everything if
'reset button is pressed

gosub run_trains 'update track pwm

track: button 0,0,30,6,track_btn,0,down0 'read track select button

current_track = current_track + 1 'increment current track #
if current_track <> 3 then go_lcd
current_track = 0 'reset if over 2

go_lcd: goto update_lcd 'update lcd

down0: button 1,0,30,1,down_btn,0,up0 'read down button

Program listing: As with the other appli-
cation notes, this program may be down-
loaded from our Internet ftp site at
ftp.parallaxinc.com. The ftp site may be
reached directly or through our web site
at http://www.parallaxinc.com.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 181

BASIC Stamp I Application Notes

1

21: Fun with Trains

if current_track <> 0 then down1 'check current track #
if track1_speed = 0 then up0
track1_speed = track1_speed - 1 'reduce track 1 speed
goto update_lcd 'update lcd

down1: if current_track <> 1 then down2 'check current track #
if track2_speed = 0 then up0
track2_speed = track2_speed - 1 'reduce track 2 speed
goto update_lcd 'update lcd

down2: if track3_speed = 0 then up0
track3_speed = track3_speed - 1 'reduce track 3 speed
goto update_lcd 'update lcd

up0: button 2,0,30,1,up_btn,0,main_loop 'read up button

if current_track <> 0 then up1 'check current track #
if track1_speed = 99 then main_loop
track1_speed = track1_speed + 1 'increase track 1 speed
goto update_lcd 'update lcd

up1: if current_track <> 1 then up2 'check current track #
if track2_speed = 99 then main_loop
track2_speed = track2_speed + 1 'increase track 2 speed
goto update_lcd 'update lcd

up2: if track3_speed = 99 then main_loop
track3_speed = track3_speed + 1 'increase track 3 speed

update_lcd:

serout 6,n2400,(254,130,254," ") 'move cursor and print " "
if track1_speed > 9 then abc 'test for 1 or 2 digits
serout 6,n2400,("0") 'print leading zero

abc: serout 6,n2400,(#track1_speed) 'print track 1 speed

gosub run_trains 'update track pwm

serout 6,n2400,(254,134,254," ") 'move cursor and print " "
if track2_speed > 9 then abc2 'test for 1 or 2 digits
serout 6,n2400,("0") 'print leading zero

abc2: serout 6,n2400,(#track2_speed) 'print track 2 speed

gosub run_trains 'update track pwm

serout 6,n2400,(254,138,254," ") 'move cursor and print " "
if track3_speed > 9 then abc3 'test for 1 or 2 digits
serout 6,n2400,("0") 'print leading zero

abc3: serout 6,n2400,(#track3_speed) 'print track 3 speed

Page 182 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

gosub run_trains 'update track pwm

done: b0 = current_track * 4 + 130 'print arrow pointing to
serout 6,n2400,(254,b0,254,">") 'currently selected track

goto main_loop

run_trains:

'update track 1 pwm
track1_accum = track1_accum + track1_speed
b0 = track1_accum
pin3 = bit7 'drive track 1
track1_accum = track1_accum & %01111111

'update track 2 pwm
track2_accum = track2_accum + track2_speed
b0 = track2_accum
pin4 = bit7 'drive track 2
track2_accum = track2_accum & %01111111

'update track 3 pwm
track3_accum = track3_accum + track3_speed
b0 = track3_accum
pin5 = bit7 'drive track 3
track3_accum = track3_accum & %01111111

return

21: Fun with Trains

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 183

BASIC Stamp I Application Notes

1

22: Interfacing a 12-bit ADC

Introduction. This application note shows how to interface the LTC1298
analog-to-digital converter (ADC) to the BASIC Stamp.

Background. Many popular applications for the Stamp include analog
measurement, either using the Pot command or an external ADC. These
measurements are limited to eight-bit resolution, meaning that a 5-volt
full-scale measurement would be broken into units of
5/256 = 19.5 millivolts (mV).

That sounds pretty good until you apply it to a real-world sensor. Take
the LM34 and LM35 temperature sensors as an example. They output
a voltage proportional to the ambient temperature in degrees Fahren-
heit (LM34) or Centigrade (LM35). A 1-degree change in temperature
causes a 10-mV change in the sensor’s output voltage. So an eight-bit
conversion gives lousy 2-degree resolution. By reducing the ADC’s
range, or amplifying the sensor signal, you can improve resolution, but
at the expense of additional components and a less-general design.

The easy way out is to switch to an ADC with 10- or 12-bit resolution.
Until recently, that hasn’t been a decision to make lightly, since more
bits = more bucks. However, the new LTC1298 12-bit ADC is reason-
ably priced at less than $10, and gives your Stamp projects two channels

Schematic to accompany LTC1298.BAS

1k

+5

10µF
tantalum

+

5k
pot

5k
pot

+5

pin 0 pin 2 pin 1

Connections to BASIC Stamp I/O pins

Variable Voltage
Source for Demo

0–5V in

CS

CH0

CH1

GND

Vcc

CLK

Dout

Din

LTC1298

1

Page 184 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

of 1.22-mV resolution data. It’s packaged in a Stamp-friendly 8-pin DIP,
and draws about 250 microamps (µA) of current.

How it works. The figure shows how to connect the LTC1298 to the
Stamp, and the listing supplies the necessary driver code. If you
have used other synchronous serial devices with the Stamp, such as
EEPROMs or other ADCs described in previous application notes,
there are no surprises here. We have tied the LTC1298’s data input and
output together to take advantage of the Stamp’s ability to switch data
directions on the fly. The resistor limits the current flowing between the
Stamp I/O pin and the 1298’s data output in case a programming error
or other fault causes a “bus conflict.” This happens when both pins are
in output mode and in opposite states (1 vs. 0). Without the resistor,
such a conflict would cause large currents to flow between pins,
possibly damaging the Stamp and/or ADC.

If you have used other ADCs, you may have noticed that the LTC1298
has no voltage-reference (Vref) pin. The voltage reference is what an
ADC compares its analog input voltage to. When the analog voltage is
equal to the reference voltage, the ADC outputs its maximum measure-
ment value; 4095 in this case. Smaller input voltages result in propor-
tionally smaller output values. For example, an input of 1/10th the
reference voltage would produce an output value of 409.

The LTC1298’s voltage reference is internally connected to the power
supply, Vcc, at pin 8. This means that a full-scale reading of 4095 will
occur when the input voltage is equal to the power-supply voltage,
nominally 5 volts. Notice the weasel word “nominally,” meaning “in
name only.” The actual voltage at the +5-volt rail of the full-size (pre-
BS1-IC) Stamp with the LM2936 regulator can be 4.9 to 5.1 volts initially,
and can vary by 30 mV.

In some applications you’ll need a calibration step to compensate for the
supply voltage. Suppose the LTC1298 is looking at 2.00 volts. If the
supply is 4.90 volts, the LTC1298 will measure (2.00/4.90) * 4095 = 1671.
If the supply is at the other extreme, 5.10 volts, the LTC1298 will
measure (2.00/5.10) * 4095 = 1606.

How about that 30-mV deviation in regulator performance, which

22: Interfacing a 12-bit ADC

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 185

BASIC Stamp I Application Notes

1

cannot be calibrated away? If calibration makes it seem as though the
LTC1298 is getting a 5.000-volt reference, a 30-mV variation means that
the reference would vary 15 mV high or low. Using the 2.00-volt
example, the LTC1298 measurements can range from (2.00/4.985) *
4095 = 1643 to (2.00/5.015) * 4095 = 1633.

The bottom line is that the measurements you make with the LTC1298
will be only as good as the stability of your +5-volt supply.

The reason the manufacturer left off a separate voltage-reference pin
was to make room for the chip’s second analog input. The LTC1298 can
treat its two inputs as either separate ADC channels, or as a single,
differential channel. A differential ADC is one that measures the
voltage difference between its inputs, rather than the voltage between
one input and ground.

A final feature of the LTC1298 is its sample-and-hold capability. At the
instant your program requests data, the ADC grabs and stores the input
voltage level in an internal capacitor. It measures this stored voltage,
not the actual input voltage.

By measuring a snapshot of the input voltage, the LTC1298 avoids the
errors that can occur when an ADC tries to measure a changing voltage.
Without going into the gory details, most common ADCs are successive
approximation types. That means that they zero in on a voltage measure-
ment by comparing a guess to the actual voltage, then determining
whether the actual is higher or lower. They formulate a new guess and
try again. This becomes very difficult if the voltage is constantly
changing! ADCs that aren’t equipped with sample-and-hold circuitry
should not be used to measure noisy or fast-changing voltages. The
LTC1298 has no such restriction.

Parts source. The LTC1298 is available from Digi-Key (800-344-4539)
for $8.89 in single quantities (LTC1298CN8-ND). Be sure to request a
data sheet or the data book (9210B-ND, $9.95) when you order.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

22: Interfacing a 12-bit ADC

Page 186 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Program: LTC1298.BAS (LTC1298 analog-to-digital converter)
' The LTC1298 is a 12-bit, two-channel ADC. Its high resolution, low
' supply current, low cost, and built-in sample/hold feature make it a
' great companion for the Stamp in sensor and data-logging applications.
' With its 12-bit resolution, the LTC1298 can measure tiny changes in
' input voltage; 1.22 millivolts (5-volt reference/4096).

' ==
' ADC Interface Pins
' ==

' The 1298 uses a four-pin interface, consisting of chip-select, clock,
' data input, and data output. In this application, we tie the data lines
' together with a 1k resistor and connect the Stamp pin designated DIO
' to the data-in side of the resistor. The resistor limits the current
' flowing between DIO and the 1298’s data out in case a programming error
' or other fault causes a “bus conflict.” This happens when both pins are
' in output mode and in opposite states (1 vs 0). Without the resistor,
' such a conflict would cause large currents to flow between pins,
' possibly damaging the Stamp and/or ADC.

SYMBOL CS = 0 ' Chip select; 0 = active.
SYMBOL CLK = 1 ' Clock to ADC; out on rising, in on falling edge.
SYMBOL DIO_n = 2 ' Pin _number_ of data input/output.
SYMBOL DIO_p = pin2 ' Variable_name_ of data input/output.
SYMBOL ADbits = b1 ' Counter variable for serial bit reception.
SYMBOL AD = w1 ' 12-bit ADC conversion result.

' ==
' ADC Setup Bits
' ==

' The 1298 has two modes. As a single-ended ADC, it measures the
' voltage at one of its inputs with respect to ground. As a differential
' ADC, it measures the difference in voltage between the two inputs.
' The sglDif bit determines the mode; 1 = single-ended, 0 = differential.
' When the 1298 is single-ended, the oddSign bit selects the active input
' channel; 0 = channel 0 (pin 2), 1 = channel 1 (pin 3).
' When the 1298 is differential, the oddSign bit selects the polarity
' between the two inputs; 0 = channel 0 is +, 1 = channel 1 is +.
' The msbf bit determines whether clock cycles _after_ the 12 data bits
' have been sent will send 0s (msbf = 1) or a least-significant-bit-first
' copy of the data (msbf = 0). This program doesn’t continue clocking after
' the data has been obtained, so this bit doesn’t matter.

' You probably won’t need to change the basic mode (single/differential)
' or the format of the post-data bits while the program is running, so
' these are assigned as constants. You probably will want to be able to
' change channels, so oddSign (the channel selector) is a bit variable.

22: Interfacing a 12-bit ADC

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 187

BASIC Stamp I Application Notes

1

SYMBOL sglDif = 1 ' Single-ended, two-channel mode.
SYMBOL msbf = 1 ' Output 0s after data transfer is complete.
SYMBOL oddSign = bit0 ' Program writes channel # to this bit.

' ==
' Demo Program
' ==

' This program demonstrates the LTC1298 by alternately sampling the two
' input channels and presenting the results on the PC screen using Debug.

high CS ' Deactivate the ADC to begin.
Again: ' Main loop.
 For oddSign = 0 to 1 ' Toggle between input channels.
 gosub Convert ' Get data from ADC.
 debug "ch ",#oddSign,":",#AD,cr ' Show the data on PC screen.
 pause 500 ' Wait a half second.
 next ' Change input channels.
goto Again ' Endless loop.

' ==
' ADC Subroutine
' ==

' Here’s where the conversion occurs. The Stamp first sends the setup
' bits to the 1298, then clocks in one null bit (a dummy bit that always
' reads 0) followed by the conversion data.

Convert:
 low CLK ' Low clock—output on rising edge.
 high DIO_n ' Switch DIO to output high (start bit).
 low CS ' Activate the 1298.
 pulsout CLK,5 ' Send start bit.
 let DIO_p = sglDif ' First setup bit.
 pulsout CLK,5 ' Send bit.
 let DIO_p = oddSign ' Second setup bit.
 pulsout CLK,5 ' Send bit.
 let DIO_p = msbf ' Final setup bit.
 pulsout CLK,5 ' Send bit.
 input DIO_n ' Get ready for input from DIO.
 let AD = 0 ' Clear old ADC result.
 for ADbits = 1 to 13 ' Get null bit + 12 data bits.
 let AD = AD*2+DIO_p ' Shift AD left, add new data bit.
 pulsout CLK,5 ' Clock next data bit in.
 next ' Get next data bit.
 high CS ' Turn off the ADC
return ' Return to program.

22: Interfacing a 12-bit ADC

Page 188 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 189

BASIC Stamp I Application Notes

1

23: DS1620 Digital Thermometer

Introduction. This application note shows how to interface the DS1620
Digital Thermometer to the BASIC Stamp.

Background. In application note #7, we demonstrated a method for
converting the non-linear resistance of a thermistor to temperature
readings. Although satisfyingly cheap and crafty, the application re-
quires careful calibration and industrial-strength math.

Now we’re going to present the opposite approach: throw money ($7)
at the problem and get precise, no-calibration temperature data.

How it works. The Dallas Semiconductor DS1620 digital thermometer/
thermostat chip, shown in the figure, measures temperature in units of
0.5 degrees Centigrade from –55° to +125° C. It is calibrated at the
factory for exceptional accuracy: +0.5° C from 0 to +70° C.

(In the familiar Fahrenheit scale, those °C temperatures are: range, –67°
to +257° F; resolution, 0.9° F; accuracy, +0.9° F from 32° to 158° F.)

The chip outputs temperature data as a 9-bit number conveyed over a
three-wire serial interface. The DS1620 can be set to operate continu-
ously, taking one temperature measurement per second, or intermit-

+5

0.1µF

1k

pin 2

pin 1

pin 0

Stamp Pins

DQ

CLK

RST

GND

VDD

T(hi)

T(lo)

T(com)

DS1620

1

DQ—Data input/output
CLK—Clock for shifting data in/out (active-low conversion start in thermostat/
1-shot mode)
RST—Reset; high activates chip, low disables it
GND—Ground connection
VDD—Supply voltage; +4.5 to 5.5 Vdc
T(hi)—In thermostat mode, outputs a 1 when temp is above high setpoint
T(lo)—In thermostat mode, outputs a 1 when temp is below low setpoint
T(com) —In thermostat mode, outputs a 1 when temp exceeds high setpoint
and remains high until temp drops below low setpoint

Schematic to accompany DS1620.BAS

Page 190 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

tently, conserving power by measuring only when told to.

The DS1620 can also operate as a standalone thermostat. A temporary
connection to a Stamp establishes the mode of operation and high/low-
temperature setpoints. Thereafter, the chip independently controls
three outputs: T(high), which goes active at temperatures above the
high-temperature setpoint; T(low), active at temperatures below the
low setpoint; and T(com), which goes active at temperatures above the
high setpoint, and stays active until the temperature drops below the
low setpoint.

We’ll concentrate on applications using the DS1620 as a Stamp periph-
eral, as shown in the listing.

Using the DS1620 requires sending a command (what Dallas Semi calls
a protocol) to the chip, then listening for a response (if applicable). The
code under “DS1620 I/O Subroutines” in the listing shows how this is
done. In a typical temperature-measurement application, the program
will set the DS1620 to thermometer mode, configure it for continuous
conversions, and tell it to start. Thereafter, all the program must do is
request a temperature reading, then shift it in, as shown in the listing’s
Again loop.

The DS1620 delivers temperature data in a nine-bit, two’s complement
format, shown in the table. Each unit represents 0.5° C, so a reading of
50 translates to +25° C. Negative values are expressed as two’s comple-
ment numbers. In two’s complement, values with a 1 in their leftmost
bit position are negative. The leftmost bit is often called the sign bit,
since a 1 means – and a 0 means +.

To convert a negative two’s complement value to a positive number,
you must invert it and add 1. If you want to display this value,
remember to put a minus sign in front of it.

Rather than mess with two’s complement negative numbers, the pro-
gram converts DS1620 data to an absolute scale called DSabs, with a
range of 0 to 360 units of 0.5° C each. The Stamp can perform calcula-
tions in this all-positive system, then readily convert the results for
display in °C or °F, as shown in the listing.

23: DS1620 Digital Thermometer

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 191

BASIC Stamp I Application Notes

1

23: DS1620 Digital Thermometer

Once you have configured the DS1620, you don’t have to reconfigure it
unless you want to change a setting. The DS1620 stores its configuration
in EEPROM (electrically erasable, programmable read-only memory),
which retains data even with the power off. In memory-tight Stamp
applications, you might want to run the full program once for configu-
ration, then strip out the configuration stuff to make more room for
your final application.

If you want to use the DS1620 in its role as a standalone thermostat, the
Stamp can help here, too. The listing includes protocols for putting the
DS1620 into thermostat (NoCPU) mode, and for reading and writing the
temperature setpoints. You could write a Stamp program to accept
temperature data serially, convert it to nine-bit, two’s complement
format, then write it to the DS1620 configuration register.

Be aware of the DS1620’s drive limitations in thermostat mode; it
sources just 1 mA and sinks 4 mA. This isn’t nearly enough to drive a
relay—it’s just enough to light an LED. You’ll want to buffer this output
with a Darlington transistor or MOSFET switch in serious applications.

Parts sources. The DS1620 is available from Jameco (800-831-4242) for
$6.95 in single quantity as part number 114382 (8-pin DIP). Be sure to

Nine-Bit Format for DS1620 Temperature Data

Temperature DS1620 Data
°F °C Binary Hex Decimal

+257 +125 0 11111010 00FA 250
+77 +25 0 00110010 0032 50
+32.9 +0.5 0 00000001 0001 1
+32 0 0 00000000 0000 0
+31.1 -0.5 1 11111111 01FF 511
-13 -25 1 11001110 01CE 462
-67 -55 1 10010010 0192 402

Example conversion of a negative temperature:
-25°C = 1 11001110 in binary. The 1 in the leftmost bit indicates that this is a
negative number. Invert the lower eight bits and add 1: 11001110 -> 00110001
+1 = 00110010 = 50. Units are 0.5°C, so divide by 2. Converted result is -25°C.

Page 192 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

request a data sheet when you order. Dallas Semiconductor offers data
and samples of the DS1620 at reasonable cost. Call them at 214-450-
0448.

Program listing. The program DS1620.BAS is available from the Paral-
lax bulletin board system. You can reach the BBS at (916) 624-7101. You
may also obtain this and other Stamp programs via Internet:
ftp.parallaxinc.com.

23: DS1620 Digital Thermometer

' Program: DS1620.BAS
' This program interfaces the DS1620 Digital Thermometer to the
' BASIC Stamp. Input and output subroutines can be combined to
' set the '1620 for thermometer or thermostat operation, read
' or write nonvolatile temperature setpoints and configuration
' data.

' ===================== Define Pins and Variables ================
SYMBOL DQp = pin2 ' Data I/O pin.
SYMBOL DQn = 2 ' Data I/O pin _number_.
SYMBOL CLKn = 1 ' Clock pin number.
SYMBOL RSTn = 0 ' Reset pin number.
SYMBOL DSout = w0 ' Use bit-addressable byte for DS1620 output.
SYMBOL DSin = w0 ' " " " word " " input.
SYMBOL clocks = b2 ' Counter for clock pulses.

' ===================== Define DS1620 Constants ===================
' >>> Constants for configuring the DS1620
SYMBOL Rconfig = $AC ' Protocol for 'Read Configuration.’
SYMBOL Wconfig = $0C ' Protocol for 'Write Configuration.’
SYMBOL CPU = %10 ' Config bit: serial thermometer mode.
SYMBOL NoCPU = %00 ' Config bit: standalone thermostat mode.
SYMBOL OneShot = %01 ' Config bit: one conversion per start request.
SYMBOL Cont = %00 ' Config bit: continuous conversions after start.
' >>> Constants for serial thermometer applications.
SYMBOL StartC = $EE ' Protocol for 'Start Conversion.’
SYMBOL StopC = $22 ' Protocol for 'Stop Conversion.’
SYMBOL Rtemp = $AA ' Protocol for 'Read Temperature.’
' >>> Constants for programming thermostat functions.
SYMBOL RhiT = $A1 ' Protocol for 'Read High-Temperature Setting.’
SYMBOL WhiT = $01 ' Protocol for 'Write High-Temperature Setting.’
SYMBOL RloT = $A2 ' Protocol for 'Read Low-Temperature Setting.’
SYMBOL WloT = $02 ' Protocol for 'Write Low-Temperature Setting.’

' ===================== Begin Program ============================
' Start by setting initial conditions of I/O lines.
low RSTn ' Deactivate the DS1620 for now.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 193

BASIC Stamp I Application Notes

1

high CLKn ' Initially high as shown in DS specs.
pause 100 ' Wait a bit for things to settle down.

' Now configure the DS1620 for thermometer operation. The
' configuration register is nonvolatile EEPROM. You only need to
' configure the DS1620 once. It will retain those configuration
' settings until you change them—even with power removed. To
' conserve Stamp program memory, you can preconfigure the DS1620,
' then remove the configuration code from your final program.
' (You’ll still need to issue a start-conversion command, though.)
let DSout=Wconfig ' Put write-config command into output byte.
gosub Shout ' And send it to the DS1620.
let DSout=CPU+Cont ' Configure as thermometer, continuous conversion.
gosub Shout ' Send to DS1620.
low RSTn ' Deactivate '1620.
Pause 50 ' Wait 50ms for EEPROM programming cycle.
let DSout=StartC ' Now, start the conversions by
gosub Shout ' sending the start protocol to DS1620.
low RSTn ' Deactivate '1620.

' The loop below continuously reads the latest temperature data from
' the DS1620. The '1620 performs one temperature conversion per second.
' If you read it more frequently than that, you’ll get the result
' of the most recent conversion. The '1620 data is a 9-bit number
' in units of 0.5 deg. C. See the ConverTemp subroutine below.
Again:
 pause 1000 ' Wait 1 second for conversion to finish.
 let DSout=Rtemp ' Send the read-temperature opcode.
 gosub Shout
 gosub Shin ' Get the data.
 low RSTn ' Deactivate the DS1620.
 gosub ConverTemp ' Convert the temperature reading to absolute.
 gosub DisplayF ' Display in degrees F.
 gosub DisplayC ' Display in degrees C.
goto Again

' ===================== DS1620 I/O Subroutines ==================
' Subroutine: Shout
' Shift bits out to the DS1620. Sends the lower 8 bits stored in
' DSout (w0). Note that Shout activates the DS1620, since all trans-
' actions begin with the Stamp sending a protocol (command). It does
' not deactivate the DS1620, though, since many transactions either
' send additional data, or receive data after the initial protocol.
' Note that Shout destroys the contents of DSout in the process of
' shifting it. If you need to save this value, copy it to another
' register.
Shout:
high RSTn ' Activate DS1620.
output DQn ' Set to output to send data to DS1620.

23: DS1620 Digital Thermometer

Page 194 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

for clocks = 1 to 8 ' Send 8 data bits.
 low CLKn ' Data is valid on rising edge of clock.
 let DQp = bit0 ' Set up the data bit.
 high CLKn ' Raise clock.
 let DSout=DSout/2 ' Shift next data bit into position.
next ' If less than 8 bits sent, loop.
return ' Else return.

' Subroutine: Shin
' Shift bits in from the DS1620. Reads 9 bits into the lsbs of DSin
' (w0). Shin is written to get 9 bits because the DS1620’s temperature
' readings are 9 bits long. If you use Shin to read the configuration
' register, just ignore the 9th bit. Note that DSin overlaps with DSout.
' If you need to save the value shifted in, copy it to another register
' before the next Shout.
Shin:
input DQn ' Get ready for input from DQ.
for clocks = 1 to 9 ' Receive 9 data bits.
 let DSin = DSin/2 ' Shift input right.
 low CLKn ' DQ is valid after falling edge of clock.
 let bit8 = DQp ' Get the data bit.
 high CLKn ' Raise the clock.
next ' If less than 9 bits received, loop.
return ' Else return.

' ================= Data Conversion/Display Subroutines ===============
' Subroutine: ConverTemp
' The DS1620 has a range of -55 to +125 degrees C in increments of 1/2
' degree. It’s awkward to work with negative numbers in the Stamp’s
' positive-integer math, so I’ve made up a temperature scale called
' DSabs (DS1620 absolute scale) that ranges from 0 (-55 C) to 360 (+125 C).
' Internally, your program can do its math in DSabs, then convert to
' degrees F or C for display.
ConverTemp:
if bit8 = 0 then skip ' If temp > 0 skip "sign extension" procedure.
 let w0 = w0 | $FE00 ' Make bits 9 through 15 all 1s to make a

' 16-bit two’s complement number.
skip:
 let w0 = w0 + 110 ' Add 110 to reading and return.
return

' Subroutine: DisplayF
' Convert the temperature in DSabs to degrees F and display on the
' PC screen using debug.
DisplayF:
let w1 = w0*9/10 ' Convert to degrees F relative to -67.
if w1 < 67 then subzF ' Handle negative numbers.
 let w1 = w1-67
 Debug #w1, " F",cr

23: DS1620 Digital Thermometer

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 195

BASIC Stamp I Application Notes

1

return
subzF:
 let w1 = 67-w1 ' Calculate degrees below 0.
 Debug "-",#w1," F",cr ' Display with minus sign.
return

' Subroutine: DisplayC
' Convert the temperature in DSabs to degrees C and display on the
' PC screen using debug.
DisplayC:
let w1 = w0/2 ' Convert to degrees C relative to -55.
if w1 < 55 then subzC ' Handle negative numbers.
 let w1 = w1-55
 Debug #w1, " C",cr
return
subzC:
 let w1 = 55-w1 ' Calculate degrees below 0.
 Debug "-",#w1," C",cr ' Display with minus sign.
return

23: DS1620 Digital Thermometer

Page 196 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 197

2

The following section deals with the BASIC Stamp II. In the following
pages, you’ll find installation instructions, programming procedures,
PBASIC2 command definitions, and several application notes.

BASIC Stamp II

Page 198 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

System Requirements

To program the BASIC Stamp II, you’ll need the following computer
system:

• IBM PC or compatible computer

• 3.5-inch disk drive

• Serial port

• 128K of RAM

• MS-DOS 2.0 or greater

If you have the BASIC Stamp II carrier board, you can use a 9-volt
battery as a convenient means to power the BASIC Stamp. You can
also use a 5-15 (5-40 volts on BS2-IC rev. d) volt power supply, but you
should be careful to connect the supply to the appropriate part of the
BASIC Stamp. A 5-volt supply should be connected directly to the +5V
pin, but a higher voltage should be connected to the PWR pin.

Connecting a high voltage supply (greater than 6 volts) to the 5-volt
pin can permanently damage the BASIC Stamp.

Packing List

If you purchased the BASIC Stamp Programming Package, you should
have received the following items:

• BASIC Stamp Programming Manual (this manual)

• BASIC Stamp I programming cable (parallel port DB25-to-3 pin)

• BASIC Stamp II programming cable (serial port DB9-to-DB9)

• BASIC Stamp I and BASIC Stamp II schematics

• 3.5-inch diskette

If any items are missing, please let us know.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 199

2

Connecting to the PC

To program a BASIC Stamp II, you’ll need to connect it to your PC and
then run the editor software. In this section, it’s assumed that you
have a BS2-IC and its corresponding carrier board (shown below).

To connect the BASIC Stamp II to your PC, follow these steps:

1) Plug the BS2-IC onto the carrier board. The BS2-IC plugs into
a 24-pin DIP socket, located in the center of the carrier. When
plugged onto the carrier board, the words “Parallax BS2-IC”
should be near the reset button.

2) In the BASIC Stamp Programming Package, you received a
serial cable to connect the BASIC Stamp II to your PC. Plug
the female end into an available serial port on your PC.

3) Plug the male end of the serial cable into the carrier board’s
serial port.

4) Supply power to the carrier board, either by connecting a
9-volt battery or by providing an external power source.

© 1995

REV A

BASIC Stamp II
TM

BS
2-

ICR
es

et

TX

RX

AT
N

GN
D
 PO

P1

P2

P3

P4

P5

P6

P7

PW
R

GN
D

RE
S

+5
V

P1
5

P1
4

P1
3

P1
2

P1
1

P1
0

P9

P8

H
os

t S
er

ia
l P

or
t

2

 3

 4

 5

BS2-IC
Socket

I/O
Header

I/O
Header

Prototyping
Area

Reset
Button

9-volt
Battery

Clips

RS-232
Serial

Port

BASIC Stamp II

Page 200 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Pin Name Description Comments

1 TX Serial output Connect to pin 2 of PC serial DB9 (RX) *
2 RX Serial input Connect to pin 3 of PC serial DB9 (TX) *
3 ATN Active-high reset Connect to pin 4 of PC serial DB9 (DTR) *
4 GND Serial ground Connect to pin 5 of PC serial DB9 (GND) *

5 P0 I/O pin 0 Each pin can source 20 ma and sink 25 ma.
6 P1 I/O pin 1
7 P2 I/O pin 2 P0-P7 and P8-P15, as groups, can each
8 P3 I/O pin 3 source a total of 40 ma and sink 50 ma.
9 P4 I/O pin 4

10 P5 I/O pin 5
11 P6 I/O pin 6
12 P7 I/O pin 7
13 P8 I/O pin 8
14 P9 I/O pin 9
15 P10 I/O pin 10
16 P11 I/O pin 11
17 P12 I/O pin 12
18 P13 I/O pin 13
19 P14 I/O pin 14
20 P15 I/O pin 15

21 +5V ** +5V supply 5-volt input or regulated output.
22 RES Active-low reset Pull low to reset; goes low during reset.
23 GND System ground
24 PWR ** Regulator input Voltage regulator input; takes 5-15 volts.

* For automatic serial port selection by
the BASIC Stamp II software, there
must also be a connection from DSR
(DB9 pin 6) to RTS (DB9 pin 7). This
connection is made on the BASIC
Stamp II carrier board. If you are not
using the carrier board, then you must
make this connection yourself, or use
the command-line option to tell the
software which serial port to use.

** During normal operation, the BASIC
Stamp II takes about 7 mA. In vari-
ous power-down modes, consump-
tion can be reduced to about 50 µA.

TX

RX

ATN

GND

P0

P1

P2

P3

P4

P5

P6

P7

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

PWR

GND

RES

+5V

P15

P14

P13

P12

P11

P10

P9

P8

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 201

2

Starting the Editor

With the BASIC Stamp II connected and powered, insert the BASIC
Stamp diskette and then enter the BASIC Stamp II directory by typing
the following command from the DOS prompt:

CD STAMP2

Once in the BASIC Stamp II directory, you can run the BASIC Stamp II
editor/downloader software by typing the following command:

STAMP2

The software will start running after several seconds. The editor screen
is dark blue, with one line across the top that indicates how to get on-
screen editor help. Except for the top line, the entire screen is available
for entering and editing PBASIC programs.

Command-line options:
There are several command-line options that may be useful when run-
ning the software; these options are shown below:

STAMP2 filename Runs the editor and loads filename.

STAMP2 /m Runs the editor in monochrome mode. May
give a better display on some systems, espe-
cially laptop computers.

STAMP2 /n Runs the editor and specifies which serial port
to use when downloading to the BASIC Stamp
II (note that n must be replaced with a serial
port number of 1-4).

Normally, the software finds the BASIC Stamp II by looking on all se-
rial ports for a connection between DSR and RTS (this connection is
made on the carrier board). If the DSR-RTS connection is not present,
then you must tell the software which port to use, as shown above.

BASIC Stamp II

Page 202 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Entering & Editing Programs

We’ve tried to make the editor as intuitive as possible: to move up,
press the up arrow; to highlight one character to the right, press shift-
right arrow; etc.

Most functions of the editor are easy to use. Using single keystrokes,
you can perform the following common functions:

• Load, save, and run programs.

• Move the cursor in increments of one character, one word, one
line, one screen, or to the beginning or end of a file.

• Highlight text in blocks of one character, one word, one line, one
screen, or to the beginning or end of a file.

• Cut, copy, and paste highlighted text.

• Search for and/or replace text.

• See how the BASIC Stamp II memory is being allocated.

• Identify the version of the PBASIC interpreter.

Editor Function Keys

The following list shows the keys that are used to perform various
functions:

F1 Display editor help screen.

Alt-R Run program in BASIC Stamp II (download the
program on the screen, then run it)

Alt-L Load program from disk
Alt-S Save program on disk
Alt-M Show memory usage maps
Alt-I Show version number of PBASIC interpreter
Alt-Q Quit editor and return to DOS

Enter Enter information and move down one line
Tab Same as Enter

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 203

2

Left arrow Move left one character
Right arrow Move right one character

Up arrow Move up one line
Down arrow Move down one line
Ctrl-Left Move left to next word
Ctrl-Right Move right to next word

Home Move to beginning of line
End Move to end of line
Page Up Move up one screen
Page Down Move down one screen
Ctrl-Page Up Move to beginning of file
Ctrl-Page Down Move to end of file

Shift-Left Highlight one character to the left
Shift-Right Highlight one character to the right
Shift-Up Highlight one line up
Shift-Down Highlight one line down
Shift-Ctrl-Left Highlight one word to the left
Shift-Ctrl-Right Highlight one word to the right

Shift-Home Highlight to beginning of line
Shift-End Highlight to end of line
Shift-Page Up Highlight one screen up
Shift-Page Down Highlight one screen down
Shift-Ctrl-Page Up Highlight to beginning of file
Shift-Ctrl-Page Down Highlight to end of file

Shift-Insert Highlight word at cursor
ESC Cancel highlighted text

Backspace Delete one character to the left
Delete Delete character at cursor
Shift-Backspace Delete from left character to beginning of line
Shift-Delete Delete to end of line
Ctrl-Backspace Delete line

Alt-X Cut marked text and place in clipboard
Alt-C Copy marked text to clipboard
Alt-V Paste (insert) clipboard text at cursor

Alt-F Find string (establish search information)
Alt-N Find next occurrence of string

BASIC Stamp II

Page 204 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

The following list is a summary of the PBASIC instructions used by
the BASIC Stamp II.

◆ This symbol indicates new or greatly improved instructions (compared to
the BASIC Stamp I).

BRANCHING
IF...THEN Compare and conditionally branch.

BRANCH Branch to address specified by offset.

GOTO Branch to address.

GOSUB Branch to subroutine at address. GOSUBs may be
nested up to four levels deep, and you may have
up to 255 GOSUBs in your program.

RETURN Return from subroutine.

LOOPING
FOR...NEXT Establish a FOR-NEXT loop.

NUMERICS
LOOKUP Lookup data specified by offset and store in vari-

able. This instruction provides a means to make a
lookup table.

LOOKDOWN Find target’s match number (0-N) and store in
variable.

RANDOM Generate a pseudo-random number.

DIGITAL I/O
INPUT Make pin an input

OUTPUT Make pin an output.

REVERSE If pin is an output, make it an input. If pin is an
input, make it an output.

LOW Make pin output low.

HIGH Make pin output high.

TOGGLE Make pin an output and toggle state.

PULSIN Measure an input pulse (resolution of 2 µs).

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 205

2

PULSOUT Output a timed pulse by inverting a pin for some
time (resolution of 2 µs).

BUTTON Debounce button, perform auto-repeat, and branch
to address if button is in target state.

◆ SHIFTIN Shift bits in from parallel-to-serial shift register.

◆ SHIFTOUT Shift bits out to serial-to-parallel shift register.

◆ COUNT Count cycles on a pin for a given amount of time
(0 - 125 kHz, assuming a 50/50 duty cycle).

◆ XOUT Generate X-10 powerline control codes. For use
with TW523 or TW513 powerline interface module.

SERIAL I/O
◆ SERIN Serial input with optional qualifiers, time-out, and

flow control. If qualifiers are given, then the in-
struction will wait until they are received before
filling variables or continuing to the next instruc-
tion. If a time-out value is given, then the instruc-
tion will abort after receiving nothing for a given
amount of time. Baud rates of 300 - 50,000 are
possible (0 - 19,200 with flow control). Data re-
ceived must be N81 (no parity, 8 data bits, 1 stop
bit) or E71 (even parity, 7 data bits, 1 stop bit).

◆ SEROUT Send data serially with optional byte pacing and
flow control. If a pace value is given, then the
instruction will insert a specified delay between
each byte sent (pacing is not available with flow
control). Baud rates of 300 - 50,000 are possible (0
- 19,200 with flow control). Data is sent as N81 (no
parity, 8 data bits, 1 stop bit) or E71 (even parity, 7
data bits, 1 stop bit).

ANALOG I/O
PWM Output PWM, then return pin to input. This can be

used to output analog voltages (0-5V) using a
capacitor and resistor.

◆ RCTIME Measure an RC charge/discharge time. Can be
used to measure potentiometers.

BASIC Stamp II

Page 206 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

SOUND
◆ FREQOUT Generate one or two sinewaves of specified fre-

quencies (each from 0 - 32767 hz.).

◆ DTMFOUT Generate DTMF telephone tones.

EEPROM ACCESS
◆ DATA Store data in EEPROM before downloading

PBASIC program.

READ Read EEPROM byte into variable.

WRITE Write byte into EEPROM.

TIME
PAUSE Pause execution for 0–65535 milliseconds.

POWER CONTROL
NAP Nap for a short period. Power consumption is

reduced.

SLEEP Sleep for 1-65535 seconds. Power consumption is
reduced to approximately 50 µA.

END Sleep until the power cycles or the PC connects.
Power consumption is reduced to approximately
50 µA.

PROGRAM DEBUGGING
DEBUG Send variables to PC for viewing.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 207

2

BS2 Hardware

Figure H-1 is a schematic diagram of the BASIC Stamp II (BS2). In this
section we’ll describe each of the major components and explain its
function in the circuit.

Figure H-1

+

Input/Output Pins

Output: source 20mA each
sink 25mA each

Input: leakage < 1µA
threshold 1.4V

Schematic Diagram of the BASIC Stamp II (BS2-IC revA)

1. This diagram depicts the DIP/SOIC version of the PBASIC2 interpreter chip, since users
wishing to construct a BS2 from discrete components are most likely to use those parts.
Contact Parallax for a schematic depicting the SSOP (ultra-small surface mount) package
used in the BS2-IC module.

2. Numbers in parentheses—(#)—are pin numbers on the BS2-IC module. The BS2-IC has
the form factor of a 24-pin, 0.6" DIP.

3. Q1, Q2 and Q3 are Rohm part numbers. Other components may be substituted in custom
circuits, subject to appropriate design. Contact Parallax for design assistance.

4. U3 and U4 are Seiko part numbers. Other components may be substituted in custom
circuits, subject to appropriate design. Contact Parallax for design assistance.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

RTCC MCLR

Vdd OSC1

NC OSC2

Vss RC7

NC RC6

RA0 RC5

RA1 RC4

RA2 RC3

RA3 RC2

RB0 RC1

RB1 RC0

RB2 RB7

RB3 RB6

RB4 RB5

P
B

A
S

IC
2

In
te

rp
re

te
r

C
hi

p
(P

ar
al

la
x

C
us

to
m

 P
IC

16
C

57
)

1

2

3

4

NC

NC

NC

Vss

8

7

6

5

VDD

WP

SCL

SDA

24
LC

16
B

+5V

4.7k

+5V

+5V

4.7k

10k

10k

4.7k

10k

+5V

10k

1/2 UMH11TN

DTA114EETL

SIN (2)

SOUT (1)

+5V

4.7k

10k

10k

1/2 UMH11TN

ATN(3)

RES(22)
OUT

Vss

Vdd

+5V

VIN (24)

Vss

+5V

VDD (21)

*VSS (23, 4)

22µF
10V

Power source for all

BS2 components

20-MHz
Ceramic
Resonator

4V Reset5V Reg.

P
0

(5
)

P
1

(6
)

P
2

(7
)

P
3

(8
)

P
4

(9
)

P
5

(1
0)

P
6

(1
1)

P
7

(1
2)

P
8

(1
3)

P
9

(1
4)

P
10

 (
15

)

P
11

 (
16

)

P
12

 (
17

)

P
13

 (
18

)

P
14

 (
19

)

P
15

 (
20

)

2kB EEPROM

PBASIC2

NOTES

*Also called “ground”
throughout this
document.

S-8054HNS-81350HG

U4 U3

U1

U2

Q1

Q2

Q3

C
S

T
C

S
20

.0
0

Schematic Diagram of the BASIC Stamp II (BS2-IC rev. A)

BASIC Stamp II

Page 208 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

PBASIC2 Interpreter Chip (U1)
The brain of the BS2 is a custom PIC16C57 microcontroller (U1). U1 is
permanently programmed with the PBASIC2 instruction set. When you
program the BS2, you are telling U1 to store symbols, called tokens, in
EEPROM memory (U2). When your program runs, U1 retrieves to-
kens from memory (U2), interprets them as PBASIC2 instructions, and
carries out those instructions.

U1 executes its internal program at 5 million instructions per second.
Many internal instructions go into a single PBASIC2 instruction, so
PBASIC2 executes more slowly—approximately 3000 to 4000 instruc-
tions per second.

The PIC16C57 controller has 20 input/output (I/O) pins; in the BS2
circuit, 16 of these are available for general use by your programs. Two
others may also be used for serial communication. The remaining two
are used solely for interfacing with the EEPROM and may not be used
for anything else.

The general-purpose I/O pins, P0 through P15, can interface with all
modern 5-volt logic, from TTL (transistor-transistor logic) through
CMOS (complementary metal-oxide semiconductor). To get technical,
their properties are very similar to those of 74HCTxxx-series logic de-
vices.

The direction—input or output—of a given pin is entirely under the
control of your program. When a pin is an input, it has very little effect
on circuits connected to it, with less than 1 microampere (µA) of cur-
rent leaking in or out. You may be familiar with other terms for input
mode like tristate, high-impedance, or hi-Z.

There are two purposes for putting a pin into input mode: (1) To pas-
sively read the state (1 or 0) of the pin as set by external circuitry, or (2)
To disconnect the output drivers from the pin. For lowest current draw,
inputs should always be as close to +5V or ground as possible. They
should not be allowed to float. Unused pins that are not connected to
circuitry should be set to output.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 209

2

When a pin is an output, it is internally connected to ground or +5V
through a very efficient CMOS switch. If it is lightly loaded (< 1mA),
the output voltage will be within a few millivolts of the power supply
rail (ground for 0; +5V for 1). Pins can sink as much as 25mA (output-
ting 0) and source up to 20 mA (outputting 1). Each of the two eight-
pin ports should not carry more than a total of 50mA (sink) or 40mA
(source). Pins P0 through P7 make up one port; P8 through P15 the
other.

2048-byte Erasable Memory Chip (U2)
U1 is permanently programmed at the factory and cannot be repro-
grammed, so your PBASIC2 programs must be stored elsewhere. That’s
the purpose of U2, the 24LC16B electrically erasable, programmable
read-only memory (EEPROM). EEPROM is a good medium for pro-
gram storage because it retains data without power, but can be repro-
grammed easily.

EEPROMs have two limitations: (1) They take a relatively long time
(as much as several milliseconds) to write data into memory, and (2)
There is a limit to the number of writes (approximately 10 million)
they will accept before wearing out. Because the primary purpose of
the BS2’s EEPROM is program storage, neither of these is normally a
problem. It would take many lifetimes to write and download 10 mil-
lion PBASIC2 programs! However, when you use the PBASIC2 Write
instruction to store data in EEPROM space be sure to bear these limita-
tions in mind.

Reset Circuit (U3)
When you first power up the BS2, it takes a fraction of a second for the
supply to reach operating voltage. During operation, weak batteries,
varying input voltages or heavy loads may cause the supply voltage to
wander out of acceptable operating range. When this happens, nor-
mally infallible processor and memory chips (U1 and U2) can make
mistakes or lock up. To prevent this, U1 must be stopped and reset
until the supply stabilizes. That is the job of U3, the S-8045HN reset
circuit. When the supply voltage is below 4V, U3 puts a logic low on
U1’s master-clear reset (MCLR) input. This stops U1 and causes all of
its I/O lines to electrically disconnect. In reset, U1 is dormant; alive
but inert.

BASIC Stamp II

Page 210 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

When the supply voltage is above 4V, U3 allows its output to be pulled
high by a 4.7k resistor to +5V, which also puts a high on U1’s MCLR
input. U1 starts its internal program at the beginning, which in turn
starts your PBASIC2 program from the beginning.

Power Supply (U4)
The previous discussion of the reset circuit should give you some idea
of how important a stable power supply is to correct operation of the
BS2. The first line of defense against power-supply problems is U4, the
S-81350HG 5-volt regulator. This device accepts a range of slightly over
5V up to 15V and regulates it to a steady 5V. This regulator draws mini-
mal current for its own use, so when your program tells the BS2 to go
into low-power Sleep, End or Nap modes, the total current draw aver-
ages out to approximately 100 microamperes (µA). (That figure assumes
no loads are being driven and that all I/O pins are at ground or +5V.)
When the BS2 is active, it draws approximately 8mA. Since U4 can
provide up to 50mA, the majority of its capacity is available for power-
ing your custom circuitry.

Circuits requiring more current than U4 can provide may incorporate
their own 5V supply. Connect this supply to VDD and leave U4’s input
(VIN) open.

Note that figure H-1 uses CMOS terms for the power supply rails, VDD

for the positive supply and VSS for ground or 0V reference. These terms
are correct because the main components are CMOS. Don’t be con-
cerned that other circuits you may come across use different nomen-
clature; for our purposes, the terms VDD, VCC, and +5V are interchange-
able, as are VSS, earth (British usage) and ground.

Serial Host Interface (Q1, Q2, and Q3)
The BS2 has no keyboard or monitor, so it relies on PC-based host soft-
ware to allow you to write, edit, download and debug PBASIC2 pro-
grams. The PC communicates with the BS2 through an RS-232 (COM
port) interface consisting of pins SIN, SOUT, and ATN (serial in, serial
out, and attention, respectively).

RS-232 uses two signaling voltages to represent the logic states 0 and 1;
+12V is 0 and –12V is 1. When an RS-232 sender has nothing to say, it

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 211

2

leaves its output in the 1 state (-12V). To begin a transmission, it out-
puts a 0 (+12V) for one bit time (the baud rate divided into 1 second;
e.g., bit time for 2400 baud = 1/2400 = 416.6µs).

You can see how the BS2 takes advantage of these characteristics in the
design of its serial interface. NPN transistor Q1 serves as a serial line
receiver. When SIN is negative, Q1 is switched off, so the 4.7k resistor
on its collector puts a high on pin RA2 of U1, the PBASIC2 interpreter
chip. When SIN goes high, Q1 switches on, putting a 0 on RA2/U1.

SOUT transmits data from U1 to the PC. When SOUT outputs a 1, it
borrows the negative resting-state voltage of SIN and reflects it back to
SOUT through a 4.7k resistor. When SOUT transmits a 0, it turns on
PNP transistor Q3 to put a +5V level on SOUT. In this way the BS2
outputs +5/–12V RS-232.

Of course, this method works only with the cooperation of the PC soft-
ware, which must not transmit serial data at the same time the BS2 is
transmitting.

The ATN line interfaces with the data-terminal ready (DTR) handshak-
ing line of the PC COM port. Electrically, it works like the SIN line
receiver, with a +12V signal at ATN turning on the Q2 transistor, pull-
ing its collector to ground. Q2’s collector is connected to the MCLR
(reset) line of the PBASIC2 interpreter chip, so turning on Q2 resets
U1. During programming, the STAMP2 host program pulses ATN high
to reset U1, then transmits a signal to U1 through SIN indicating that it
wants to download a new program. Other than when it wants to ini-
tiate programming, the STAMP2 host program holds ATN at –12V, al-
lowing U1 to run normally.

Your PBASIC2 programs may use the serial host interface to commu-
nicate with PC programs other than the STAMP2 host program. The
only requirement is that ATN must be either disconnected or at less
than +1V to avoid unintentionally resetting the BS2. See the Serin list-
ing for further information.

BASIC Stamp II

Page 212 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

PC-to-BS2 Connector Hookup
Figure H-2 shows how a DB9 programming connector for the BS2 is
wired. This connector allows the PC to reset the BS2 for programming,
download programs, and receive Debug data from the BS2. An addi-
tional pair of connections, pins 6 and 7 of the DB9 socket, lets the
STAMP2 host software identify the port to which the BS2 is connected.
If you plan to construct your own carrier board or make temporary
programming connections to a BS2 on a prototyping board, use this
drawing as a guide. If you also want to use this host interface connec-
tion to communicate between the BS2 and other PC programs, see the
writeup in the Serin listing for suggestions.

Figure H-2

1 2 3 4 5

6 7 8 9

Rx

Tx

DTR

GND

DSR RTS

SOUT (1)

SIN (2)

ATN (3)

VSS (4)

BS2 Pin (#)

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 213

2

BS2 Memory Organization

The BS2 has two kinds of memory; RAM for variables used by your
program, and EEPROM for storing the program itself. EEPROM may
also be used to store long-term data in much the same way that desk-
top computers use a hard drive to hold both programs and files.

An important distinction between RAM and EEPROM is this:

• RAM loses its contents when the BS2 loses power; when power
returns, all RAM locations are cleared to 0s.

• EEPROM retains the contents of memory, with or without power,
until it is overwritten (such as during the program-download-
ing process or with a Write instruction.)

In this section, we’ll look at both kinds of BS2 memory, how it’s orga-
nized, and how to use it effectively. Let’s start with RAM.

BS2 Data Memory (RAM)
The BS2 has 32 bytes of RAM. Of these, 6 bytes are reserved for input,
output, and direction control of the 16 input/output (I/O) pins. The
remaining 26 bytes are available for use as variables.

The table below is a map of the BS2’s RAM showing the built-in PBASIC
names.

BASIC Stamp II

Page 214 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Stamp II I/O and Variable Space
Word Name Byte Name Nibble Names Bit Names Special Notes
INS INL INA, INB, IN0 - IN7, Input pins; word, byte,

INH INC, IND IN8 - IN15 nibble and bit addressable.
OUTS OUTL OUTA, OUTB, OUT0 - OUT7, Output pins; word, byte,

OUTH OUTC, OUTD OUT8 - OUT15 nibble and bit addressable.
DIRS DIRL DIRA, DIRB, DIR0 - DIR7, I/O pin direction control;

DIRH DIRC, DIRD DIR8 - DIR15 word, byte, nibble and bit
addressable.

W0 B0 General Purpose; word, byte,
B1 nibble and bit addressable.

W1 B2 General Purpose; word, byte,
B3 nibble and bit addressable.

W2 B4 General Purpose; word, byte,
B5 nibble and bit addressable.

W3 B6 General Purpose; word, byte,
B7 nibble and bit addressable.

W4 B8 General Purpose; word, byte,
B9 nibble and bit addressable.

W5 B10 General Purpose; word, byte,
B11 nibble and bit addressable.

W6 B12 General Purpose; word, byte,
B13 nibble and bit addressable.

W7 B14 General Purpose; word, byte,
B15 nibble and bit addressable.

W8 B16 General Purpose; word, byte,
B17 nibble and bit addressable.

W9 B18 General Purpose; word, byte,
B19 nibble and bit addressable.

W10 B20 General Purpose; word, byte,
B21 nibble and bit addressable.

W11 B22 General Purpose; word, byte,
B23 nibble and bit addressable.

W12 B24 General Purpose; word, byte,
B25 nibble and bit addressable.

Table M-1. BS2 Memory Map

The Input/Output (I/O) Variables

As the map shows, the first three words of the memory map are asso-
ciated with the Stamp’s 16 I/O pins. The word variable INS is unique
in that it is read-only. The 16 bits of INS reflect the bits present at Stamp
I/O pins P0 through P15. It may only be read, not written. OUTS con-

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 215

2

tains the states of the 16 output latches. DIRS controls the direction
(input or output) of each of the 16 pins.

If you are new to devices that can change individual pins between in-
put and output, the INS/OUTS/DIRS trio may be a little confusing, so
we’ll walk through the possibilities.

A 0 in a particular DIRS bit makes the corresponding pin, P0 through
P15, an input. So if bit 5 of DIRS is 0, then P5 is an input. A pin that is an
input is at the mercy of circuitry outside the Stamp; the Stamp cannot
change its state. When the Stamp is first powered up, all memory loca-
tions are cleared to 0, so all pins are inputs (DIRS = %0000000000000000).

A 1 in a DIRS bit makes the corresponding pin an output. This means
that the corresponding bit of OUTS determines that pin’s state.

Suppose all pins’ DIRS are set to output (1s) and you look at the con-
tents of INS. What do you see? You see whatever is stored in the vari-
able OUTS.

OK, suppose all pins’ DIRS are set to input (0s) and external circuits
connected to the pins have them all seeing 0s. What happens to INS if
you write 1s to all the bits of OUTS? Nothing. INS will still contain 0s,
because with all pins set to input, the external circuitry is in charge.
However, when you change DIRS to output (1s), the bits stored in OUTS
will appear on the I/O pins.

These possibilities are summarized in the Figure M-1 below. To avoid
making the table huge, we’ll look at only one bit. The rules shown for
a single bit apply to all of the I/O bits/pins. Additionally, the external
circuitry producing the “external state” listed in the table can be over-
ridden by a Stamp output. For example, a 10k resistor to +5V will place
a 1 on an input pin, but if that pin is changed to output and cleared to
0, a 0 will appear on the pin, just as the table shows. However, if the
pin is connected directly to +5V and changed to output 0, the pin’s
state will remain 1. The Stamp simply cannot overcome a direct short,
and will probably be damaged in the bargain.

BASIC Stamp II

Page 216 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

To summarize: DIRS determines whether a pin’s state is set by exter-
nal circuitry (input, 0) or by the state of OUTS (output, 1). INS always
matches the actual states of the I/O pins, whether they are inputs or
outputs. OUTS holds bits that will only appear on pins whose DIRS
bits are set to output.

In programming the BS2, it’s often more convenient to deal with indi-
vidual bytes, nibbles or bits of INS, OUTS and DIRS rather than the
entire 16-bit words. PBASIC2 has built-in names for these elements,
listed below. When we talk about the low byte of these words, we mean
the byte corresponding to pins P0 through P7.

Figure M-1. Interaction of DIRS, INS and OUTS

The DIRS register controls which I/O pins are inputs and which are outputs. When
set to input (0), the corresponding bit in the OUTS register is disconnected and
ignored.

When set to output (1), the corresponding bit in the OUTS register is connected.
NOTE: “X” indicates state could be a 1 or a 0 and does not affect other elements.
“?” indicates state is unknown and could change erratically.

Table M-2. Predefined Names for Elements of DIRS, INS and OUTS
DIRS INS OUTS The entire 16-bit word

DIRL INL OUTL The low byte of the word

DIRH INH OUTH The high byte of the word

DIRA INA OUTA The low nibble of low byte

DIRB INB OUTB The high nibble of low byte

DIRC INC OUTC The low nibble of high byte

DIRD IND OUTD The high nibble of high byte

DIR0 IN0 OUT0 The low bit; corresponds to P0

...(continues 1 through 14)... Bits 1 - 14; corresponds to P1 through P14

DIR15 IN15 OUT15 The high bit; corresponds to P15

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 217

2

Using the names listed above, you can access any piece of any I/O
variables. And as we’ll see in the next section, you can use modifiers to
access any piece of any variable.

Predefined “Fixed” Variables
As table M-1 shows, the BS2’s memory is organized into 16 words of
16 bits each. The first three words are used for I/O. The remaining 13
words are available for use as general purpose variables.

Just like the I/O variables, the user variables have predefined names:
W0 through W12 and B0 through B25. B0 is the low byte of W0; B1 is
the high byte of W0; and so on through W12 (B24=low byte, B25=high
byte).

Unlike I/O variables, there’s no reason that your program variables
have to be stuck in a specific position in the Stamp’s physical memory.
A byte is a byte regardless of its location. And if a program uses a mix-
ture of variables of different sizes, it can be a pain in the neck to logi-
cally dole them out or allocate storage.

More importantly, mixing fixed variables with automatically allocated
variables (discussed in the next section) is an invitation to bugs. A fixed
variable can overlap an allocated variable, causing data meant for one
variable to show up in another!

We recommend that you avoid using the fixed variables in most situa-
tions. Instead, let PBASIC2 allocate variables as described in the next
section. The host software will organize your storage requirements to
make optimal use of the available memory.

Why have fixed variables at all? First, for a measure of compatibility
with the BS1, which has only fixed variables. Second, for power users
who may dream up some clever hack that requires the use of fixed
variables. You never know...

Defining and Using Variables
Before you can use a variable in a PBASIC2 program you must declare
it. “Declare” is jargon for letting the Stamp know that you plan to use
a variable, what you want to call it, and how big it is. Although PBASIC

BASIC Stamp II

Page 218 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

does have predefined variables that you can use without declaring them
first (see previous section), the preferred way to set up variables is to
use the directive VAR. The syntax for VAR is:

symbol VAR size

where:

• Symbol is the name by which you will refer to the variable. Names
must start with a letter, can contain a mixture of letters, numbers,
and underscore (_) characters, and must not be the same as
PBASIC keywords or labels used in your program. Additionally,
symbols can be up to 32 characters long. See Appendix B for a list
of PBASIC keywords. PBASIC does not distinguish between
upper and lower case, so the names MYVARIABLE, myVariable,
and MyVaRiAbLe are all equivalent.

• Size establishes the number of bits of storage the variable is to
contain. PBASIC2 gives you a choice of four sizes:

bit (1 bit)
nib (nibble; 4 bits)
byte (8 bits)
word (16 bits)

Optionally, specifying a number within parentheses lets you define a
variable as an array of bits, nibs, bytes, or words. We’ll look at arrays
later on.

Here are some examples of variable declarations using VAR:

‘ Declare variables.
mouse var bit ‘ Value can be 0 or 1.
cat var nib ‘ Value in range 0 to 15.
dog var byte ‘ Value in range 0 to 255.
rhino var word ‘ Value in range 0 to 65535.

A variable should be given the smallest size that will hold the largest
value that might ever be stored in it. If you need a variable to hold the
on/off status (1 or 0) of switch, use a bit. If you need a counter for a
FOR/NEXT loop that will count from 1 to 10, use a nibble. And so on.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 219

2

If you assign a value to a variable that exceeds its size, the excess bits
will be lost. For example, suppose you use the nibble variable cat from
the example above and write cat = 91 (%1011011 binary), what will cat
contain? It will hold only the lowest 4 bits of 91—%1011 (11 decimal).

You can also define multipart variables called arrays. An array is a
group of variables of the same size, and sharing a single name, but
broken up into numbered cells. You can define an array using the fol-
lowing syntax:

symbol VAR size(n)

where symbol and size are the same as for normal variables. The new
element, (n), tells PBASIC how many cells you want the array to have.
For example:

myList var byte(10) ‘ Create a 10-byte array.

Once an array is defined, you can access its cells by number. Number-
ing starts at 0 and ends at n–1. For example:

myList(3) = 57
debug ? myList(3)

The debug instruction will display 57. The real power of arrays is that
the index value can be a variable itself. For example:

myBytes var byte(10) ‘ Define 10-byte array.
index var nib ‘ Define normal nibble variable.

For index = 0 to 9 ‘ Repeat with index= 0,1,2...9
 myBytes(index)= index*13 ‘ Write index*13 to each cell of array.
Next

For index = 0 to 9 ‘ Repeat with index= 0,1,2...9
 debug ? myBytes(index) ‘ Show contents of each cell.
Next
stop

If you run this program, Debug will display each of the 10 values stored
in the cells of the array: myBytes(0) = 0*13 = 0, myBytes(0) = 1*13 = 13,
myBytes(2) = 2*13 = 26...myBytes(9) = 9*13 = 117.

BASIC Stamp II

Page 220 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

A word of caution about arrays: If you’re familiar with other BASICs
and have used their arrays, you have probably run into the “subscript
out of range” error. Subscript is another term for the index value. It’s
‘out of range’ when it exceeds the maximum value for the size of the
array. For instance, in the example above, myBytes is a 10-cell array.
Allowable index numbers are 0 through 9. If your program exceeds
this range, PBASIC2 will not respond with an error message. Instead, it
will access the next RAM location past the end of the array. This can
cause all sorts of bugs.

If accessing an out-of-range location is bad, why does PBASIC2 allow
it? Unlike a desktop computer, the BS2 doesn’t always have a display
device connected to it for displaying error messages. So it just contin-
ues the best way it knows how. It’s up to the programmer (you!) to
prevent bugs.

Another unique property of PBASIC2 arrays is this: You can refer to
the 0th cell of the array by using just the array’s name without an in-
dex value. For example:

myBytes var byte(10) ‘ Define 10-byte array.
myBytes(0) = 17 ‘ Store 17 to 0th cell.

debug ? myBytes(0) ‘ Display contents of 0th cell.
debug ? myBytes ‘ Also displays contents of 0th cell.

This works with the string capabilities of the Debug and Serout
instructions. A string is a byte array used to store text. A string must
include some indicator to show where the text ends. The indicator can
be either the number of bytes of text, or a marker (usually a byte con-
taining 0; also known as a null) located just after the end of the text.
Here are a couple of examples:

‘ Example 1 (counted string):
myText var byte(10) ‘ An array to hold the string.

myText(0) = “H”:myText(1) = “E” ‘ Store “HELLO” in first 5 cells...
myText(2) = “L”:myText(3) = “L”
myText(4) = “0”:myText(9) = 5 ‘ Put length (5) in last cell*

debug str myText\myText(9) ‘ Show “HELLO” on the PC screen.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 221

2

‘ Example 2 (null-terminated string):
myText var byte(10) ‘ An array to hold the string.

myText(0) = “H”:myText(1) = “E” ‘ Store “HELLO” in first 5 cells...
myText(2) = “L”:myText(3) = “L”
myText(4) = “0”:myText(5) = 0 ‘ Put null (0) after last character.

debug str myText ‘ Show “HELLO” on the PC screen.

(*Note to experienced programmers: Counted strings normally store
the count value in their 0th cell. This kind of string won’t work with
the STR prefix of Debug and Serout. STR cannot be made to start read-
ing at cell 1; debug str myText(1) causes a syntax error. Since arrays
have a fixed length anyway, it does no real harm to put the count in the
last cell.)

Aliases and Variable Modifiers
An alias variable is an alternative name for an existing variable. For
example:

cat var nib ‘ Assign a 4-bit variable.
tabby var cat ‘ Another name for the same 4 bits.

In that example, tabby is an alias to the variable cat. Anything stored in
cat shows up in tabby and vice versa. Both names refer to the same
physical piece of RAM. This kind of alias can be useful when you want
to reuse a temporary variable in different places in your program, but
also want the variable’s name to reflect its function in each place. Use
caution, because it is easy to forget about the aliases. During debug-
ging, you’ll end up asking ‘how did that value get here?!’ The answer
is that it was stored in the variable’s alias.

An alias can also serve as a window into a portion of another variable.
Here the alias is assigned with a modifier that specifies what part:

rhino var word ‘ A 16-bit variable.
head var rhino.highbyte ‘ Highest 8 bits of rhino.
tail var rhino.lowbyte ‘ Lowest 8 bits of rhino.

Given that example, if you write the value %1011000011111101 to rhino,
then head would contain %10110000 and tail %11111101.

BASIC Stamp II

Page 222 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Table M-3 lists all the variable modifiers. PBASIC2 lets you apply these
modifiers to any variable name, including fixed variables and I/O vari-
ables, and to combine them in any fashion that makes sense. For ex-
ample, it will allow:

rhino var word ‘ A 16-bit variable.
eye var rhino.highbyte.lownib.bit1 ‘ A bit.

Table M-3. Variable Modifiers
SYMBOL DEFINITION

LOWBYTE ‘low byte of a word

HIGHBYTE ‘high byte of a word

BYTE0 ‘byte 0 (low byte) of a word

BYTE1 ‘byte 1 (high byte) of a word

LOWNIB ‘low nibble of a word or byte

HIGHNIB ‘high nibble of a word or byte

NIB0 ‘nib 0 of a word or byte

NIB1 ‘nib 1 of a word or byte

NIB2 ‘nib 2 of a word

NIB3 ‘nib 3 of a word

LOWBIT ‘low bit of a word, byte, or nibble

HIGHBIT ‘high bit of a word, byte, or nibble

BIT0 ‘bit 0 of a word, byte, or nibble

BIT1 ‘bit 1 of a word, byte, or nibble

BIT2 ‘bit 2 of a word, byte, or nibble

BIT3 ‘bit 3 of a word, byte, or nibble

BIT4 ‘bit 4 of a word or byte

BIT5 ‘bit 5 of a word or byte

BIT6 ‘bit 6 of a word or byte

BIT7 ‘bit 7 of a word or byte

BIT8 ‘bit 8 of a word

BIT9 ‘bit 9 of a word

BIT10 ‘bit 10 of a word

BIT11 ‘bit 11 of a word

BIT12 ‘bit 12 of a word

BIT13 ‘bit13 of a word

BIT14 ‘bit14 of a word

BIT15 ‘bit15 of a word

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 223

2

The commonsense rule for combining modifiers is that they must get
progressively smaller from left to right. It would make no sense to
specify, for instance, the low byte of a nibble, because a nibble is smaller
than a byte! And just because you can stack up modifiers doesn’t mean
that you should unless it is the clearest way to express the location of
the part you want get at. The example above might be improved:

rhino var word ‘ A 16-bit variable.
eye var rhino.bit9 ‘ A bit.

Although we’ve only discussed variable modifiers in terms of creating
alias variables, you can also use them within program instructions.
Example:

rhino var word ‘ A 16-bit variable.
head var rhino.highbyte ‘ Highest 8 bits of rhino.

rhino = 13567
debug ? head ‘ Show the value of alias variable head.
debug ? rhino.highbyte ‘ rhino.highbyte works too.
stop

You’ll run across examples of this usage in application notes and sample
programs—it’s sometimes easier to remember one variable name and
specify parts of it within instructions than to define and remember
names for the parts.

Modifiers also work with arrays; for example:

myBytes var byte(10) ‘ Define 10-byte array.
myBytes(0) = $AB ‘ Hex $AB into 0th byte
debug hex ? myBytes.lownib(0) ‘ Show low nib ($B)
debug hex ? myBytes.lownib(1) ‘ Show high nib ($A)
If you looked closely at that example, you probably thought it was a
misprint. Shouldn’t myBytes.lownib(1) give you the low nibble of byte
1 of the array rather than the high nibble of byte 0? Well, it doesn’t. The
modifier changes the meaning of the index value to match its own size.
In the example above, when myBytes() is addressed as a byte array, it
has 10 cells numbered 0 through 9. When it is addressed as a nibble
array, using myBytes.lownib(), it has 20 cells numbered 0 through 19.
You could also address it as individual bits using myBytes.lowbit(), in
which case it would have 80 cells numbered 0 through 79.

BASIC Stamp II

Page 224 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

What if you use something other than a “low” modifier, say
myBytes.highnib()? That will work, but its only effect will be to start
the nibble array with the high nibble of myBytes(0). The nibbles you
address with this nib array will all be contiguous—one right after the
other—as in the previous example.

myBytes var byte(10) ‘ Define 10-byte array.

myBytes(0) = $AB ‘ Hex $AB into 0th byte
myBytes(1) = $CD ‘ Hex $CD into next byte
debug hex ? myBytes.highnib(0) ‘ Show high nib of cell 0 ($A)
debug hex ? myBytes.highnib(1) ‘ Show next nib ($D)

This property of modified arrays makes the names a little confusing. If
you prefer, you can use the less-descriptive versions of the modifier
names; bit0 instead of lowbit, nib0 instead of low nib, and byte0 in-
stead of low byte. These have exactly the same effect, but may be less
likely to be misconstrued.

You may also use modifiers with the 0th cell of an array by referring to
just the array name without the index value in parentheses. It’s fair
game for aliases and modifiers, both in VAR directives and in instruc-
tions:

myBytes var byte(10) ‘ Define 10-byte array.
zipBit var myBytes.lowbit ‘ Bit 0 of myBytes(0).
debug ? myBytes.lownib ‘ Show low nib of 0th byte.

Memory Map
If you’re working on a program and wondering how much variable
space you have left, you can view a memory map by pressing ALT-M.
The Stamp host software will check your program for syntax errors
and, if the program’s syntax is OK, will present you with a color-coded
map of the available RAM. You’ll be able to tell at a glance how much
memory you have used and how much remains. (You may also press
the space bar to cycle through similar maps of EEPROM program
memory.)

Two important points to remember about this map are:

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 225

2

(1) It does not correlate the names of your variables to their locations.
The Stamp software arranges variables in descending order of
size, starting with words and working downward to bits. But
there’s no way to tell from the memory map exactly which
variable is located where.

(2) Fixed variables like B3 and W1 and any aliases you give them do
not show up on the memory map as memory used. The Stamp
software ignores fixed variables when it arranges automatically
allocated variables in memory. Fixed and allocated variables can
overlap. As we’ve said before, this can breed some Godzilla-sized
bugs!

BS2 Constants and Compile-Time Expressions

Suppose you’re working on a program called “Three Cheers” that
flashes LEDs, makes hooting sounds, and activates a motor that crashes
cymbals together—all in sets of three. A portion of your PBASIC2 pro-
gram might contain something like:

FOR count = 1 to 3
 GOSUB makeCheers
NEXT
...
FOR count = 1 to 3
 GOSUB blinkLEDs
NEXT
...
FOR count = 1 to 3
 GOSUB crashCymbals
NEXT

The numbers 1 and 3 in the line FOR count = 1 to 3... are called con-
stants. That’s because while the program is running nothing can hap-
pen to change those numbers. This distinguishes constants from vari-
ables, which can change while the program is running.

PBASIC2 allows you to use several numbering systems. By default, it
assumes that numbers are in decimal (base 10), our everyday system
of numbers. But you can also use binary and hexadecimal (hex) num-
bers by identifying them with prefixes. And PBASIC2 will automati-
cally convert quoted text into the corresponding ASCII code(s).

BASIC Stamp II

Page 226 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

For example:

99 decimal
%1010 binary
$FE hex
“A” ASCII code for A (65)

You can assign names to constants using the CON directive. Once cre-
ated, named constants may be used in place of the numbers they rep-
resent. For example:

cheers con 3 ‘ Number of cheers.

FOR count = 1 to cheers
 GOSUB makeCheers
NEXT
...

That code would work exactly the same as the previous FOR/NEXT
loops. The Stamp host software would substitute the number 3 for the
constant name cheers throughout your program. Note that it would
not mess with the label makeCheers, which is not an exact match for
cheers. (Like variable names, labels, and instructions, constant names
are not case sensitive. CHEERS, and ChEErs would all be processed as
identical to cheers.)

Using named constants does not increase the amount of code down-
loaded to the BS2, and it often improves the clarity of the program.
Weeks after a program is written, you may not remember what a par-
ticular number was supposed to represent—using a name may jog your
memory (or simplify the detective work needed to figure it out).

Named constants have another benefit. Suppose the “Three Cheers”
program had to be upgraded to “Five Cheers.” In the original example
you would have to change all of the 3s to 5s. Search and replace would
help, but you might accidentally change some 3s that weren’t num-
bers of cheers, too. A debugging mess! However, if you made smart
use of a named constant; all you would have to do is change 3 to 5 in
one place, the CON directive:

cheers con 5 ‘ Number of cheers.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 227

2

Now, assuming that you used the constant cheers wherever your
program needed ‘the number of cheers,’ your upgrade would be
complete.

You can take this idea a step further by defining constants with expres-
sions—groups of math and/or logic operations that the Stamp host
software solves (evaluates) at compile time (the time right after you
press ALT-R and before the BS2 starts running your program). For ex-
ample, suppose the “Cheers” program also controls a pump to fill
glasses with champagne. The number of glasses to fill is always twice
the number of cheers, minus 1. Another constant:

cheers con 5 ‘ # of cheers.
glasses con cheers*2-1 ‘ # of glasses.

As you can see, one constant can be defined in terms of another. That
is, the number glasses depends on the number cheers.

The expressions used to define constants must be kept fairly simple.
The Stamp host software solves them from left to right, and doesn’t
allow you to use parentheses to change the order of evaluation. Only
nine operators are legal in constant expressions as shown in Table M-4.
This may seem odd, since the BS2’s runtime math operations can be
made quite complex with bushels of parentheses and fancy operators,
but it’s the way things are. Seriously, it might not make sense to allow
really wild math in constant expressions, since it would probably ob-
scure rather than clarify the purpose of the constants being defined.

Table M-4. Operators Allowed in Constant Expressions

(all operations performed as 16-bit math)
+ add
– subtract
* multiply
/ divide
<< shift left
>> shift right
& logical AND
| logical OR
^ logical XOR

BASIC Stamp II

Page 228 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BS2 EEPROM Data Storage

When you press ALT-R (run), your program is loaded into the BS2’s
EEPROM starting at the highest address (2047) and working down-
ward. Most programs don’t use the entire EEPROM, so PBASIC2 lets
you store data in the unused lower portion of the EEPROM.

Since programs are stored from the top of memory downward, your
data is stored in the bottom of memory working upward. If there’s an
overlap, the Stamp host software will detect it and display an error
message.

Data directives are used to store data in EEPROM, or to assign a name
to an unused stretch of EEPROM (more on that later). For example:

table data 72,69,76,76,79

That data directive places a series of numbers into EEPROM memory
starting at address 0, like so:

Address: 0 1 2 3 4
Contents: 72 69 76 76 79

Data uses a counter, called a pointer, to keep track of available EEPROM
addresses. The value of the pointer is initially 0. When PBASIC2 en-
counters a Data directive, it stores a byte at the current pointer ad-
dress, then increments (adds 1 to) the pointer. The name that Data as-
signs (table in the example above) becomes a constant that is equal to
the first value of the pointer; the address of the first of the series of
bytes stored by that Data directive. Since the data above starts at 0, the
constant table equals 0.

If your program contains more than one Data directive, subsequent
Datas start with the pointer value left by the previous Data. For ex-
ample, if your program contains:

table1 data 72,69,76,76,79
table2 data 104,101,108,108,111

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 229

2

The first Data directive will start at 0 and increment the pointer: 1, 2, 3,
4, 5. The second Data directive will pick up the pointer value of 5 and
work upward from there. As a result, the first 10 bytes of EEPROM
will contain:

Address: 0 1 2 3 4 5 6 7 8 9
Contents: 72 69 76 76 79 104 101 108 108 111

...and the constants table1 and table2 will be equal to 0 and 5, respec-
tively.

A common use for Data is to store strings; sequences of bytes repre-
senting text. As we saw earlier, PBASIC2 converts quoted text like “A”
into the corresponding ASCII character code (65 in this case). You can
place quotes around a whole chunk of text used in a Data directive,
and PBASIC2 will understand it to mean a series of bytes. The follow-
ing three Data directives are equivalent:

table1 data 72,69,76,76,79
table2 data “H”,”E”,”L”,”L”,”O”
table3 data “HELLO”

Data can also break word-sized (16-bit) variables into bytes for storage
in the EEPROM. Just precede the 16-bit value with the prefix “word”
as follows:

twoPiece data word $F562 ‘ Put $62 in low byte, $F5 in high.

Moving the Data Pointer
You can specify a pointer address in your Data directive, like so:

greet data @32,”Hello there”

The number following the at sign (@) becomes the initial pointer value,
regardless of the pointer’s previous value. Data still automatically in-
crements the pointer value as in previous examples, so Data directives
that follow the example above will start at address 43.

Another way to move the pointer is to tell Data to set aside space for a
particular number of bytes. For example:

BASIC Stamp II

Page 230 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

table1 data 13,26,117,0,19,56 ‘ Place bytes into EEPROM.
table2 data (20) ‘ Move pointer ahead by 20.

The value in parentheses tells Data to move its pointer, but not to store
anything in those bytes. The bytes at the addresses starting at table2
could therefore contain leftover data from previous programs. If that’s
not acceptable, you can tell Data to fill those bytes up with a particular
value:

table2 data 0(20) ‘ Fill 20 bytes with 0s.

The previous contents of those 20 EEPROM bytes will be overwritten
with 0s.

If you are writing programs that store data in EEPROM at runtime,
this is an important concept: EEPROM is not overwritten during
programming unless it is (1) needed for program storage, or (2) filled
by a Data directive specifying data to be written. A directive like Data
(20) does not change the data stored in the corresponding EEPROM
locations.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 231

2

BS2 Runtime Math and Logic

The BS2, like any computer, excels at math and logic. However, being
designed for control applications, the BS2 does math a little differently
than a calculator or spreadsheet program. This section will help you
understand BS2 numbers, math, and logic.

Number Representations
In your programs, you may express a number in various ways, de-
pending on how the number will be used and what makes sense to
you. By default, the BS2 recognizes numbers like 0, 99 or 62145 as be-
ing in our everyday decimal (base-10) system. However, you may also
use hexadecimal (base-16; also called hex) or binary (base-2).

Since the symbols used in decimal, hex and binary numbers overlap
(e.g., 1 and 0 are used by all; 0 through 9 apply to both decimal and hex)
the Stamp software needs prefixes to tell the numbering systems apart:

99 Decimal (no prefix)
$1A6 Hex
%1101 Binary

The Stamp also automatically converts quoted text into ASCII codes,
and allows you to apply names (symbols) to constants from any of the
numbering systems. Examples:

letterA con "A" ' ASCII code for A (65).
cheers con 3
hex128 con $80
fewBits con %1101

For more information on constants, see the section BS2 Constants and
Compile-Time Expressions.

When is Runtime?
Not all of the math or logic operations in a BS2 program are solved by
the BS2. Operations that define constants are solved by the Stamp host
software before the program is downloaded to the BS2. This prepro-
cessing before the program is downloaded is referred to as “compile
time.” (See the section BS2 Constants and Compile-Time Expressions.)

BASIC Stamp II

Page 232 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

After the download is complete and the BS2 starts executing your pro-
gram—this is referred to as “runtime.” At runtime the BS2 processes
math and logic operations involving variables, or any combination of
variables and constants.

Because compile-time and runtime expressions appear similar, it can
be hard to tell them apart. A few examples will help:

cheers con 3
glasses con cheers*2-1 ' Compile time.
oneNinety con 100+90 ' Compile time.
noWorkee con 3*b2 ' ERROR: no variables allowed.

b1 = glasses ' Same as b1 = 5.
b0 = 99 + b1 ' Run time.
w1 = oneNinety ' 100 + 90 solved at compile time.
w1 = 100 + 90 ' 100 + 90 solved at runtime.

Notice that the last example is solved at runtime, even though the math
performed could have been solved at compile time since it involves
two constants. If you find something like this in your own programs,
you can save some EEPROM space by converting the run-time expres-
sion 100+90 into a compile-time expression like oneNinety con 100+90.

To sum up: compile-time expressions are those that involve only con-
stants; once a variable is involved, the expression must be solved at
runtime. That’s why the line “noWorkee con 3*b2” would generate an
error message. The CON directive works only at compile time, so vari-
ables are not allowed.

Order of Operations
Let’s talk about the basic four operations of arithmetic: addition (+),
subtraction (-), multiplication (*), and division (/).

You may recall that the order in which you do a series of additions and
subtractions doesn’t affect the result. The expression 12+7-3+22 works
out the same as 22-3+12+7. Howver, when multiplication or division
are involved, it’s a different story; 12+3*2/4 is not the same as 2*12/
4+3. In fact, you may have the urge to put parentheses around por-
tions of those equations to clear things up. Good!

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 233

2

The BS2 solves math problems in the order they are written—from left
to right. The result of each operation is fed into the next operation. So
to compute 12+3*2/4, the BS2 goes through a sequence like this:

12 + 3 = 5
5 * 2 = 10
10 / 4 = 2
the answer is 2

Note that because the BS2 performs integer math (whole numbers only)
that 10 / 4 results in 2, not 2.5. We’ll talk more about integers in the
next section.

Some other dialects of BASIC would compute that same expression
based on their precedence of operators, which requires that multipli-
cation and division be done before addition. So the result would be:

3 * 2 = 6
6 / 4 = 1
12 + 1 = 13
the answer is 13

Once again, because of integer math, the fractional portion of 6 / 4 is
dropped, so we get 1 instead of 1.5.

Given the potential for misinterpretation, we must use parentheses to
make our mathematical intentions clear to the BS2 (not to mention
ourselves and other programmers who may look at our program). With
parentheses. Enclosing a math operation in parentheses gives it prior-
ity over other operations. For example, in the expression 1+(3*4), the
3*4 would be computed first, then added to 1.

To make the BS2 compute the previous expression in the conventional
BASIC way, you would write it as 12 + (3*2/4). Within the parenthe-
ses, the BS2 works from left to right. If you wanted to be even more
specific, you could write 12 + ((3*2)/4). When there are parentheses
within parentheses, the BS2 works from the innermost parentheses
outward. Parentheses placed within parentheses are said to be nested.
The BS2 lets you nest parentheses up to eight levels deep.

BASIC Stamp II

Page 234 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Integer Math
The BS2 performs all math operations by the rules of positive integer
math. That is, it handles only whole numbers, and drops any fractional
portions from the results of computations. Although the BS2 can inter-
pret two’s complement negative numbers correctly in Debug and Serout
instructions using modifiers like SDEC (for signed decimal), in calcu-
lations it assumes that all values are positive. This yields correct re-
sults with two’s complement negative numbers for addition, subtrac-
tion, and multiplication, but not for division.

This subject is a bit too large to cover here. If you understood the pre-
ceding paragraph, great. If you didn’t, but you understand that han-
dling negative numbers requires a bit more planning (and probably
should be avoided when possible), good. And if you didn’t understand
the preceding paragraph at all, you might want to do some supple-
mental reading on computer-oriented math.

Unary and Binary Operators
In a previous section we discussed the operators you’re already famil-
iar with: +, - ,* and /. These operators all work on two values, as in 1 +
3 or 26*144. The values that operators process are referred to as argu-
ments. So we say that these operators take two arguments.

The minus sign (-) can also be used with a single argument, as in -4.
Now we can fight about whether that’s really shorthand for 0-4 and
therefore does have two arguments, or we can say that - has two roles:
as a subtraction operator that takes two arguments, and as a negation
operator that takes one. Operators that take one argument are called
unary operators and those that take two are called binary operators.
Please note that the term “binary operator” has nothing to do with
binary numbers—it’s just an inconvenient coincidence that the same
word, meaning ‘involving two things’ is used in both cases.

In classifying the BS2’s math and logic operators, we divide them into
two types: unary and binary. Remember the previous discussion of
operator precedence? Unary operators take precedence over binary—
the unary operation is always performed first. For example SQR is the
unary operator for square root. In the expression 10 - SQR 16, the BS2
first takes the square root of 16, then subtracts it from 10.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 235

2

16-bit Workspace
Most of the descriptions that follow say something like ‘computes (some
function) of a 16-bit value.’ This does not mean that the operator does
not work on smaller byte or nibble values. It just means that the com-
putation is done in a 16-bit workspace. If the value is smaller than 16
bits, the BS2 pads it with leading 0s to make a 16-bit value. If the 16-bit
result of a calculation is to be packed into a smaller variable, the higher-
order bits are discarded (truncated).

Keep this in mind, especially when you are working with two’s comple-
ment negative numbers, or moving values from a larger variable to a
smaller one. For example, look what happens when you move a two’s
complement negative number into a byte:

b2 = -99
debug sdec ? b2 ' Show signed decimal result (157).

How did -99 become 157? Let’s look at the bits: 99 is %01100011 binary.
When the BS2 negates 99, it converts the number to 16 bits
%0000000001100011, and then takes the two’s complement,
%1111111110011101. Since we’ve asked for the result to be placed in an
8-bit (byte) variable, the upper eight bits are truncated and the lower
eight bits stored in the byte: %10011101.

Now for the second half of the story. Debug’s SDEC modifier expects a
16-bit, two’s complement value, but has only a byte to work with. As
usual, it creates a 16-bit value by padding the leading eight bits with
0s: %0000000010011101. And what’s that in signed decimal? 157.

Each of the instruction descriptions below includes an example. It’s a
good idea to test your understanding of the operators by modifying
the examples and seeing whether you can predict the results. Experi-
ment, learn, and work the Debug instruction until it screams for mercy!
The payoff will be a thorough understanding of both the BS2 and com-
puter-oriented math.

BASIC Stamp II

Page 236 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Unary (one-argument) Operators

Six Unary Operators are listed and explained below.

Table M-5. Unary Operators

Operator Description

ABS Returns absolute value

SQR Returns square root of value

DCD 2n-power decoder

NCD Priority encoder of a 16-bit value

SIN Returns two’s compliment sine

COS Returns two’s compliment cosine

ABS
Converts a signed (two’s complement) 16-bit number to its absolute
value. The absolute value of a number is a positive number represent-
ing the difference between that number and 0. For example, the abso-
lute value of -99 is 99. The absolute value of 99 is also 99. ABS can be
said to strip off the minus sign from a negative number, leaving posi-
tive numbers unchanged.

ABS works on two’s complement negative numbers. Examples of ABS
at work:

w1 = -99 ' Put -99 (two's complement format) into w1.
debug sdec ? w1 ' Display it on the screen as a signed #.
w1 = ABS w1 ' Now take its absolute value.
debug sdec ? w1 ' Display it on the screen as a signed #.

SQR
Computes the integer square root of an unsigned 16-bit number. (The
number must be unsigned, when you think about it, because the square
root of a negative number is an ‘imaginary’ number.) Remember that
most square roots have a fractional part that the BS2 discards in doing
its integer-only math. So it computes the square root of 100 as 10 (cor-
rect), but the square root of 99 as 9 (the actual is close to 9.95). Example:

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 237

2

debug SQR 100 ' Display square root of 100 (10).
debug SQR 99 ' Display of square root of 99 (9 due to truncation)

DCD
2n-power decoder of a four-bit value. DCD accepts a value from 0 to
15, and returns a 16-bit number with that bit number set to 1. For ex-
ample:

w1 = DCD 12 ' Set bit 12.
debug bin ? w1 ' Display result (%0001000000000000)

NCD
Priority encoder of a 16-bit value. NCD takes a 16-bit value, finds the
highest bit containing a 1 and returns the bit position plus one (1 through
16). If no bit is set—the input value is 0—NCD returns 0. NCD is a fast
way to get an answer to the question “what is the largest power of two
that this value is greater than or equal to?” The answer that NCD re-
turns will be that power, plus one. Example:

w1 = %1101 ' Highest bit set is bit 3.
debug ? NCD w1 ' Show the NCD of w1 (4).

-
Negates a 16-bit number (converts to its two’s complement).

w1 = -99 ' Put -99 (two's complement format) into w1.
debug sdec ? w1 ' Display it on the screen as a signed #.
w1 = ABS w1 ' Now take its absolute value.
debug sdec ? w1 ' Display it on the screen as a signed #.

~
Complements (inverts) the bits of a number. Each bit that contains a 1
is changed to 0 and each bit containing 0 is changed to 1. This process
is also known as a “bitwise NOT.” For example:

b1 = %11110001 ' Store bits in byte b1.
debug bin ? b1 ' Display in binary (%11110001).
b1 = ~ b1 ' Complement b1.
debug bin ? b1 ' Display in binary (%00001110).

BASIC Stamp II

Page 238 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

SIN
Returns the two’s complement, 8-bit sine of an angle specified as an 8-
bit (0 to 255) angle. To understand the BS2 SIN operator more com-
pletely, let’s look at a typical sine function. By definition: given a circle
with a radius of 1 unit (known as a unit circle), the sine is the y-coordi-
nate distance from the center of the circle to its edge at a given angle.
Angles are measured relative to the 3-o'clock position on the circle,
increasing as you go around the circle counterclockwise.

At the origin point (0 degrees) the sine is 0, because that point has the
same y (vertical) coordinate as the circle center; at 45 degrees, sine is
0.707; at 90 degrees, 1; 180 degrees, 0 again; 270 degrees, -1.

The BS2 SIN operator breaks the circle into 0 to 255 units instead of 0 to
359 degrees. Some textbooks call this unit a binary radian or brad. Each
brad is equivalent to 1.406 degrees. And instead of a unit circle, which
results in fractional sine values between 0 and 1, BS2 SIN is based on a
127-unit circle. Results are given in two’s complement in order to ac-
commodate negative values. So, at the origin, SIN is 0; at 45 degrees
(32 brads), 90; 90 degrees (64 brads), 127; 180 degrees (128 brads), 0;
270 degrees (192 brads), -127.

To convert brads to degrees, multiply by 180 then divide by 128; to
convert degrees to brads, multiply by 128, then divide by 180. Here’s a
small program that demonstrates the SIN operator:

degr var w1 ' Define variables.
sine var w2
for degr = 0 to 359 step 45 ' Use degrees.
 sine = SIN (degr * 128 / 180) ' Convert to brads, do SIN.
 debug "Angle: ",DEC degr,tab,"Sine: ",SDEC sine,cr ' Display.
next

COS
Returns the two’s complement, 8-bit cosine of an angle specified as an
8-bit (0 to 255) angle. See the explanation of the SIN operator above.
COS is the same in all respects, except that the cosine function returns
the x distance instead of the y distance. To demonstrate the COS op-
erator, use the example program from SIN above, but substitute COS
for SIN.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 239

2

Binary (two-argument) Operators

Sixteen Binary Operators are listed and explaned below.

Table M-6. Binary Operators

Operator Description

+ Addition

- Subtraction

/ Division

// Remainder of division

* Multiplication

** High 16-bits of multiplication

*/ Multiply by 8-bit whole and 8-bit part

MIN Limits a value to specified low

MAX Limits a value to specified high

DIG Returns specified digit of number

<< Shift bits left by specified amount

>> Shift bits right by specified amount

REV Reverse specified number of bits

& Bitwise AND of two values

| Bitwise OR of two values

^ Bitwise XOR of two values

+
Adds variables and/or constants, returning a 16-bit result. Works ex-
actly as you would expect with unsigned integers from 0 to 65535. If
the result of addition is larger than 65535, the carry bit will be lost. If
the values added are signed 16-bit numbers and the destination is a
16-bit variable, the result of the addition will be correct in both sign
and value. For example, the expression -1575 + 976 will result in the
signed value -599. See for yourself:

BASIC Stamp II

Page 240 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

w1 = -1575
w2 = 976
w1 = w1 + w2 ' Add the numbers.
debug sdec ? w1 ' Show the result (-599).

-
Subtracts variables and/or constants, returning a 16-bit result. Works
exactly as you would expect with unsigned integers from 0 to 65535. If
the result is negative, it will be correctly expressed as a signed 16-bit
number. For example:

w1 = 1000
w2 = 1999
w1 = w1 - w2 ' Subtract the numbers.
debug sdec ? w1 ' Show the result (-999).

/
Divides variables and/or constants, returning a 16-bit result. Works
exactly as you would expect with unsigned integers from 0 to 65535.
Use / only with positive values; signed values do not provide correct
results. Here’s an example of unsigned division:

w1 = 1000
w2 = 5
w1 = w1 / w2 ' Divide w1 by w2.
debug dec ? w1 ' Show the result (200).

A workaround to the inability to divide signed numbers is to have
your program divide absolute values, then negate the result if one (and
only one) of the operands was negative. All values must lie within the
range of -32767 to +32767. Here is an example:

sign var bit ' Bit to hold the sign.
w1 = 100
w2 = -3200

sign = w1.bit15 ^ w2.bit15 ' Sign = (w1 sign) XOR (w2 sign).
w2 = abs w2 / abs w1 ' Divide absolute values.
if sign = 0 then skip0 ' Negate result if one of the
 w2 = -w2 ' arguments was negative.
skip0:
debug sdec ? w2 ' Show the result (-32)

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 241

2

//
Returns the remainder left after dividing one value by another. Some
division problems don’t have a whole-number result; they return a
whole number and a fraction. For example, 1000/6 = 166.667. Integer
math doesn’t allow the fractional portion of the result, so 1000/6 = 166.
However, 166 is an approximate answer, because 166*6 = 996. The di-
vision operation left a remainder of 4. The // (double-slash) returns
the remainder of a given division operation. Naturally, numbers that
divide evenly, such as 1000/5, produce a remainder of 0. Example:

w1 = 1000
w2 = 6
w1 = w1 // w2 ' Get remainder of w1 / w2.
debug dec ? w1 ' Show the result (4).

*
Multiplies variables and/or constants, returning the low 16 bits of the
result. Works exactly as you would expect with unsigned integers from
0 to 65535. If the result of multiplication is larger than 65535, the excess
bits will be lost. Multiplication of signed variables will be correct in
both number and sign, provided that the result is in the range -32767
to +32767.

w1 = 1000
w2 = -19
w1 = w1 * w2 ' Multiply w1 by w2.
debug sdec ? w1 ' Show the result (-19000).

**
Multiplies variables and/or constants, returning the high 16 bits of the
result. When you multiply two 16-bit values, the result can be as large
as 32 bits. Since the largest variable supported by PBASIC2 is 16 bits,
the highest 16 bits of a 32-bit multiplication result are normally lost.
The ** (double-star) instruction gives you these upper 16 bits. For
example, suppose you multiply 65000 ($FDE8) by itself. The result is
4,225,000,000 or $FBD46240. The * (star, or normal multiplication)
-instruction would return the lower 16 bits, $6240. The ** instruction
returns $FBD4.

BASIC Stamp II

Page 242 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

w1 = $FDE8
w2 = w1 ** w1 ' Multiply $FDE8 by itself
debug hex ? w2 ' Return high 16 bits.

*/
Multiplies variables and/or constants, returning the middle 16 bits of
the 32-bit result. This has the effect of multiplying a value by a whole
number and a fraction. The whole number is the upper byte of the
multiplier (0 to 255 whole units) and the fraction is the lower byte of
the multiplier (0 to 255 units of 1/256 each). The */ (star-slash) instruc-
tion gives you an excellent workaround for the BS2’s integer-only math.
Suppose you want to multiply a value by 1.5. The whole number, and
therefore the upper byte of the multiplier, would be 1, and the lower
byte (fractional part) would be 128, since 128/256 = 0.5. It may be clearer
to express the */ multiplier in hex—as $0180—since hex keeps the con-
tents of the upper and lower bytes separate. An example:

w1 = 100
w1 = w1 */ $0180 ' Multiply by 1.5 [1 + (128/256)]
debug ? w1 ' Show result (150).

To calculate constants for use with the */ instruction, put the whole
number portion in the upper byte, then multiply the fractional part by
256 and put that in the lower byte. For instance, take Pi (π, 3.14159).
The upper byte would be $03 (the whole number), and the lower would
be 0.14159 * 256 = 36 ($24). So the constant Pi for use with */ would be
$0324. This isn’t a perfect match for Pi, but the error is only about 0.1%.

MIN
Limits a value to a specified 16-bit positive minimum. The syntax of
MIN is:

value MIN limit

Where:

• value is value to perform the MIN function upon.

• limit is the minimum value that value is allowed to be.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 243

2

Its logic is, ‘if value is less than limit, then make value = limit; if value
is greater than or equal to limit, leave value alone.’ MIN works in posi-
tive math only; its comparisons are not valid when used on two’s
complement negative numbers, since the positive-integer representa-
tion of a number like -1 ($FFFF or 65535 in unsigned decimal) is larger
than that of a number like 10 ($000A or 10 decimal). Use MIN only
with unsigned integers. Because of the way fixed-size integers work,
you should be careful when using an expression involving MIN 0. For
example, 0-1 MIN 0 will result in 65535 because of the way fixed-size
integers wrap around.

for w1 = 100 to 0 step -10 ' Walk value of w1 from 100 to 0.
 debug ? w1 MIN 50 ' Show w1, but use MIN to clamp at 50.
next

MAX

Limits a value to a specified 16-bit positive maximum. The syntax of
MAX is:

value MAX limit

Where:

• value is value to perform the MAX function upon.

• limit is the maximum value that value is allowed to be.

Its logic is, ‘if value is greater than limit, then make value = limit; if
value is less than or equal to limit, leave value alone.’ MAX works in
positive math only; its comparisons are not valid when used on two’s
complement negative numbers, since the positive-integer representa-
tion of a number like -1 ($FFFF or 65535 in unsigned decimal) is larger
than that of a number like 10 ($000A or 10 decimal). Use MAX only
with unsigned integers. Also be careful of expressions involving MAX
65535. For example 65535 + 1 MAX 65535 will result in 0 because of the
way fixed-size integers wrap around.

for w1 = 0 to 100 step 10 ' Walk value of w1 from 0 to 100.
 debug ? w1 MAX 50 ' Show w1, but use MAX to clamp at 50.
next

BASIC Stamp II

Page 244 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

DIG
Returns the specified decimal digit of a 16-bit positive value. Digits are
numbered from 0 (the rightmost digit) to 4 (the leftmost digit of a 16-
bit number; 0 to 65535). Example:

w1 = 9742
debug ? w1 DIG 2 ' Show digit 2 (7)

for b0 = 0 to 4
 debug ? w1 DIG b0 ' Show digits 0 through 4 of 9742.
next

<<
Shifts the bits of a value to the left a specified number of places. Bits
shifted off the left end of a number are lost; bits shifted into the right
end of the number are 0s. Shifting the bits of a value left n number of
times also has the effect of multiplying that number by two to the nth
power. For instance 100 << 3 (shift the bits of the decimal number 100
left three places) is equivalent to 100 * 23. Example:

w1 = %1111111111111111
for b0 = 1 to 16 ' Repeat with b0 = 1 to 16.
 debug BIN ? w1 << b0 ' Shift w1 left b0 places.
next

>>
Shifts the bits of a variable to the right a specified number of places.
Bits shifted off the right end of a number are lost; bits shifted into the
left end of the number are 0s. Shifting the bits of a value right n
number of times also has the effect of dividing that number by two to
the nth power. For instance 100 >> 3 (shift the bits of the decimal
number 100 right three places) is equivalent to 100 / 23. Example:

w1 = %1111111111111111
for b0 = 1 to 16 ' Repeat with b0 = 1 to 16.
 debug BIN ? w1 >> b0 ' Shift w1 right b0 places.
next

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 245

2

REV
Returns a reversed (mirrored) copy of a specified number of bits of a
value, starting with the rightmost bit (lsb). For instance, %10101101
REV 4 would return %1011, a mirror image of the first four bits of the
value. Example:

debug bin ? %11001011 REV 4 ' Mirror 1st 4 bits (%1101)

&
Returns the bitwise AND of two values. Each bit of the values is sub-
ject to the following logic:

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

The result returned by & will contain 1s in only those bit positions in
which both input values contain 1s. Example:

debug bin ? %00001111 & %10101101 ' Show AND result (%00001101)

|
Returns the bitwise OR of two values. Each bit of the values is subject
to the following logic:

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

The result returned by | will contain 1s in any bit positions in which
one or the other or both input values contain 1s. Example:

debug bin ? %00001111 | %10101001 ' Show OR result (%10101111)

BASIC Stamp II

Page 246 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

^
Returns the bitwise XOR of two values. Each bit of the values is subject
to the following logic:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result returned by ^ will contain 1s in any bit positions in which
one or the other (but not both) input values contain 1s. Example:

debug bin ? %00001111 ^ %10101001 ' Show XOR result (%10100110)

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 247

2

Branch
BRANCH offset, [address0, address1, ...addressN]
Go to the address specified by offset (if in range).

• Offset is a variable/constant that specifies which of the listed
address to go to (0—N).

• Addresses are labels that specify where to go.

Explanation
Branch is useful when you might want to write something like this:

if b2 = 0 then case_0 ' b2=0: go to label "case_0"
if b2 = 1 then case_1 ' b2=1: go to label "case_1"
if b2 = 2 then case_2 ' b2=2: go to label "case_2"

You can use Branch to organize this logic into a single statement:

BRANCH b2,[case_0,case_1,case_2]

This works exactly the same as the previous If...Then example. If the
value isn’t in range—in this case, if b2 is greater than 2—Branch does
nothing and the program continues execution on the next instruction
after Branch.

Demo Program
This program shows how the value of the variable pick controls the
destination of the Branch instruction.

pick var nib ' Variable to pick destination of
Branch.

for pick = 0 to 3 ' Repeat with pick= 0,1,2,3.
 debug "Pick= ", DEC pick, cr ' Show value of pick.
 BRANCH pick,[zero,one,two] ' Branch based on pick.
 debug "Pick exceeded # of items",cr,"in BRANCH list. Fell through!",cr

nextPick:
next ' Next value of pick.

stop

zero:
 debug "Branched to 'zero.'",cr,cr
 goto nextPick
one:
 debug "Branched to 'one.'",cr,cr

BASIC Stamp II

Page 248 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

 goto nextPick
two:
 debug "Branched to 'two.'",cr,cr
 goto nextPick

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 249

2

Button
BUTTON pin, downstate, delay, rate, bytevariable, targetstate, address
Debounce button input, perform auto-repeat, and branch to address if
button is in target state. Button circuits may be active-low or active-
high.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.
This pin will be made an input.

• Downstate is a variable/constant (0 or 1) that specifies which
logical state occurs when the button is pressed.

• Delay is a variable/constant (0–255) that specifies how long the
button must be pressed before auto-repeat starts. The delay is
measured in cycles of the Button routine. Delay has two special
settings: 0 and 255. If Delay is 0, Button performs no debounce or
auto-repeat. If Delay is 255, Button performs debounce, but no
auto-repeat.

• Rate is a variable/constant (0–255) that specifies the number of
cycles between autorepeats. The rate is expressed in cycles of the
Button routine.

• Bytevariable is the workspace for Button. It must be cleared to 0
before being used by Button for the first time.

• Targetstate is a variable/constant (0 or 1) that specifies which
state the button should be in for a branch to occur. (0=not pressed,
1=pressed)

• Address is a label that specifies where to branch if the button is
in the target state.

Explanation
When you press a button or flip a switch, the contacts make or break a
connection. A brief (1 to 20-ms) burst of noise occurs as the contacts
scrape and bounce against each other. Button’s debounce feature
prevents this noise from being interpreted as more than one switch
action. (For a demonstration of switch bounce, see the demo program
for the Count instruction.)

Button also lets PBASIC react to a button press the way your computer
keyboard does to a key press. When you press a key, a character

BASIC Stamp II

Page 250 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

immediately appears on the screen. If you hold the key down, there’s a
delay, then a rapid-fire stream of characters appears on the screen.
Button’s auto-repeat function can be set up to work much the same way.

Button is designed to be used inside a program loop. Each time through
the loop, Button checks the state of the specified pin. When it first
matches downstate, Button debounces the switch. Then, in accordance
with targetstate, it either branches to address (targetstate = 1) or doesn’t
(targetstate = 0).

If the switch stays in downstate, Button counts the number of program
loops that execute. When this count equals delay, Button once again
triggers the action specified by targetstate and address. Hereafter, if the
switch remains in downstate, Button waits rate number of cycles between
actions.

Button does not stop program execution. In order for its delay and
autorepeat functions to work properly, Button must be executed from
within a program loop.

Demo Program
Connect the active-low circuit shown in figure I-1 to pin P7 of the BS2.
When you press the button, the Debug screen will display an asterisk
(*). Feel free to modify the program to see the effects of your changes on
the way Button responds.

btnWk var byte ' Workspace for BUTTON instruction.
btnWk = 0 ' Clear the workspace variable.
' Try changing the Delay value (255) in BUTTON to see the effect of
' its modes: 0=no debounce; 1-254=varying delays before autorepeat;
' 255=no autorepeat (one action per button press).
Loop:
 BUTTON 7,0,255,250,btnWk,0,noPress ' Go to noPress UNLESS..
 debug "* " ' ..P7 is 0.
noPress: goto loop ' Repeat endlessly.

+5V

10k

to I/O pin

active-high
(downstate = 1)

+5V

10k

to I/O pin

active-low
(downstate = 0)

Figure I-1

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 251

2

Count
COUNT pin, period, variable
Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during
period number of milliseconds and store that number in variable.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.
This pin will be placed into input mode by writing a 0 to the
corresponding bit of the DIRS register.

• Period is a variable/constant (1 to 65535) specifying the time in
milliseconds during which to count.

• Variable is a variable (usually a word) in which the count will be
stored.

Explanation
The Count instruction makes a pin an input, then for the specified
number of milliseconds counts cycles on that pin and stores the total in
a variable. A cycle is a change in state from 1 to 0 to 1, or from 0 to 1 to 0.

Count can respond to transitions as fast as 4 microseconds (µs). A cycle
consists of two transitions (e.g., 0 to 1, then 1 to 0), so Count can respond
to square waves with periods as short as 8 µs; up to 125 kilohertz (kHz)
in frequency. For non-square waves (those whose high time and low
time are unequal), the shorter of the high and low times must be greater
than 4 µs.

If you use Count on slowly-changing analog waveforms like sine
waves, you may find that the count value returned is higher than
expected. This is because the waveform may pass through the BS2’s 1.5-
volt logic threshold slowly enough that noise causes false counts. You
can fix this by passing the signal through a Schmitt trigger, like one of
the inverters of a 74HCT14.

Demo Program
Connect the active-low circuit shown in figure I-1 (Button instruction)
to pin P7 of the BS2. The Debug screen will prompt you to press the
button as quickly as possible for a 1-second count. When the count is
done, the screen will display your “score,” the total number of cycles
registered by count. Note that this score will almost always be greater
than the actual number of presses because of switch bounce.

BASIC Stamp II

Page 252 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

cycles var word ' Variable to store counted cycles.
loop:
 debug cls,"How many times can you press the button in 1 second?",cr
 pause 1000: debug "Ready, set... ":pause 500:debug "GO!",cr
 count 7,1000,cycles
 debug cr,"Your score: ", DEC cycles,cr
 pause 3000
 debug "Press button to go again."
hold: if IN7 = 1 then hold
goto loop

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 253

2

Debug
DEBUG outputData{,outputData...}
Display variables and messages on the PC screen within the STAMP2
host program.

• OutputData consists of one or more of the following: text strings,
variables, constants, expressions, formatting modifiers, and
control characters

Explanation
Debug provides a convenient way for your programs to send messages
to the PC screen during programming. The name Debug suggests its
most popular use—debugging programs by showing you the value of
a variable or expression, or by indicating what portion of a program is
currently executing. Debug is also a great way to rehearse program-
ming techniques. Throughout this instruction guide, we use Debug to
give you immediate feedback on the effects of instructions. Let’s look at
some examples:

DEBUG "Hello World!" ' Test message.

After you press ALT-R to download this one-line program to the BS2,
the STAMP2 host software will put a Debug window on your PC screen
and wait for a response. A moment later, the phrase "Hello World!" will
appear. Pressing any key other than space eliminates the Debug win-
dow. Your program keeps executing after the screen is gone, but you
can’t see the Debug data. Another example:

x var byte: x = 65
DEBUG dec x ' Show decimal value of x.

Since x = 65, the Debug window would display “65.” In addition to
decimal, Debug can display values in hexidecimal and binary. See table
I-1 for a complete list of Debug prefixes.

Suppose that your program contained several Debug instructions
showing the contents of different variables. You would want some way
to tell them apart. Just add a question mark (?) as follows:

x var byte: x = 65
DEBUG dec ? x ' Show decimal value of x with label "x = "

Now Debug displays “x = 65.” Debug works with expressions, too:

BASIC Stamp II

Page 254 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

x var byte: x = 65
DEBUG dec ? 2*(x-1) ' Show decimal result with "2*(x-1) = "

The Debug window would display "2*(x-1) = 128." If you omit the ?, the
display would be just “128.” If you tell Debug to display a value without
formatting it as a number, you get the ASCII character equivalent of the
value:

x var byte: x = 65
DEBUG x ' Show x as ASCII.

Since x = 65, and 65 is the ASCII character code for the letter A (see
appendix), the Debug window would show A. Up to now, we’ve shown
Debug with just one argument, but you can display additional items by
adding them to the Debug list, separated by commas:

x var byte: x = 65
DEBUG "The ASCII code for A is: ", dec x ' Show phrase, x.

Since individual Debug instructions can grow to be fairly complicated,
and since a program can contain many Debugs, you’ll probably want to
control the formatting of the Debug screen. Debug supports six format-
ting characters:

Symbol Value Effect
CLS 0 clear Debug screen
HOME 1 home cursor to top left corner of screen
BELL 7 beep the PC speaker
BKSP 8 back up one space
TAB 9 tab to the next multiple-of-8 text column
CR 13 carriage return to the beginning of the next line

Try the example below with and without the CR at the end of the first
Debug:

Debug "A carriage return",CR
Debug "starts a new line"

Technical Background
Debug is actually a special case of the Serout instruction. It is set for
inverted (RS-232-compatible) serial output through the BS2 program-
ming connector (SOUT on the BS2-IC) at 9600 baud, no parity, 8 data
bits, and 1 stop bit. You may view Debug output using a terminal
program set to these parameters, but you must modify either your

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 255

2

carrier board or the serial cable to temporarily disconnect pin 3 of the
BS2-IC (pin 4 of the DB-9 connector). The reason is that the STAMP2
host software uses this line to reset the BS2 for programming, while
terminal software uses the same line to signal “ready” for serial commu-
nication.

If you make this modification, be sure to provide a way to reconnect pin
3 of the BS2-IC to pin 4 of the DB-9 connector for reprogramming. With
these pins disconnected, the STAMP2 host software will not be able to
download new programs.

Demo Program
This demo shows the letters of the alphabet and their corresponding
ASCII codes. A brief pause slows the process down a little so that it
doesn’t go by in a blur. You can freeze the display while the program is
running by pressing the space bar.

letter var byte

Debug "ALPHABET -> ASCII CHART",BELL,CR,CR
for letter = "A" to "Z"
 Debug "Character: ", letter, tab, "ASCII code: ",dec letter, cr
 pause 200
next

BASIC Stamp II

Page 256 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Table I-1. Debug Modifiers
Modifier Effect Notes
ASC? Displays "variablename = 'character'" + carriage 1

return; where character is an ASCII character.
DEC {1..5} Decimal text, optionally fixed for 1 to 5 digits
SDEC {1..5} Signed decimal text, optionally fixed for 1 to 5 digits 1, 2
HEX {1..4} Hexadecimal text, optionally fixed for 1 to 4 digits 1
SHEX {1..4} Signed hex text, optionally fixed for 1 to 4 digits 1, 2
IHEX {1..4} Indicated hex text ($ prefix; e.g., $7A3), optionally 1

fixed for 1 to 4 digits
ISHEX {1..4} Indicated signed hex text, optionally fixed for 1 to 1, 2

4 digits
BIN {1..16} Binary text, optionally fixed for 1 to 16 digits 1
SBIN {1..16} Signed binary text, optionally fixed for 1 to 16 digits 1, 2
IBIN {1..16} Indicated binary text (% prefix; e.g., %10101100), 1, 2

optionally fixed for 1 to 16 digits
ISBIN {1..16} Indicated signed binary text, optionally fixed for 1 to 1, 2

16 digits
STR bytearray Display an ASCII string from bytearray until byte = 0.
STR bytearray\n Display an ASCII string consisting of n bytes from

bytearray.
REP byte\n Display an ASCII string consisting of byte repeated n

times (e.g., REP "X"\10 sends XXXXXXXXXX).

NOTES:
(1) Fixed-digit modifiers like DEC4 will pad text with leading 0s if necessary; e.g.,
DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; e.g., DEC4 56422 sends 6422.
(2) Signed modifiers work under two’s complement rules, same as PBASIC2 math.
Value must be no less than a word variable in size.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 257

2

DTMFout
DTMFOUT pin,{ontime,offtime,}{,tone...}
Generate dual-tone, multifrequency tones (DTMF, i.e., telephone “touch”
tones).

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.

This pin will be put into output mode temporarily during generation of
tones. After tone generation is complete, the pin is left in input mode,
even if it was previously an output.

• Ontime is an optional entry; a variable or constant (0 to 65535)
specifying a duration of the tone in milliseconds. If ontime is not
specified, DTMFout defaults to 200 ms on.

• Offtime is an optional entry; a variable or constant (0 to 65535)
specifying the length of silent pause after a tone (or between
tones, if multiple tones are specified). If offtime is not specified,
DTMFout defaults to 50 ms off.

• Tone is a variable or constant (0—15) specifying the DTMF tone
to send. Tones 0 through 11 correspond to the standard layout of
the telephone keypad, while 12 through 15 are the fourth-column
tones used by phone test equipment and in ham-radio applications.

0—9 Digits 0 through 9
10 Star (*)
11 Pound (#)

12—15 Fourth column tones A through D

Explanation
DTMF tones are used to dial the phone or remotely control certain radio
equipment. The BS2 can generate these tones digitally using the
DTMFout instruction. Figure I-2 shows how to connect a speaker or
audio amplifier to hear these tones; figure I-3 shows how to connect the
BS2 to the phone line. A typical DTMFout instruction to dial a phone
through pin 0 with the interface circuit of figure I-3 would look like this:

DTMFOUT 0,[6,2,4,8,3,3,3]' Call Parallax.

That instruction would be equivalent to dialing 624-8333 from a phone
keypad. If you wanted to slow the pace of the dialing to accommodate

BASIC Stamp II

Page 258 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

a noisy phone line or radio link, you could use the optional ontime and
offtime values:

DTMFOUT 0,500,100,[6,2,4,8,3,3,3] ' Call Parallax, slowly.

In that instruction, ontime is set to 500 ms (1/2 second) and offtime to
100 ms (1/10th second).

Technical Background
The BS2’s controller is a purely digital device. DTMF tones are analog
waveforms, consisting of a mixture of two sine waves at different audio
frequencies. So how does a digital device generate analog output? The
BS2 creates and mixes the sine waves mathematically, then uses the
resulting stream of numbers to control the duty cycle of a very fast
pulse-width modulation (PWM) routine. So what’s actually coming out
of the BS2 pin is a rapid stream of pulses. The purpose of the filtering
arrangements shown in the schematics of figures I-2 and I-3 is to smooth
out the high-frequency PWM, leaving only the lower frequency audio
behind.

Keep this in mind if you want to interface BS2 DTMF output to radios
and other equipment that could be adversely affected by the presence
of high-frequency noise on the input. Make sure to filter the DTMF
output thoroughly. The circuits shown here are only a starting point;
you may want to use an active low-pass filter with a roll-off point
around 2 kHz.

Demo Program
This demo program is a rudimentary memory dialer. Since DTMF

Figure I-2

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

I/O pin

Driving a Speaker

1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 259

2

digits fit within a nibble (four bits), the program below packs two DTMF
digits into each byte of three EEPROM data tables. The end of a phone
number is marked by the nibble $F, since this is not a valid phone-
dialing digit.

EEloc var byte ' EEPROM address of stored number.
EEbyte var byte ' Byte containing two DTMF digits.
DTdigit var EEbyte.highnib ' Digit to dial.
phone var nib ' Pick a phone #.
hiLo var bit ' Bit to select upper and lower nibble.

Scott data $45,$94,$80,$2F ' Phone: 459-4802
Chip data $19,$16,$62,$48,$33,$3F ' Phone: 1-916-624-8333
Info data $15,$20,$55,$51,$21,$2F ' Phone: 1-520-555-1212

for phone = 0 to 2 ' Dial each phone #.
 lookup phone,[Scott,Chip,Info],EEloc ' Get location of # in EEPROM.
dial:
 read EEloc,EEbyte ' Retrieve byte from EEPROM.
 for hiLo = 0 to 1 ' Dial upper and lower digits.
 if DTdigit = $F then done ' Hex $F is end-of-number flag
 DTMFout 0,[DTdigit] ' Dial digit.
 EEbyte = EEbyte << 4 ' Shift in next digit.
 next
 EEloc = EEloc+1 ' Next pair of digits.
 goto dial ' Keep dialing until done ($F in DTdigit).
done: ' This number is done.
 pause 2000 '
Wait a couple of seconds.
next ' Dial next phone number.
stop

Figure I-3

Jameco (JC), 1-800-831-4242
or 415-592-8097

Parts Sources

Interfacing to the Telephone Line

600-600Ω
transformer

(JC: 117760)

270V “Sidactor”
(DK: P3000AA61-ND)

10Ω
(both)

3.9V zeners (both)
DK: 1N5228BCT-ND

phone line
(red and green)

0.001µF

0.1µF1k
connect switch (or

relay contacts)

Digi-Key (DK), 1-800-344-4539
or 218-681-6674

I/O pin

BASIC Stamp II

Page 260 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

End
END
End the program, placing the BS2 in a low-power mode.

Explanation
End puts the BS2 into its inactive, low-power mode. In this mode the
BS2’s current draw (exclusive of loads driven by the I/O pins) is
approximately 50µA.

End keeps the BS2 inactive until the reset button is pushed or the power
is cycled off and back on.

Just as during Sleep intervals, pins will retain their input or output
settings after the BS2 is deactivated by End. So if a pin is driving a load
when End occurs, it will continue to drive that load after End. However,
at approximate 2.3-second intervals, output pins will disconnect (go
into input mode) for a period of approximately 18 ms. Then they will
revert to their former states.

For example, if the BS2 is driving an LED on when End executes, the
LED will stay lit after end. But every 2.3 seconds, there will be a visible
wink of the LED as the output pin driving it disconnects for 18 ms.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 261

2

For...Next
FOR variable = start to end {STEP stepVal} ... NEXT
Create a repeating loop that executes the program lines between For
and Next, incrementing or decrementing variable according to stepVal
until the value of the variable passes the end value.

• Variable is a bit, nib, byte or word variable used as a counter.

• Start is a variable or constant that specifies the initial value of the
variable.

• End is a variable or constant that specifies the end value of the
variable. When the value of the variable passes end, the For...Next
loop stops executing and the program goes on to the instruction
after Next.

• StepVal is an optional variable or constant by which the variable
increases or decreases with each trip through the For/Next loop.
If start is larger than end, PBASIC2 understands stepVal to be
negative, even though no minus sign is used.

Explanation
For...Next loops let your program execute a series of instructions for a
specified number of repetitions. In simplest form:

reps var nib ' Counter for the FOR/NEXT loop.
FOR reps = 1 to 3 ' Repeat with reps = 1, 2, 3.
 debug "*" ' Each rep, put one * on the screen.
NEXT

Each time the For...Next loop above executes, the value of reps is
updated. See for yourself:

reps var nib ' Counter for the FOR/NEXT loop.
FOR reps = 1 to 10 ' Repeat with reps = 1, 2... 10.
 debug dec ? reps ' Each rep, show values of reps.
NEXT

For...Next can also handle cases in which the start value is greater than
the end value. It makes the commonsense assumption that you want to
count down from start to end, like so:

reps var nib ' Counter for the FOR/NEXT loop.
FOR reps = 10 to 1 ' Repeat with reps = 10, 9...1.
 debug dec ? reps ' Each rep, show values of reps.
NEXT

BASIC Stamp II

Page 262 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

If you want For...Next to count by some amount other than 1, you can
specify a stepVal. For example, change the previous example to count
down by 3:

reps var nib ' Counter for the FOR/NEXT loop.
FOR reps = 10 to 1 STEP 3 ' Repeat with reps = 10, 7...1.
 debug dec ? reps ' Each rep, show values of reps.
NEXT

Note that even though you are counting down, stepVal is still positive.
For...Next takes its cue from the relationship between start and end, not
the sign of stepVal. In fact, although PBASIC2 won’t squawk if you use
a negative entry for stepVal, its positive-integer math treats these values
as large positive numbers. For example, –1 in two’s complement is
65535. So the following code executes only once:

reps var word ' Counter for the FOR/NEXT loop.
FOR reps = 1 to 10 STEP -1 ' Actually FOR reps = 1 to 10 step 65535
 debug dec ? reps ' Executes only once.
NEXT

This brings up a good point: the instructions inside a For...Next loop
always execute once, no matter what start, end and stepVal values are
assigned.

There is a potential bug that you should be careful to avoid. PBASIC
uses unsigned 16-bit integer math to increment/decrement the counter
variable and compare it to the stop value. The maximum value a 16-bit
variable can hold is 65535. If you add 1 to 65535, you get 0 as the 16-bit
register rolls over (like a car’s odometer does when you exceed the
maximum mileage it can display).

If you write a For...Next loop whose step value is larger than the
difference between the stop value and 65535, this rollover will cause the
loop to execute more times than you expect. Try the following example:

reps var word ' Counter for the loop.
FOR reps = 0 to 65500 STEP 3000 ' Each loop add 3000.
 debug dec ? reps ' Show reps in debug window.
NEXT ' Again until reps>65500.

The value of reps increases by 3000 each trip through the loop. As it
approaches the stop value, an interesting thing happens: 57000, 60000,
63000, 464, 3464... It passes the stop value and keeps going. That’s
because the result of the calculation 63000 + 3000 exceeds the maximum

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 263

2

capacity of a 16-bit number. When the value rolls over to 464, it passes
the test “Is w1 > 65500?” used by Next to determine when to end the
loop.

Demo Program
Here’s an example that uses a For...Next loop to churn out a series of
sequential squares (numbers 1, 2, 3, 4... raised to the second power) by
using a variable to set the For...Next stepVal, and incrementing stepVal
within the loop. Sir Isaac Newton is generally credited with the discov-
ery of this technique.

square var byte ' For/Next counter and series of squares.
stepSize var byte ' Step size, which will increase by 2 each
loop.

stepSize = 1: square = 1
for square = 1 to 250 step stepSize ' Show squares up to 250.
 debug dec ? square ' Display on screen.
 stepSize = stepSize +2 ' Add 2 to stepSize
next ' Loop til square > 250.

BASIC Stamp II

Page 264 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Freqout
FREQOUT pin, duration, freq1{,freq2}
Generate one or two sine-wave tones for a specified duration.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.

This pin will be put into output mode during generation of tones
and left in that state after the instruction finishes.

• Duration is a variable/constant specifying the length in
milliseconds (1 to 65535) of the tone(s).

• Freq1 is a variable/constant specifying frequency in hertz (Hz,
0 to 32767) of the first tone.

• Freq2 is a variable/constant specifying frequency (0 to 32767
Hz) of the optional second tone

Explanation
Freqout generates one or two sinewaves using fast PWM. The circuits
shown in figure I-4 filter the PWM in order to play the tones through a
speaker or audio amplifier. Here’s an example Freqout instruction:

FREQOUT 2,1000,2500

This instruction generates a 2500-Hz tone for 1 second (1000 ms)
through pin 2. To play two frequencies:

FREQOUT 2,1000,2500,3000

The frequencies mix together for a chord- or bell-like sound. To gener-
ate a silent pause, specify frequency value(s) of 0.

Frequency Considerations
The circuits in figure I-4 work by filtering out the high-frequency PWM
used to generate the sinewaves. Freqout works over a very wide range
of frequencies from 0 to 32767 Hz, so at the upper end of its range, those
PWM filters will also filter out most of the desired frequency. You may
find it necessary to reduce values of the parallel capacitors shown in the
circuit, or to devise a custom active filter for your application.

Demo Program
This program plays “Mary Had a Little Lamb” by reading the notes
from a Lookup table. To demonstrate the effect of mixing sine waves,

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 265

2

Figure I-4

the first frequency is the musical note itself, while the second is 8 Hz
lower. When sines mix, sum and difference frequencies are generated.
The difference frequency imposes an 8-Hz quiver (vibrato) on each
note. Subtracting 8 from the note frequency poses a problem when the
frequency is 0, because the BS2’s positive-integer math wraps around to
65530. Freqout would ignore the highest bit of this value and generate
a frequency of 32762 Hz rather than a truly silent pause. Although
humans can’t hear 32762 Hz, slight imperfections in filtering will cause
an audible noise in the speaker. To clean this up we use the expression
“(f-8) max 32768,” which changes 65530 to 32768. Freqout discards the
highest bit of 32768, which results in 0, the desired silent pause.

i var byte ' Counter for position in tune.
f var word ' Frequency of note for Freqout.
C con 523 ' C note.
D con 587 ' D note
E con 659 ' E note
G con 784 ' G note
R con 0 ' Silent pause (rest).

for i = 0 to 28 ' Play the 29 notes of the Lookup table.
 lookup i,[E,D,C,D,E,E,E,R,D,D,D,R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C],f
 FREQOUT 0,350,f,(f-8) max 32768
next
stop

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

I/O pin

Driving a Speaker

1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

BASIC Stamp II

Page 266 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Gosub
GOSUB addressLabel
Store the address of the next instruction after Gosub, then go to the
point in the program specified by addressLabel.

• AddressLabel is a label that specifies where to go.

Explanation
Gosub is a close relative of Goto. After Gosub, the program executes
code beginning at the specified address label. (See the entry on Goto
for more information on assigning address labels) Unlike Goto, Gosub
also stores the address of the instruction immediately following itself.
When the program encounters a Return instruction, it interprets it to
mean “go to the instruction that follows the most recent Gosub.”

Up to 255 Gosubs are allowed per program, but they may be nested
only four deep. In other words, the subroutine that’s the destination of
a Gosub can contain a Gosub to another subroutine, and so on, to a
maximum depth (total number of Gosubs before the first Return) of
four. Any deeper, and the program will never find its way back to the
starting point—the instruction following the very first Gosub.

When Gosubs are nested, each Return takes the program back to the
instruction after the most-recent Gosub.

If a series of instructions is used at more than one point in your pro-
gram, you can conserve program memory by turning those instruc-
tions into a subroutine. Then, wherever you would have had to insert
that code, you can simply write Gosub label (where label is the name of
your subroutine). Writing subroutines is like adding new commands
to PBASIC.

You can avoid a potential bug in using subroutines by making sure
that your program cannot wander into them without executing a Gosub.
In the demo program, what would happen if the stop instruction were
removed? After the loop finished, execution would continue in
pickAnumber. When it reached Return, the program would jump back
into the middle of the For...Next loop because this was the last return
address assigned. The For...Next loop would execute indefinitely.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 267

2

Demo Program
This program is a guessing game that generates a random number in a
subroutine called pickAnumber. It is written to stop after three guesses.
To see a common bug associated with Gosub, delete or comment out
the line beginning with Stop after the For/Next loop. This means that
after the loop is finished, the program will wander into the
pickAnumber subroutine. When the Return at the end executes, the
program will go back to the last known return address in the middle of
the For/Next loop. This will cause the program to execute endlessly.
Make sure that your programs can’t accidentally execute subroutines!

rounds var nib ' Number of reps.
numGen var word ' Random-number generator (must
be 16 bits).
myNum var nib ' Random number, 1-10.

for rounds = 1 to 3 ' Go three rounds.
 debug cls,"Pick a number from 1 to 10",cr
 GOSUB pickAnumber ' Get a random number, 1-10.
 pause 2000 ' Dramatic pause.
 debug "My number was: ", dec myNum ' Show the number.
 pause 2000 ' Another pause.
next
stop ' When done, stop execution here.

' Random-number subroutine. A subroutine is just a piece of code
' with the Return instruction at the end. The proper way to use
' a subroutine is to enter it through a Gosub instruction. If
' you don't, the Return instruction won't have the correct
' return address, and your program will have a bug!
pickAnumber:
 random numGen ' Stir up the bits of numGen.
 myNum = numGen/6550 min 1 ' Scale to fit 1-10 range.

' Go back to the 1st instruction
return ' after the GOSUB that got us
here.

BASIC Stamp II

Page 268 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Goto
GOTO addressLabel
Go to the point in the program specified by addressLabel.

• AddressLabel is a label that specifies where to go.

Explanation
Programs execute from the top of the page (or screen) toward the bot-
tom, and from left to right on individual lines; just the same way we
read and write English. Goto is one of the instructions that can change
the order in which a program executes by forcing it to go to a labeled
point in the program.

A common use for Goto is to create endless loops; programs that re-
peat a group of instructions over and over.

Goto requires an address label for a destination. A label is a word start-
ing with a letter, containing letters, numbers, or underscore (_) charac-
ters, and ending with a colon. Labels may be up to 32 characters long.
Labels must not duplicate names of PBASIC2 instructions, or variables,
constants or Data labels, refer to Appendix B for a list of reserved words.
Labels are not case-sensitive, so doItAgain, doitagain and DOitAGAIN
all mean the same thing to PBASIC. Don’t worry too much about the
rules for devising labels; PBASIC will complain with an error message
at download time if it doesn’t like your labels.

Demo Program
This program is an endless loop that sends a Debug message to your
computer screen. Although you can clear the screen by pressing a key,
the BS2 program itself won’t stop unless you shut it off.

doItAgain:
 debug "Looping...",cr
GOTO doItAgain

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 269

2

High
HIGH pin
Make the specified pin output high (write 1s to the corresponding bits
of both DIRS and OUTS).

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.

Explanation
In order for the BS2 to actively output a 1 (a +5-volt level) on one of its
pins, two conditions must be satisfied:

(1) The corresponding bit of the DIRS variable must contain a 1 in or-
der to connect the pin’s output driver.

(2) The corresponding bit of the OUTS variable must contain a 1.

High performs both of these actions with a single, fast instruction.

Demo Program
This program shows the bitwise state of the DIRS and OUTS variables
before and after the instruction High 4. You may also connect an LED
to pin P4 as shown in figure I-5 to see it light when the High instruc-
tion executes.

debug "Before: ",cr
debug bin16 ? dirs,bin16 ? outs,cr,cr
pause 1000

HIGH 4

debug "After: ",cr
debug bin16 ? dirs,bin16 ? outs

220Ω

LED

I/O pin
Figure I-5

BASIC Stamp II

Page 270 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

If...Then
IF condition THEN addressLabel
Evaluate condition and, if true, go to the point in the program marked
by addressLabel.

• Condition is a statement, such as “x = 7” that can be evaluated as
true or false.

• AddressLabel is a label that specifies where to go in the event that
the condition is true.

Explanation
If...Then is PBASIC’s decision maker. It tests a condition and, if that
condition is true, goes to a point in the program specified by an ad-
dress label. The condition that If...Then tests is written as a mixture of
comparison and logic operators. The comparison operators are:

= equal
<> not equal
> greater than
< less than

>= greater than or equal to
<= less than or equal to

The values to be compared can be any combination of variables (any
size), constants, or expressions. All comparisons are performed using
unsigned, 16-bit math. An example:

aNumber var byte
aNumber = 99

IF aNumber < 100 THEN isLess
debug "greater than or equal to 100"
stop

isLess:
debug "less than 100"
stop

When you run that code, Debug shows, “less than 100.” If...Then evalu-
ated the condition “aNumber < 100” and found it to be true, so it

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 271

2

redirected the program to the label after Then, “isLess.” If you change
“aNumber = 99” to “aNumber = 100” the other message, “greater than
or equal to 100,” will appear instead. The condition “aNumber < 100”
is false if aNumber contains 100 or more. The values compared in the
If...Then condition can also be expressions:

Number1 var byte
Number2 var byte
Number1 = 99
Number2 = 30

IF Number1 = Number2 * 4 - 20 THEN equal
debug "not equal"
stop

equal:
debug "equal"
stop

Since Number2 * 4 - 20 = (30 x 4) - 20 = 100, the message “not equal”
appears on the screen, Changing that expression to Number2 * 4 - 21
would get the “equal” message.

Beware of mixing signed and unsigned numbers in If...Then compari-
sons. Watch what happens when we change our original example to
include a signed number (–99):

IF -99 < 100 THEN isLess
debug "greater than or equal to 100"
stop

isLess:
debug "less than 100"
stop

Although –99 is obviously less than 100, the program says it is greater.
The problem is that –99 is internally represented as the two’s comple-
ment value 65437, which (using unsigned math) is greater than 100.
Don’t mix signed and unsigned values in If...Then comparisons.

Logic Operators
If...Then supports the logical operators NOT, AND, OR, and XOR. NOT
inverts the outcome of a condition, changing false to true, and true to

BASIC Stamp II

Page 272 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

false. The following If...Thens are equivalent:

IF x <> 100 THEN notEqual ' Goto notEqual if x is not 100.
IF NOT x=100 THEN notEqual ' Goto notEqual if x is not 100.

The operators AND, OR, and XOR join the results of two conditions to
produce a single true/false result. AND and OR work the same as they
do in everyday speech. Run the example below once with AND (as
shown) and again, substituting OR for AND:

b1 = 5
b2 = 9
IF b1 = 5 AND b2 = 10 THEN True ' Change AND to OR and see
debug "Statement was not true." ' what happens.
stop

True:
debug "Statement was true."
stop

The condition “b1 = 5 AND b2 = 10” is not true. Although b1 is 5, b2 is
not 10. AND works just as it does in English—both conditions must be
true for the statement to be true. OR also works in a familiar way; if
one or the other or both conditions are true, then the statement is true.
XOR (short for exclusive-OR) may not be familiar, but it does have an
English counterpart: If one condition or the other (but not both) is true,
then the statement is true.

Table I-2 below summarizes the effects of the logical operators. As with
math, you can alter the order in which comparisons and logical opera-
tions are performed by using parentheses. Operations are normally
evaluated left-to-right. Putting parentheses around an operation forces
PBASIC2 to evaluate it before operations not in parentheses.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 273

2

Table I-2. Effects of the Logical Operators Used by
If...Then

Condition A NOT A
false true
true false

Condition A Condition B A AND B
false false false
false true false
true false false
true true true

Condition A Condition B A OR B
false false false
false true true
true false true
true true true

Condition A Condition B A XOR B
false false false
false true true
true false true
true true false

Unlike some versions of the If...Then instruction, PBASIC’s If...Then
can only go to a label as the result of a decision. It cannot conditionally
perform some instruction, as in “IF x < 20 THEN y = y + 1.” The PBASIC
version requires you to invert the logic using NOT and skip over the
conditional instruction unless the condition is met:

IF NOT x < 20 THEN noInc ' Don't increment y unless x < 20.
 y = y + 1 ' Increment y if x < 20.
noInc: ... ' Program continues.

You can also code a conditional Gosub, as in “IF x = 100 THEN GOSUB
centennial.” In PBASIC:

IF NOT x = 100 then noCent
 gosub centennial ' IF x = 100 THEN gosub centennial.
noCent: ... ' Program continues.

BASIC Stamp II

Page 274 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Internal Workings and Potential Bugs
Internally, the BS2 defines “false” as 0 and “true” as any value other
than 0. Consider the following instructions:

flag var bit
flag = 1

IF flag THEN isTrue
debug "false"
stop

isTrue:
debug "true"
stop

Since flag is 1, If...Then would evaluate it as true and print the message
“true” on the screen. Suppose you changed the If...Then instruction to
read “IF NOT flag THEN isTrue.” That would also evaluate as true.
Whoa! Isn’t NOT 1 the same thing as 0? No, at least not in the 16-bit
world of the BS2.

Internally, the BS2 sees a bit variable containing 1 as the 16-bit number
%0000000000000001. So it sees the NOT of that as %1111111111111110.
Since any non-zero number is regarded as true, NOT 1 is true. Strange
but true.

The easiest way to avoid the kinds of problems this might cause is to
always use a conditional operator with If...Then. Change the example
above to read IF flag=1 THEN isTrue. The result of the comparison
will follow If...Then rules. And the logical operators will work as they
should; IF NOT flag=1 THEN isTrue will correctly evaluate to false
when flag contains 1.

This also means that you should only use the named logic operators
NOT, AND, OR, and XOR with If...Then. These operators format their
results correctly for If...Then instructions. The other logical operators,
represented by symbols ~ & | and ^ do not.

Demo Program
The program below generates a series of 16-bit random numbers and
tests each to determine whether they’re divisible by 3. (A number is

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 275

2

divisible by another if the remainder from division, determined by the
// operator, is 0.) If a number is divisible by 3, then it is printed, other-
wise, the program generates another random number. The program
counts how many numbers it prints, and quits when this number
reaches 10.

sample var word ' Random number to be tested.
samps var nib ' Number of samples taken.
mul3:
 random sample ' Put a random number into sample.
 IF NOT sample//3 = 0 THEN mul3 ' Not multiple of 3? Try again.
 debug dec sample," is divisible by 3.",cr ' Print message.
 samps = samps + 1 ' Count multiples of 3.
 IF samps = 10 THEN done ' Quit with 10 samples.
goto mul3

done:
debug cr,"All done."
stop

BASIC Stamp II

Page 276 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Input
INPUT pin
Make the specified pin an input (write a 0 to the corresponding bit of
DIRS).

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.

Explanation
There are several ways to make a pin an input. When a program be-
gins, all of the BS2’s pins are inputs. Input instructions (Pulsin, Serin)
automatically change the specified pin to input and leave it in that
state. Writing 0s to particular bits of the variable DIRS makes the corre-
sponding pins inputs. And then there’s the Input instruction.

When a pin is an input, your program can check its state by reading
the corresponding INS variable. For example:

INPUT 4
Hold: if IN4 = 0 then Hold ' Stay here until P4 is 1.

The program is reading the state of P4 as set by external circuitry. If
nothing is connected to P4, it could be in either state (1 or 0) and could
change states apparently at random.

What happens if your program writes to the OUTS bit of a pin that is
set up as an input? The state is stored in OUTS, but has no effect on the
outside world. If the pin is changed to output, the last value written to
the corresponding OUTS bit will appear on the pin. The demo pro-
gram shows how this works.

Demo Program
This program demonstrates how the input/output direction of a pin is
determined by the corresponding bit of DIRS. It also shows that the
state of the pin itself (as reflected by the corresponding bit of INS) is
determined by the outside world when the pin is an input, and by the
corresponding bit of OUTS when it’s an output. To set up the demo,
connect a 10k resistor from +5V to P7 on the BS2. The resistor to +5V
puts a high (1) on the pin when it’s an input. The BS2 can override this

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 277

2

state by writing a low (0) to bit 7 of OUTS and changing the pin to
output.

INPUT 7 ' Make pin 7 an input.
debug "State of pin 7: ", bin IN7,cr
OUT7 = 0 ' Write 0 to output latch.
debug "After 0 written to OUT7: ",bin IN7,cr
output 7 ' Make pin 7 an output.
debug "After pin 7 changed to output: ",bin IN7

BASIC Stamp II

Page 278 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Lookdown
LOOKDOWN value,{comparisonOp,}[value0, value1,...valueN],resultVariable
Compare a value to a list of values according to the relationship speci-
fied by the comparison operator. Store the index number of the first
value that makes the comparison true into resultVariable. If no value in
the list makes the comparison true, resultVariable is unaffected.

• Value is a variable or constant to be compared to the values in the
list.

• ComparisonOp is optional and maybe one of the following:

= equal
<> not equal
> greater than
< less than

>= greater than or equal to
<= less than or equal to

If no comparison operator is specified, PBASIC2 uses equal (=).

• Value0 , value1 ... make up a list of values (constants or variables)
up to 16 bits in size.

• ResultVariable is a variable in which the index number will be
stored if a true comparison is found.

Explanation
Lookdown works like the index in a book. You search for a topic and
the index gives you the page number. Lookdown searches for a value
in a list, and stores the item number of the first match in a variable. For
example:

value var byte
result var nib
value = 17
result = 15

LOOKDOWN value,[26,177,13,1,0,17,99],result
debug "Value matches item ",dec result," in list"

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 279

2

Debug prints, “Value matches item 5 in list” because the value (17)
matches item 5 of [26,177,13,1,0,17,99]. Note that index numbers count
up from 0, not 1; that is in the list [26,177,13,1,0,17,99], 26 is item 0.
What happens if the value doesn’t match any of the items in the list?
Try changing “value = 17” to “value = 2.” Since 2 is not on the list,
Lookdown does nothing. Since result contained 15 before Lookdown
executed, Debug prints “Value matches item 15 in list.” Since there is
no item 15, the program should look upon this number as a no-match
indication.

Don’t forget that text phrases are just lists of byte values, so they too
are eligible for Lookdown searches, as in this example:

value var byte
result var byte
value = "f"
result = 255

LOOKDOWN value,["The quick brown fox"],result
debug "Value matches item ",dec result," in list"

Debug prints, “Value matches item 16 in list” because the phrase “The
quick brown fox” is a list of 19 bytes representing the ASCII values of
each letter. A common application for Lookdown in conjunction with
the Branch instruction, is to interpret single-letter instructions:

cmd var byte
cmd = "M"

LOOKDOWN cmd,["SLMH"],cmd
Branch cmd,[stop_,low_,medium,high_]
debug "Command not in list": stop
stop_: debug "stop": stop
low_: debug "low": stop
medium: debug "medium": stop
high_: debug "high": stop

In that example, the variable cmd contains “M” (ASCII 77). Lookdown
finds that this is item 2 of a list of one-character commands and stores 2
into cmd. Branch then goes to item 2 of its list, which is the program
label “medium” at which point the program continues. Debug prints
“medium” on the PC screen. This is a powerful method for interpreting
user input, and a lot neater than the alternative If...Then instructions.

BASIC Stamp II

Page 280 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Lookdown with Variables and Comparison Operators
The examples above show Lookdown working with lists of constants,
but it also works with variables. Check out this example that searches
the cells of an array:

value var byte
result var nib
a var byte(7)
value = 17
result = 15
a(0)=26:a(1)=177:a(2)=13:a(3)=1:a(4)=0:a(5)=17:a(6)=99

LOOKDOWN value,[a(0),a(1),a(2),a(3),a(4),a(5),a(6)],result
debug "Value matches item ",dec result," in the list"

Debug prints, “Value matches item 5 in list” because a(5) is 17.

All of the examples above use Lookdown’s default comparison opera-
tor of = that searches for an exact match. But Lookdown also supports
other comparisons, as in this example:

value var byte
result var nib
value = 17
result = 15

LOOKDOWN value,>[26,177,13,1,0,17,99],result
debug "Value greater than item ",dec result," in list"

Debug prints, “Value greater than item 2 in list” because the first item
that value (17) is greater than is 13, which is item 2 in the list. Value is
also greater than items 3 and 4, but these are ignored, because Look-
down only cares about the first true condition. This can require a cer-
tain amount of planning in devising the order of the list. See the demo
program below.

Lookdown comparison operators use unsigned 16-bit math. They will
not work correctly with signed numbers, which are represented inter-
nally as two’s complement (large 16-bit integers). For example, the two’s
complement representation of -99 is 65437. So although -99 is certainly
less than 0, it would appear to be larger than zero to the Lookdown
comparison operators. The bottom line is: Don’t used signed numbers
with Lookdown comparisons.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 281

2

Demo Program
This program uses Lookdown to determine the number of decimal dig-
its in a number. The reasoning is that numbers less than 10 have one
digit; greater than or equal to 10 but less than 100 have two; greater
than or equal to 100 but less than 1000 have three; greater than or equal
to 1000 but less than 10000 have four; and greater than or equal to
10000 but less than 65535 (the largest number we can represent in 16-
bit math) have five. There are two loopholes that we have to plug: (1)
The number 0 does not have zero digits, and (2) The number 65535 has
five digits.

To ensure that 0 is accorded one-digit status, we just put 0 at the begin-
ning of the Lookdown list. Since 0 is not less than 0, an input of 0 re-
sults in 1 as it should. At the other end of the scale, 65535 is not less
than 65535, so Lookdown will end without writing to the result vari-
able, numDig. To ensure that an input of 65535 returns 5 in numDig,
we just put 5 into numDig beforehand.

i var word ' Variable (0-65535).
numDig var nib ' Variable (0-15) to hold # of digits.

for i = 0 to 1000 step 8
 numDig = 5 ' If no 'true' in list, must be 65535.
 LOOKDOWN i,<[0,10,100,1000,10000,65535],numDig
 debug "i= ", rep " "\(5-numdig) ,dec i,tab,"digits=", dec numdig,cr
 pause 200
next

BASIC Stamp II

Page 282 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Lookup
LOOKUP index, [value0, value1,...valueN], resultVariable
Look up the value specified by the index and store it in a variable. If
the index exceeds the highest index value of the items in the list, vari-
able is unaffected.

• Index is the item number (constant or variable) of the value to be
retrieved from the list of values.

• Value0 , value1 ... make up a list of values (constants or variables)
up to 16 bits in size.

• ResultVariable is a variable in which the retrieved value will be
stored (if found).

Explanation
Lookup retrieves an item from a list based on the item’s position (in-
dex) in the list. For example:

index var nib
result var byte
index = 3
result = 255

LOOKUP index,[26,177,13,1,0,17,99],result
debug "Item ", dec index," is: ", dec result

Debug prints “Item 3 is: 1.” Note that Lookup lists are numbered from
0; in the list above item 0 is 26, item 1 is 177, etc. If the index provided
to Lookup is beyond the end of the list the result variable is unchanged.
In the example above, if index were greater than 6, the debug message
would have reported the result as 255, because that’s what result con-
tained before Lookup executed.

Demo Program
This program uses Lookup to create a debug-window animation of a
spinning propeller. The animation consists of the four ASCII charac-
ters | / - \ which, when printed rapidly in order at a fixed location,
appear to spin. (A little imagination helps a lot here.)

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 283

2

i var nib
frame var byte

rotate:
 for i = 0 to 3
 LOOKUP i,["|/-\"],frame
 debug cls,frame
 pause 50
 next
goto rotate

BASIC Stamp II

Page 284 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Low
LOW pin
Make the specified pin output low (write 1 to the corresponding bit of
DIRS and 0 to the corresponding bit of OUTS).

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.

Explanation
In order for the BS2 to actively output a 0 (a 0-volt level) on one of its
pins, two conditions must be satisfied:

(1) The corresponding bit of the DIRS variable must contain a 1 in
order to connect the pin’s output driver.

(2) The corresponding bit of the OUTS variable must contain a 0.

Low performs both of these actions with a single, fast instruction.

Demo Program
This program shows the bitwise state of the
DIRS and OUTS variables before and after the
instruction Low 4. You may also connect an
LED to pin P4 as shown in figure I-6 to see it
light when the Low instruction executes.

Dirs = % 10000 ' Initialize P4 to high
debug "Before: ",cr
debug bin16 ? dirs,bin16 ? outs,cr,cr
pause 1000

LOW 4

debug "After: ",cr
debug bin16 ? dirs,bin16 ? outs

220Ω

LED

I/O pin

+5V

Figure I-6

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 285

2

Nap
NAP period
Enter sleep mode for a short period. Power consumption is reduced to
about 50 µA assuming no loads are being driven.

• Period is a variable/constant that determines the duration of the
reduced power nap. The duration is (2^period) * 18 ms. (Read
that as “2 raised to the power period, times 18 ms.”) Period can
range from 0 to 7, resulting in the following nap lengths:

Period 2 period Length of Nap
0 1 18.ms
1 2 36.ms
2 4 72.ms
3 8 144.ms
4 16 288.ms
5 32 576.ms
6 64 1152.ms (1.152 seconds)
7 128 2304.ms (2.304 seconds)

Explanation
Nap uses the same shutdown/startup mechanism as Sleep, with one
big difference. During Sleep, the BS2 automatically compensates for
variations in the speed of the watchdog timer oscillator that serves as
its alarm clock. As a result, longer Sleep intervals are accurate to ap-
proximately ±1 percent. Nap intervals are directly controlled by the
watchdog timer without compensation. Variations in temperature, sup-
ply voltage, and manufacturing tolerance of the BS2 interpreter chip
can cause the actual timing to vary by as much as –50, +100 percent
(i.e., a period-0 Nap can range from 9 to 36 ms). At room temperature
with a fresh battery or other stable power supply, variations in the length
of a Nap will be less than ±10 percent.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during a Nap, current will be inter-
rupted for about 18ms when the BS2 wakes up. The r eason is that the
watchdog-timer reset that awakens the BS2 also causes all of the pins
to switch to input mode for approximately 18 ms. When the PBASIC2
interpreter firmware regains control of the processor, it restores the

BASIC Stamp II

Page 286 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

I/O direction dictated by your program.

If you plan to use End, Nap, or Sleep in your
programs, make sure that your loads can tol-
erate these power outages. The simplest solu-
tion is often to connect resistors high or low
(to +5V or ground) as appropriate to ensure a
continuing supply of current during the reset
glitch.

The demo program can be used to demonstrate
the effects of the Nap glitch with an LED and
resistor as shown in figure I-7.

Demo Program
The program below lights an LED by placing a low on pin 0. This com-
pletes the circuit from +5V, through the LED and resistor, to ground.
During the Nap interval, the LED stays lit, but blinks off for a fraction
of a second. This blink is caused by the Nap wakeup mechanism de-
scribed above. During wakeup, all pins briefly slip into input mode,
effectively disconnecting them from loads.

low 0 ' Turn LED on.
snooze:
 NAP 4 ' Nap for 288 ms.
goto snooze

220Ω

LED

I/O pin

+5V

Figure I-7

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 287

2

Output
OUTPUT pin
Make the specified pin an output (write a 1 to the corresponding bit of
DIRS).

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.

Explanation
There are several ways to make a pin an output. When a program be-
gins, all of the BS2’s pins are inputs. Output instructions (Pulsout, High,
Low, Serout, etc.) automatically change the specified pin to output and
leave it in that state. Writing 1s to particular bits of the variable DIRS
makes the corresponding pins outputs. And then there’s the Output
instruction.

When a pin is an output, your program can change its state by writing
to the corresponding bit in the OUTS variable. For example:

OUTPUT 4
OUT4 = 1 ' Make pin 4 high (1).

When your program changes a pin from input to output, whatever
state happens to be in the corresponding bit of OUTS sets the state of
the pin. To simultaneously make a pin an output and set its state use
the High and Low instructions.

Demo Program
This program demonstrates how the input/output direction of a pin is
determined by the corresponding bit of DIRS. To set up the demo, con-
nect a 10k resistor from +5V to P7 on the BS2. The resistor to +5V puts
a high (1) on the pin when it’s initially an input. The BS2 then over-
rides this state by writing a low (0) to bit 7 of OUTS and executing
Output 7.

input 7 ' Make pin 7 an input.
debug "State of pin 7: ", bin IN7,cr
OUT7 = 0 ' Write 0 to output latch.
debug "After 0 written to OUT7: ",bin IN7,cr
OUTPUT 7 ' Make pin 7 an output.
debug "After pin 7 changed to output: ",bin IN7

BASIC Stamp II

Page 288 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Pause
PAUSE milliseconds
Pause the program (do nothing) for the specified number of millisec-
onds.

• Milliseconds is a variable/constant specifying the length of the
pause in ms. Pauses may be up to 65535 ms (65+ seconds) long.

Explanation
Pause delays the execution of the next program instruction for the speci-
fied number of milliseconds. For example:

flash:
 low 0
 PAUSE 100
 high 0
 PAUSE 100
goto flash

This code causes pin 0 to go low for 100 ms, then high for 100 ms. The
delays produced by Pause are as accurate as the ceramic-resonator
timebase, ±1 percent. When you use Pause in timing-critical applica-
tions, keep in mind the relatively low speed of the PBASIC interpreter;
about 3000 instructions per second. This is the time required for the
BS2 to read and interpret an instruction stored in the EEPROM.

Since the chip takes 0.3 milliseconds to read in the Pause instruction,
and 0.3 milliseconds to read in the instruction following it, you can count
on loops involving Pause taking almost 1 millisecond longer than the
Pause period itself. If you’re programming timing loops of fairly long
duration, keep this (and the 1-percent tolerance of the timebase) in mind.

Demo Program
This program demonstrates the Pause instruction’s time delays. Once
a second, the program will put the debug message “paused” on the
screen.

again:
 PAUSE 1000
 debug "paused",cr
goto again

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 289

2

Pulsin
PULSIN pin, state, resultVariable
Measure the width of a pulse in 2µs units.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.
This pin will be placed into input mode during pulse measurement
and left in that state after the instruction finishes.

• State is a variable or constant (0 or 1) that specifies whether the
pulse to be measured begins with a 0-to-1 transition (1) or a 1-to-
0 transition (0).

• ResultVariable is a variable in which the pulse duration (in 2µs
units) will be stored.

Explanation
You can think of Pulsin as a fast stopwatch that is triggered by a change
in state (0 or 1) on the specified pin. When the state on the pin changes
to the state specified in Pulsin, the stopwatch starts. When the state on
the pin changes again, the stopwatch stops.

If the state of the pin doesn’t change–even if it is already in the state
specified in the Pulsin instruction–the stopwatch won’t trigger. Pulsin
waits a maximum of 0.131 seconds for a trigger, then returns with 0 in
resultVariable. If the pulse is longer than 0.131 seconds, Pulsin returns a
0 in resultVariable.

If the variable is a word, the value returned by Pulsin can range from 1
to 65535 units of 2 µs. If the variable is a byte, the value returned can
range from 1 to 255 units of 2 µs. Regardless of the size of the variable,
Pulsin internally uses a 16-bit timer. When your program specifies a
byte variable, Pulsin stores the lower 8 bits of the internal counter into
it. This means that pulse widths longer than 510 µs will give false, low
readings with a byte variable. For example, a 512-µs pulse would re-
turn a Pulsin reading of 256 with a word variable and 0 with a byte
variable.

BASIC Stamp II

Page 290 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

stopped by 0-to-1

triggered by 1-to-0

measured in 2µs units
and stored in variable

PULSIN pin, 0,variable

stopped by 1-to-0

triggered by 0-to-1

measured in 2µs units
and stored in variable

PULSIN pin, 1,variable

Figure I-8

Figure I-8 shows how the state bit controls triggering of Pulsin.

I/O pin

100k

0.1µF 1k

+5V
Figure I-9

Demo Program
This program uses Pulsin to measure a pulse generated by discharg-
ing a 0.1µF capacitor through a 1k resistor as shown in figure I-9. Press-
ing the switch generates the pulse, which should ideally be approxi-
mately 120µs (60 Pulsin units of 2µs) long. Variations in component
values may produce results that are up to 10 units off from this value.
For more information on calculating resistor-capacitor timing, see the
RCtime instruction.

time var word

again:
 PULSIN 7,1,time ' Measure positive pulse.
 if time = 0 then again ' If 0, try again.
 debug cls,dec ? time ' Otherwise, display result.
goto again ' Do it again.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 291

2

Pulsout
PULSOUT pin, time
Output a pulse of 2µs to 131 ms in duration.

• Pin is a variable/constant (0-15) that specifies the I/O pin to use.
This pin will be placed into output mode immediately before the
pulse and left in that state after the instruction finishes.

• Time is a variable/constant (0-65535) that specifies the duration
of the pulse in 2µs units.

Explanation
Pulsout combines several actions into a single instruction. It puts the
specified pin into output mode by writing a 1 to the corresponding bit
of DIRS; inverts the state of that pin’s OUTS bit; waits for the specified
number of 2µs units; then inverts the corresponding bit of OUTS again,
returning the bit to its original state. An example:

PULSOUT 5,50 ' Make a 100-us pulse on pin 5.

The polarity of the pulse depends on the state of the pin’s OUTS bit
when the instruction executes. In the example above, if OUT5 = 0, then
Pulsout 5,50 produces a 100µs positive pulse. If the pin is an input, the
OUTS bit won’t necessarily match the state of the pin. What does
Pulsout do then? Example: pin 7 is an input (DIR7 = 0) and pulled high
by a resistor as shown in figure I-10a. Suppose that OUT7 is 0 when we
execute the instruction:

PULSOUT 7,5 ' 10-us pulse on pin 7.

Figure I-10b shows the sequence of events as they would look on an
oscilloscope. Initially, pin 7 is high. Its output driver is turned off (be-
cause it is in input mode), so the 10k resistor sets the state on the pin.
When Pulsout executes, it turns on the output driver, allowing OUT7
to control the pin. Since OUT7 is low, the pin goes low. After a few
microseconds of preparation, Pulsout inverts OUT7. It leaves OUT7 in
that state for 10µs, then inverts it again, leaving OUT7 in its original
state.

This sequence of events is different from the original Basic Stamp I.
The Basic Stamp I does not have separate INS and OUTS registers;

BASIC Stamp II

Page 292 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

both functions are rolled into the pin variables, such as “pin7.” So in
the situation outlined above and shown in figure I-10, the BS1 would
produce a single negative pulse and leave the pin output high when
done.

PULSOUT 7,5
+5V

10k

pin 7 O-scope

a b

pin 7 in input mode
(DIR7 = 0,
OUT7 = 0)

but held high by
resistor to +5V

(instruction
executes)

pin changes to
output (~6µs)

10µs positive pulse

pin remains
output-low
(DIR7 = 1,
OUT7 = 0)

pin 7 connected to
oscilloscope as

shown

Figure I-10

To make the BS2 work the same way, copy the state of the pin’s INS bit
to its OUTS bit before Pulsout:

OUT7 = IN7 ' Copy input state to output driver.
PULSOUT 7,5 ' 10-us pulse on pin 7.

Now the instruction would pulse low briefly, then return output-high,
just like the BS1. Of course, BS1 Pulsout works in units of 10µs, so you
would have to adjust the timing to make an exact match, but you get
the idea.

Demo Program
This program blinks an LED on for 10ms at 1-
second intervals. Connect the LED to I/O pin 0
as shown in figure I-11.

high 0 ' Set the pin high (LED off).
again:
 pause 1000 ' Wait one second.
 PULSOUT 0,5000 ' Flash the LED for 10 ms.
goto again ' Repeat endlessly.

220Ω

LED

I/O pin

+5V

Figure I-11

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 293

2

PWM
PWM pin, duty, cycles
Convert a digital value to analog output via pulse-width modulation.

• Pin is a variable/constant (0-15) that specifies the I/O pin to use.
This pin will be placed into output mode during pulse generation
then switched to input mode when the instruction finishes.

• Duty is a variable/constant (0-255) that specifies the analog
output level (0 to 5V).

• Cycles is a variable/constant (0-65535) specifying an approximate
number of milliseconds of PWM output.

Explanation
Pulse-width modulation (PWM) allows the BS2—a purely digital de-
vice—to generate an analog voltage. The basic idea is this: If you make
a pin output high, the voltage at that pin will be close to 5V. Output
low is close to 0V. What if you switched the pin rapidly between high
and low so that it was high half the time and low half the time? The
average voltage over time would be halfway between 0 and 5V—2.5V.
This is the idea of PWM; that you can produce an analog voltage by
outputting a stream of digital 1s and 0s in a particular proportion.

The proportion of 1s to 0s in PWM is called the duty cycle. The duty
cycle controls the analog voltage in a very direct way; the higher the
duty cycle the higher the voltage. In the case of the BS2, the duty cycle
can range from 0 to 255. Duty is literally the proportion of 1s to 0s
output by the PWM instruction. To determine the proportional PWM
output voltage, use this formula: (duty/255) * 5V. For example, if duty
is 100, (100/255) * 5V = 1.96V; PWM outputs a train of pulses whose
average voltage is 1.96V.

In order to convert PWM into an analog voltage we have to filter out
the pulses and store the average voltage. The resistor/capacitor com-
bination in figure I-12 will do the job. The capacitor will hold the volt-
age set by PWM even after the instruction has finished. How long it
will hold the voltage depends on how much current is drawn from it
by external circuitry, and the internal leakage of the capacitor. In order
to hold the voltage relatively steady, a program must periodically

BASIC Stamp II

Page 294 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

repeat the PWM instruction to give the capacitor a fresh charge.

Just as it takes time to discharge a capacitor, it also takes time to charge
it in the first place. The PWM instruction lets you specify the charging
time in terms of PWM cycles. Each cycle is a period of approximately
1ms. So to charge a capacitor for 5ms, you would specify 5 cycles in the
PWM instruction.

How do you determine how long to charge a capacitor? Use this rule-
of-thumb formula: Charge time = 4 * R * C. For instance, figure I-12
uses a 10k (10 x 103 ohm) resistor and a 1µF (1 x 10-6 F) capacitor: Charge
time = 4 * 10 x 103 * 1 x 10-6 = 40 x 10-3 seconds, or 40ms. Since each cycle
is approximately a millisecond, it would take at least 40 cycles to charge
the capacitor. Assuming the circuit is connected to pin 0, here’s the
complete PWM instruction:

PWM 0,100,40 ' Put a 1.96V charge on capacitor.

After outputting the PWM pulses, the BS2 leaves the pin in input mode
(0 in the corresponding bit of DIRS). In input mode, the pin’s output
driver is effectively disconnected. If it were not, the steady output state
of the pin would change the voltage on the capacitor and undo the
voltage setting established by PWM.

PWM charges the capacitor; the load presented by your circuit dis-
charges it. How long the charge lasts (and therefore how often your
program should repeat the PWM instruction to refresh the charge) de-
pends on how much current the circuit draws, and how stable the volt-
age must be. You may need to buffer PWM output with a simple op-
amp follower if your load or stability requirements are more than the
passive circuit of figure I-12 can handle.

I/O pin
10k

1µF

Analog voltage
(0—5Vdc)+

Figure I-12

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 295

2

How PWM is Generated
The term “PWM” applies only loosely to the action of the BS2’s PWM
instruction. Most systems that output PWM do so by splitting a fixed
period of time into an on time (1) and an off time (0). Suppose the
interval is 1 ms and the duty cycle is 100/255. Conventional PWM
would turn the output on for 0.39 ms and off for 0.61 ms, repeating this
process each millisecond. The main advantage of this kind of PWM is
its predictability; you know the exact frequency of the pulses (in this
case, 1kHz), and their widths are controlled by the duty cycle.

BS2 PWM does not work this way. It outputs a rapid sequence of on/
off pulses as short as 4µs in duration whose overall proportion over
the course of a full PWM cycle of approximately a millisecond is equal
to the duty cycle. This has the advantage of very quickly zeroing in on
the desired output voltage, but it does not produce the neat, orderly
pulses that you might expect. The BS2 also uses this high-speed PWM
to generate pseudo-sinewave tones with the DTMFout and Freqout
instructions.

Demo Program
Connect a voltmeter (such as a digital multimeter set to its voltage
range) to the output of the circuit shown in figure I-12. Connect BS2
pin 0 to point marked I/O pin. Run the program and observe the read-
ings on the meter. They should come very close to 1.96V, then decrease
slightly as the capacitor discharges. Try varying the interval between
PWM bursts (by changing the Pause value) and the number of PWM
cycles to see their effect.

again:
 PWM 0,100,40 ' 40 cycles of PWM at 100/255 duty
 pause 1000 ' Wait a second.
goto again ' Repeat.

BASIC Stamp II

Page 296 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Random
RANDOM variable
Generate a pseudo-random number.

• Variable is a byte or word variable whose bits will be scrambled
to produce a random number.

Explanation
Random generates pseudo-random numbers ranging from 0 to 65535.
They’re called “pseudo-random” because they appear random, but are
generated by a logic operation that always produces the same result
for a given input. For example:

w1 = 0 ' Clear word variable w1 to 0.
RANDOM w1 ' Generate "random" number.
debug dec ? w1 ' Show the result on screen.

In applications requiring more apparent randomness, it’s a good idea
to seed Random’s wordvariable with a different value each time. For
instance, in the demo program below, Random is executed continu-
ously while the program waits for the user to press a button. Since the
user can’t control the timing of button presses to the nearest millisec-
ond, the results approach true randomness.

Demo Program
Connect a button to pin 7 as shown in figure I-13 and run the program
below. The program uses Random to simulate a coin toss. After 100
trials, it reports the total number of heads and tails thrown.

flip var word ' The random number.
coin var flip.bit0 ' A single bit of the random
number.
trials var byte ' Number of flips.
heads var byte ' Number of throws that came up
heads.
tails var byte ' Number of throws that came up
tails.
btn var byte ' Workspace for Button instruction.

start:
 debug cls, "Press button to start"

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 297

2

for trials = 1 to 100 ' 100 tosses of the coin.
hold:
 RANDOM flip ' While waiting for button,
randomize.
 button 7,0,250,100,btn,0,hold ' Wait for button.
 branch coin,[head,tail] ' If 0 then head; if 1 then tail.
head:
 debug cr,"HEADS" ' Show heads.
 heads = heads+1 ' Increment heads counter.
 goto theNext ' Next flip.

tail:
 debug cr,"TAILS" ' Show tails.
 tails = tails+1 ' Increment tails counter.
theNext: ' Next flip.
next
' When done, show the total number of heads and tails.
debug cr,cr,"Heads: ",dec heads," Tails: ",dec tails

Figure I-13 +5V

10k

pin 7

BASIC Stamp II

Page 298 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

RCtime
RCTIME pin, state, resultVariable
Count time while pin remains in state—usually to measure the charge/
discharge time of resistor/capacitor (RC) circuit.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.
This pin will be placed into input mode and left in that state when
the instruction finishes.

• State is a variable or constant (1 or 0) that will end the RCtime
period.

• ResultVariable is a variable in which the time measurement (0 to
65535 in 2µs units) will be stored.

Explanation
RCtime can be used to measure the charge or discharge time of a resis-
tor/capacitor circuit. This allows you to measure resistance or capaci-
tance; use R or C sensors (such as thermistors or capacitive humidity
sensors); or respond to user input through a potentiometer. In a broader
sense, RCtime can also serve as a fast, precise stopwatch for events of
very short duration (less than 0.131 seconds).

When RCtime executes, it starts a counter that increments every 2µs. It
stops this counter as soon as the specified pin is no longer in state (0 or
1). If pin is not in state when the instruction executes, RCtime will re-
turn 1 in resultVariable, since the instruction requires one timing cycle
to discover this fact. If pin remains in state longer than 65535 timing
cycles of 2µs each (0.131 seconds), RCtime returns 0.

Figure I-14 shows suitable RC circuits for use with RCtime. The circuit
in I-14a is preferred, because the BS2’s logic threshold is approximately
1.5 volts. This means that the voltage seen by the pin will start at 5V
then fall to 1.5V (a span of 3.5V) before RCtime stops. With the circuit
of I-14b, the voltage will start at 0V and rise to 1.5V (spanning only
1.5V) before RCtime stops. For the same combination of R and C, the
circuit shown in I-14a will yield a higher count, and therefore more
resolution than I-14b.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 299

2

Before RCtime executes, the capacitor must be put into the state speci-
fied in the RCtime instruction. For example, with figure I-14a, the ca-
pacitor must be discharged until both plates (sides of the capacitor) are
at 5V. It may seem counterintuitive that discharging the capacitor makes
the input high, but remember that a capacitor is charged when there is
a voltage difference between its plates. When both sides are at +5V, the
cap is considered discharged.

Here’s a typical sequence of instructions for I-14a (assuming I/O pin 7
is used):

result var word ' Word variable to hold result.
high 7 ' Discharge the cap
pause 1 ' for 1 ms.
RCTIME 7,1,result ' Measure RC charge time.
debug ? result ' Show value on screen.

Using RCtime is very straightforward, except for one detail: For a given
R and C, what value will RCtime return? It’s easy to figure, based on a
value called the RC time constant or tau (t) for short. Tau represents
the time required for a given RC combination to charge or discharge
by 63 percent of the total change in voltage that they will undergo.
More importantly, the value t is used in the generalized RC timing
calculation. Tau’s formula is just R multiplied by C:

t = R x C

The general RC timing formula uses t to tell us the time required for an
RC circuit to change from one voltage to another:

a b use with state = 0use with state = 1 (preferred—see text)

+5V

R

I/O pin
220Ω

C

+5V

R

220Ω

C

I/O pin

Figure I-14

BASIC Stamp II

Page 300 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

In this formula ln is the natural logarithm; it’s a key on most scientific
calculators. Let’s do some math. Assume we’re interested in a 10k re-
sistor and 0.1µF cap. Calculate t:

t = (10 x 103) x (0.1 x 10-6) = 1 x 10-3

The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time
required for this RC circuit to go from 5V to 1.5V (as in figure I-14a):

In RCtime units of 2µs, that time (1.204 x 10-3) works out to 602 units.
With a 10k resistor and 0.1µF cap, RCtime would return a value of ap-
proximately 600. Since Vinitial and Vfinal don’t change, we can use a
simplified rule of thumb to estimate RCtime results for circuits like I-14a:

RCtime units = 600 x R (in kΩ) x C (in µF)

Another handy rule of thumb can help you calculate how long to
charge/discharge the capacitor before RCtime. In the example above
that’s the purpose of the High and Pause instructions. A given RC
charges or discharges 98 percent of the way in 4 time constants (4 x R x
C). In figure I-14a/b, the charge/discharge current passes through the
220Ω series resistor and the capacitor. So if the capacitor were 0.1µF,
the minimum charge/discharge time should be:

Charge time = 4 x 220 x (0.1 x 10-6) = 88 x 10-6

So it takes only 88µs for the cap to charge/discharge, meaning that the
1 ms charge/discharge time of the example is plenty.

A final note about figure I-14: You may be wondering why the 220Ω
resistor is necessary at all. Consider what would happen if resistor R in
I-14a were a pot, and were adjusted to 0Ω. When the I/O pin went
high to discharge the cap, it would see a short direct to ground. The
220Ω series resistor would limit the short circuit current to 5V/220Ω =
23 milliamperes (mA) and protect the BS2 from damage. (Actual
current would be quite a bit less due to internal resistance of the pin’s
output driver, but you get the idea.)

Demo Program 1
This program shows the standard use of the RCtime instruction—mea-
suring an RC charge/discharge time. Use the circuit of figure I-14a,

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 301

2

with R = 10k pot and C = 0.1µf. Connect the circuit to pin 7 and run the
program. Adjust the pot and watch the value shown on the Debug
screen change.

result var word' Word variable to hold result.
again:
 high 7 ' Discharge the cap
 pause 1 ' for 1 ms.
 RCTIME 7,1,result ' Measure RC charge time.
 debug cls,dec result ' Show value on screen.
goto again

Demo Program 2
This program illustrates the use of RCtime as a sort of fast stopwatch.
The program energizes a relay coil, then has RCtime measures how
long it takes for the relay contacts to close. Figure I-15 shows the hookup.
In a test run of the program with a storage oscilloscope independently
timing the relay coil and contacts, we got the following results: RCtime
result = 28 units (56µs); Oscilloscope measurement: 270µs. The 214µs
difference is the time required for RCtime to set up and begin its mea-
surement cycle. Bear this in mind—that RCtime doesn’t start timing
instantly—when designing critical applications.

result var word

again:
 low 6 ' Energize relay coil.
 RCTIME 7,1,result ' Measure time to contact closure.
 debug "Time to close: ", dec result,cr
 high 6 ' Release the relay.
 pause 1000 ' Wait a second.
goto again ' Do it again.

+5V

pin 6

relay
contacts

pin 7

+5V

relay coil

10k

Relay: 5Vdc reed
relay with 20mA
coil, e.g., Radio
Shack 275-232

Figure I-15

BASIC Stamp II

Page 302 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Read
READ location,variable
Read EEPROM location and store value in variable.

• Location is a variable/constant (0–2047) that specifies the
EEPROM address to read from.

• Variable holds the byte value read from the EEPROM (0–255).

Explanation
The EEPROM is used for both program storage (which builds down-
ward from address 2047) and data storage (which builds upward from
address 0). The Read instruction retrieves a byte of data from any
EEPROM address. Although it’s unlikely that you would want to read
the compressed tokens that make up your PBASIC2 program, storing
and retrieving long-term data in EEPROM is a very handy capability.
Data stored in EEPROM is not lost when the power is removed.

The demo program below uses the Data directive to preload the
EEPROM with a message; see the section BS2 EEPROM Data Storage
for a complete explanation of Data. Programs may also write to the
EEPROM; see Write.

Demo Program
This program reads a string of data stored in EEPROM. The EEPROM
data is downloaded to the BS2 at compile-time (immediately after you
press ALT-R) and remains there until overwritten—even with the power
off.

' Put ASCII characters into EEPROM, followed by 0,
' which will serve as the end-of-message marker.
Message data "BS2 EEPROM Storage!",0
strAddr var word
char var byte

strAddr = Message ' Set address to start of Message.

stringOut:
 READ StrAddr,char ' Get a byte from EEPROM.
 if char <> 0 then cont ' Not end? Continue.
Stop 'Stop here when done.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 303

2

cont:
 debug char ' Show character on screen.
 strAddr = strAddr+1 ' Point to next character.
goto stringOut ' Get next character.

BASIC Stamp II

Page 304 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Return
RETURN
Return from a subroutine.

Explanation
Return sends the program back to the address (instruction) immedi-
ately following the most recent Gosub. If Return is executed without a
prior Gosub to set the return address, a bug will result. For more thor-
ough coverage of Gosub...Return, see the Gosub writeup.

Demo Program
This program demonstrates how Gosub and Return work, using De-
bug messages to trace the program’s execution. For an illustration of
the bug caused by accidentally wandering into a subroutine, remove
the Stop instruction. Instead of executing once, the program will get
stuck in an infinite loop.

debug "Executing Gosub...",cr
gosub demoSub
debug "Returned."
stop

demoSub:
 debug "Executing subroutine.",cr
RETURN

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 305

2

Reverse
REVERSE pin
Reverse the data direction of the specified pin.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.
This pin will be placed into the opposite of its current input/
output mode by inverting the corresponding bit of the DIRS
register.

Explanation
Reverse is convenient way to switch the I/O direction of a pin. If the
pin is an input and you Reverse it, it becomes an output; if it’s an out-
put, Reverse makes it an input.

Remember that “input” really has two meanings: (1) Setting a pin to
input makes it possible to check the state (1 or 0) of external circuitry
connected to that pin. The state is in the corresponding bit of the INS
register. (2) Setting a pin to input also disconnects the output driver
(corresponding bit of OUTS). The demo program below illustrates this
second fact with a two-tone LED blinker.

Demo Program
Connect the circuit of figure I-16 to pin 0 and run the program below.
The LED will alternate between two states, dim and bright. What’s
happening is that the Reverse instruction is toggling pin 0 between
input and output states. When pin 0 is an input, current flows through
R1, through the LED, through R2 to ground. Pin 0 is effectively discon-
nected and doesn’t play a part in the circuit. The total resistance en-
countered by current flowing through the LED is R1 + R2 = 440Ω. When
pin 0 is Reversed to output, current flows through R1, through the
LED, and into pin 0 to ground (because of the 0 written to OUT0). The
total resistance encountered by current flowing through the LED is R1,
220Ω. With only half the resistance, the LED glows brighter.

OUT0 = 0 ' Put a low in the pin 0 output driver.
again:
 pause 200 ' Brief (1/5th second) pause.
 REVERSE 0 ' Invert pin 0 I/O direction.
goto again ' Repeat forever.

BASIC Stamp II

Page 306 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Figure I-16

220Ω

pin 0

+5V

LED

220Ω

R1

R2

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 307

2

Serin
SERIN rpin{\fpin},baudmode,{plabel,}{timeout,tlabel,}[inputData]
Receive asynchronous (e.g., RS-232) data.

• Rpin is a variable/constant (0–16) that specifies the I/O pin
through which the serial data will be received. This pin will
switch to input mode and remain in that state after the instruction
is completed. If Rpin is set to 16, the Stamp uses the dedicated
serial-input pin (SIN), which is normally used by the STAMP2
host program.

• Fpin is an optional variable/constant (0–15) that specifies the
I/O pin to be used for flow control (byte-by-byte handshaking).
This pin will switch to output mode and remain in that state after
the end of the instruction.

• Baudmode is a 16-bit variable/constant that specifies serial
timing and configuration. The lower 13 bits are interpreted as the
bit period minus 20µs. Bit 13 ($2000 hex) is a flag that controls the
number of data bits and parity (0=8 bits and no parity, 1=7
bits and even parity). Bit 14 ($4000 hex) controls polarity
(0=noninverted, 1=inverted). Bit 15 ($8000 hex) is not used by
Serin.

• Plabel is an optional label indicating where the program should
go in the event of a parity error. This argument may only be
provided if baudmode indicates 7 bits, and even parity.

• Timeout is an optional variable/constant (0–65535) that tells
Serin how long in milliseconds to wait for incoming data. If data
does not arrive in time, the program will jump to the address
specified by tlable.

• Tlabel is an optional label which must be provided along with
timeout, indicating where the program should go in the event
that data does not arrive within the period specified by timeout.

• InputData is a list of variables and modifiers that tells Serin what
to do with incoming data. Serin can store data in a variable or
array; interpret numeric text (decimal, binary, or hex) and store
the corresponding value in a variable; wait for a fixed or variable

BASIC Stamp II

Page 308 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

sequence of bytes; or ignore a specified number of bytes. These
actions can be combined in any order in the inputData list.

Explanation
The BS2 can send and receive asynchronous serial data at speeds up to
50,000 bits per second. Serin, the serial-input instruction, can filter and
convert incoming data in powerful ways. With all this power inevita-
bly comes some complexity, which we’ll overcome by walking you
through the process of setting up Serin and understanding its options.

Physical/Electrical Interface
Since the STAMP2 host software runs on a PC, we’ll use its RS-232
COM ports as a basis for discussion of asynchronous serial communi-
cation. Asynchronous means “no clock.” Data can be sent using a single
wire, plus ground.

The other kind of serial, synchronous,
uses at least two wires, clock and data,
plus ground. The Shiftin and Shiftout
commands are used for a form of syn-
chronous serial communication.

RS-232 is the electrical specification for
the signals that PC COM ports use.
Unlike normal logic, in which a 1 is
represented by 5 volts and a 0 by 0
volts, RS-232 uses –12 volts for 1 and
+12 volts for 0.

Most circuits that receive RS-232 use
a line receiver. This component does
two things: (1) It converts the ±12 volts
of RS-232 to logic-compatible 0/5-volt
levels. (2) It inverts the relationship of
the voltage levels to corresponding
bits, so that volts = 1 and 0 volts = 0.

The BS2 has a line receiver on its SIN
pin (rpin = 16). See the BS2 hardware

Write custom software that uses the serial port with the
DTR line low. Under DOS, DTR is bit 0 of port $03FC or
$02FC (com 1 or 2, respectively). In QBASIC or
QuickBASIC, port locations are accessed using the INP
and OUT instructions. Here’s a QBASIC code fragment
that clears the DTR bit on com 1:

DTR
(DB9, pin 4)

0.1µF
(both)

Option 1: Custom Software

temp = INP(&H3FC)
OUT &H3FC,temp AND 254

However, even if this instruction is issued immediately after
the com port is OPENed, DTR goes high for almost 100ms
(more on a slow PC). This will cause the BS2 to reset,
unless the code runs before the BS2 is connected to the
com port.

Do not consider the software approach unless you are
an expert programmer able to go it alone, as there are
no canned examples available.

Insert the circuit below between the PC’s DTR output
and the BS2’s ATN input. The series capacitor blocks
DTR’s steady state (as set by a terminal program or
other software), but passes the attention/programming
pulse sent by the STAMP2 host software. The parallel
cap soaks up noise that might be coupled into the line.

Option 2: Capacitive Coupling of ATN

ATN
(BS2, pin 3)

The simplest solution is to break the ATN line and insert a
switch to let you conveniently connect and disconnect
DTR/ATN. When you want to program the BS2, close the
switch; when you want to communicate with some other
program, open the switch.

Option 3: Switch in ATN

DTR
(DB9, pin 4)

ATN
(BS2, pin 3)

close to program

Using the Carrier Board DB9 Connector
with PC Terminal Programs

Figure I-17

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 309

2

description and schematic. The SIN
pin goes to a PC’s serial data-out pin
on the DB9 connector built into BS2
carrier boards. The connector is wired
to allow the STAMP2 host program
to remotely reset the BS2 for program-
ming, so it may have to be modified
before it can be used with other soft-
ware; see figure I-17.

The BS2 can also receive RS-232 data
through any of its other 16 general-
purpose I/O pins (rpin = 0 through
15). The I/O pins don’t need a line
receiver, just a series resistor (we sug-
gest 22k). The resistor limits current
into the I/O pins’ built-in clamp di-
odes, which keep input voltages
within a safe range.

Figure I-18 shows the pinouts of the
two styles of PC COM ports and how to connect them to the Stamp.
The figure also shows loopback connections that defeat hardware hand-
shaking used by some PC software.

Serial Timing and Mode (Baudmode)
Asynchronous serial communication relies on precise timing. Both the
sender and receiver must be set for identical timing, usually expressed
in bits per second (bps) and called baud.

Serin accepts a 16-bit value called baudmode that tells it the important
characteristics of the incoming serial data—the bit period, data and
parity bits, and polarity. Figure I-19 shows how baudmode is calcu-
lated and table I-3 shows common baudmodes for standard serial baud
rates.

If you’re communicating with existing software, its speed(s) and
mode(s) will determine your choice of baud rate and mode. In general,
7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity (8N)

1

DB-25 Male
(SOLDER SIDE)

DB-9 Female
(SOLDER SIDE)

I/O pin
22k

I/O pin
22k

2345678910111213

1 2 3 4 5

6 7 8 9

141516171819202122232425

NOTE: Most DB25 sockets on
PCs are parallel, not serial, ports.
See your documentation!

1

2

3

4

5

Protective Ground

Transmit Data (TD)

Receive Data

Request to Send (RTS)

Clear to Send (CTS)

6

7

8

20

Data Set Ready (DSR)

Signal Ground (SG)

Data Carrier Detect (DCD)

Data Terminal Ready (DTR)

Ring Indicator (RI) 22

–

3

2

7

8

6

5

1

4

9

DB25Function DB9

NOTE: In the connector drawings above, several handshaking lines are
shown connected together: DTR-DSR-DCD and RTS-CTS. This for the
benefit of terminal programs that expect hardware handshaking. You may
omit these connections if you’re using software that doesn’t expect
handshaking, or if you’re writing your own software without handshaking.

Pinouts for Standard PC COM Port
Connectors with Serin Hookup

Figure I-18

BASIC Stamp II

Page 310 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

for byte-oriented data. Parity can detect some communication errors,
but to use it you lose one data bit. This means that incoming data bytes
transferred in 7E mode can only represent values from 0 to 127, rather
than the 0 to 255 of 8N mode.

Direct Connection
(Inverted)

Through Line Driver
(Noninverted)

Baud Rate

300
600

1200
2400
4800
9600

19200
38400

8 data bits,
no parity

7 data bits,
even parity

3313 11505
1646 9838

813 9005
396 8588
188 8380

84 8276
32 8224

6 8198

8 data bits,
no parity

7 data bits,
even parity

19697 27889
18030 26222
17197 25389
16780 24972
16572 27764
16468 24660
16416 24608
16390 24582

Common Data Rates and Their Baudmodes

Table I-3

Simple Input and Numeric Conversions
Stripped to just the essentials, Serin can be as simple as:

Serin rpin,baudmode,[inputData]

For example, to receive a byte through pin 1 at 9600 bps, 8N, inverted:

serData var byte
Serin 1,16468,[serData]

Serin would wait for and receive a single byte of data through pin 1
and store it in the variable serData. If the Stamp were connected to a
PC running a terminal program set to the same baud rate and the user
pressed the A key on the keyboard, after Serin the variable serData
would contain 65, the ASCII code for the letter A. (See the ASCII char-
acter chart in the appendix.) If you wanted to let the user enter a deci-
mal number at the keyboard and put that value into serData, the ap-
propriate Serin would be:

serData var byte
Serin 1,16468,[DEC serData]

Corresponding Baudmode Value

Data Speed

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 311

2

The DEC modifier tells Serin to
convert decimal numeric text
into binary form and store the
result in serData. Receiving “123”
followed by a space or other non-
numeric text results in the value
123 being stored in serData. DEC
is one of a family of conversion
modifiers available with Serin;
see table I-4 for a list. All of the
conversion modifiers work simi-
larly: they receive bytes of data,
waiting for the first byte that falls
within the range of symbols they
accept (e.g., “0” or “1” for binary,
“0” to “9” for decimal, “0” to “9”
and “A” to “F” for hex, and “+”
or “-” for signed variations of any
type). Once they receive a nu-
meric symbol, they keep accept-
ing input until a non-numeric
symbol arrives or (in the case of
the fixed length modifiers) the
maximum specified number of
digits arrives.

While very effective at filtering
and converting input text, the modifiers aren’t completely foolproof.
For instance, in the example above, Serin would keep accepting text
until the first non-numeric text arrived—even if the resulting value
exceeded the size of the variable. After Serin, a byte variable would
contain the lowest 8 bits of the value entered; a word would contain
the lowest 16 bits. You can control this to some degree by using a modi-
fier that specifies the number of digits, such as DEC2, which would
accept values only in the range of 0 to 99.

Collecting Strings
Serin can grab sequences of incoming bytes and store them in array
variables using the STR modifier. See table I-5. Here is an example that

Calculating Baudmode
for BS2 Serin

Bits 0 through 12 of the baudmode are the bit period,
expressed in microseconds (µs). Serin’s actual bit period
is always 20µs longer than specified. Use the following
formula to calculate the baudmode bit period for a given
baud rate:

Step 1: Figure the Bit Period (bits 0—12)

(INT means ‘convert to integer;’ drop the numbers to the right of the decimal point.)

Bit 13 lets you select one of two combinations of data
bits and parity:

Step 2: Set Data Bits and Parity (bit 13)

1,000,000

baud rate() – 20INT

= 8 bits, no parity
= 7 bits, even parity

0
8192

Bit 14 tells Serin whether the data is inverted (as when it
comes directly from a standard COM port) or noninverted
(after passing through a line receiver):

Step 3: Select the Polarity of Serial Input (bit 14)

= noninverted
= inverted

Add your choice to the sum of steps 1 and 2. The result
is the correct serial baudmode for use by Serin.

0
16384

If you’re more comfortable thinking in terms of bits,
here’s a bit map of Serin’s baudmode:

FYI: Bit Map of Serin Baudmode

x P d B B B B B B B B B B B B B
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

p

Bit period, 0 to 8191µs (+20µs)

Data bits, parity
(0 = 8 bits, no parity; 1 = 7 bits, even parity

Polarity (0 = noninverted; 1 = inverted)

Not used by Serin.

Serin through pin 16 (SIN) is always inverted, regardless of the
polarity setting. However, polarity will still affect fpin, if used.

Figure I-19

Step 1: Calculate the Bit Period (bits 0-12)

BASIC Stamp II

Page 312 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

receives nine bytes through pin 1 at 2400 bps, N81/inverted and stores
them in a 10-byte array:

serString var byte(10) ' Make a 10-byte array.
serString(9) = 0 ' Put 0 in last byte.
SERIN 1,16780,[STR serString\9] ' Get 9-byte string.
debug str serString ' Display the string.

Why store only 9 bytes in a 10-byte array? We want to reserve space for
the 0 byte that many BS2 string-handling routines regard as an end-of-
string marker. This becomes important when dealing with variable-
length arrays. For example, the STR modifier can accept a second pa-
rameter telling it to end the string when a particular byte is received, or
when the specified length is reached, whichever comes first. An example:

serString var byte(10) ' Make a 10-byte array.
serString(9) = 0 ' Put 0 in last byte.
SERIN 1,16780,[STR serString\9\"*"] ' Stop at "*" or 9 bytes.
debug str serString ' Display the string.

If the serial input were “hello*” Debug would display “hello” since it
collects bytes up to (but not including) the end character. It fills the
unused bytes up to the specified length with 0s. Debug’s normal STR
modifier understands a 0 to mean end-of-string. However, if you use
Debug’s fixed-length string modifier STR bytearray\n you will inad-
vertently clear the Debug screen. The fixed-length specification forces
Debug to read and process the 0s at the end of the string, and 0 is
equivalent to Debug’s CLS (clear-screen) instruction! Be alert for the
consequences of mixing fixed- and variable-length string operations.

Matching a Sequence
Serin can compare incoming data with a predefined sequence of bytes
using the Wait modifiers. The simplest form waits for a sequence of up
to six bytes specified as part of the inputData list, like so:

SERIN 1,16780,[WAIT ("SESAME")] 'Wait for word SESAME.
debug "Password accepted"

Serin will wait for that word, and the program will not continue until
it is received. Since Wait is looking for an exact match for a sequence of
bytes, it is case-sensitive—“sesame” or “SESAmE” or any other varia-
tion from “SESAME” would be ignored.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 313

2

There are also Waitstr modifiers, which wait for a sequence that
matches a string stored in an array variable. In the example below, we’ll
capture a string with STR then have Waitstr look for an exact match:

serString var byte(10) ' Make a 10-byte array.
serString(9) = 0 ' Put 0 in last byte.
debug "Enter password ending in !",cr
serin 1,16780,[str serString\9\"!"] ' Get the string.
debug "Waiting for: ",str serString,cr
SERIN 1,16780,[WAITSTR serString] ' Wait for a match.
debug "Password accepted.",cr

You can also use WAITSTR with fixed-length strings as in the follow-
ing example:

serString var byte(4) ' Make a 4-byte array.
debug "Enter 4-character password",cr
serin 1,16780,[str serString\4] ' Get a 4-byte string.
debug "Waiting for: ",str serString\4,cr
serin 1,16780,[WAITSTR serString\4] ' Wait for a match.
debug "Password accepted.",cr

Building Compound InputData Statements
Serin’s inputData can be structured as a list of actions to perform on
the incoming data. This allows you to process incoming data in pow-
erful ways. For example, suppose you have a serial stream that con-
tains “pos: xxxx yyyy” (where xxxx and yyyy are 4-digit numbers) and
you want to capture just the decimal y value. The following Serin would
do the trick:

yOffset var word
serin 1,16780,[wait ("pos: "), SKIP 4, dec yOffset]
debug ? yOffset

The items of the inputData list work together to locate the label “pos:”,
skip over the four-byte x data, then convert and capture the decimal y
data. This sequence assumes that the x data is always four digits long;
if its length varies, the following code would be more appropriate:

yOffset var word
serin 1,16780,[wait ("pos: "), dec yOffset, dec yOffset]
debug ? yOffset

BASIC Stamp II

Page 314 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

The unwanted x data is stored in yOffset, then replaced by the desired
y data. This is a sneaky way to filter out a number of any size without
using an extra variable. With a little creativity, you can combine the
inputData modifiers to filter and extract almost any data.

Using Parity and Handling Parity Errors
Parity is an error-checking feature. When a serial sender is set for even
parity—the mode the BS2 supports—it counts the number of 1s in an
outgoing byte and uses the parity bit to make that number even. For
instance, if it is sending the seven bits %0011010, it sets the parity bit to
1 in order to make an even number of 1s (four).

The receiver also counts up the data bits to calculate what the parity
bit should be. If it matches the parity bit received, the serial receiver
assumes that the data was received correctly. Of course, this is not nec-
essarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad
when the rest of the data was OK.

Many systems that work exclusively with text use (or can be set for) 7-
bit/even-parity mode. Table I-3 shows appropriate baudmode settings.
For example, to receive one data byte through pin 1 at 2400 baud, 7E,
inverted:

serData var byte
Serin 1,24972,[serData]

That instruction will work, but it doesn’t tell the BS2 what to do in the
event of a parity error. Here’s an improved version that uses the op-
tional plabel:

serData var byte
 serin 1,24972,badData,[serData]
 debug ? serData
Stop

badData:
 debug "parity error"

If the parity matches, the program continues at the Debug instruction
after Serin. If the parity doesn’t match, the program goes to the label

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 315

2

badData. Note that a parity error takes precedence over other inputData
specifications; as soon as an error is detected, Serin aborts and goes to
the plabel routine.

Setting a Serial Timeout
In the examples above, the only way to end the Serin instruction (other
than RESET or power-off) is to give Serin the serial data it wants. If no
serial data arrives, the program is stuck. However, you can tell the BS2
to abort Serin if it doesn’t receive data within a specified number of
milliseconds. For instance, to receive a decimal number through pin 1
at 2400 baud, 8N, inverted and abort Serin after 2 seconds (2000 ms) if
no data arrives:

serin 1,16780,2000,noData,[DEC w1]
debug cls, ? w1
stop

noData:
 debug cls, "timed out"

If no data arrives within 2 seconds, the program aborts Serin and con-
tinues at the label noData. This timeout feature is not picky about the
kind of data Serin receives; any serial data stops the timeout. In the
example above, Serin wants a decimal number. But even if Serin re-
ceived letters “ABCD...” at intervals of less than two seconds, it would
not abort.

Combining Parity and Timeout
You can combine parity and serial timeouts. Here is an example de-
signed to receive a decimal number through pin 1 at 2400 baud, 7E,
inverted with a 10-second timeout:

again:
 serin 1,24972,badData,10000,noData,[DEC w1]
 debug cls, ? w1
goto again

noData:
 debug cls, "timed out"
goto again

BASIC Stamp II

Page 316 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

badData:
 debug cls, "parity error"
goto again

Controlling Data Flow
When you design an application that requires serial communication
between BS2s, you have to work within these limitations:

• When the BS2 is sending or receiving data, it can’t execute other
instructions.

• When the BS2 is executing other instructions, it can’t send or
receive data.

• The BS2 executes 3000 to 4000 instructions per second and there
is not serial buffer in the BS2 as there is in PCs. At most serial rates,
the BS2 cannot receive data via Serin, process it, and execute
another Serin in time to catch the next chunk of data, unless there
are significant pauses between data transmissions.

These limitations can be addressed by using flow control; the fpin
option for Serin and Serout (at baud rates of up to 19200). Through
fpin, Serin can tell a BS2 sender when it is ready to receive data. (For
that matter, fpin flow control follows the rules of other serial hand-
shaking schemes, but most computers other than the BS2 cannot start
and stop serial transmission on a byte-by-byte basis. That’s why this
discussion is limited to BS2-to-BS2 communication.)

Here’s an example of a flow-control Serin (data through pin 1, flow
control through pin 0, 9600 baud, N8, noninverted):

serData var byte
Serin 1\0,84,[serData]

When Serin executes, pin 1 (rpin) is made an input in preparation for
incoming data, and pin 0 (fpin) is made output low to signal “go” to
the sender. After Serin finishes receiving, pin 0 goes high to tell the
sender to stop. If an inverted baudmode had been specified, the fpin’s
repsonses would have been reversed. Here’s the relationship of serial
polarity to fpin states.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 317

2

Go Stop
Inverted 1 0
Noninverted 0 1

Here’s an example that demonstrates fpin flow control. It assumes that
two BS2s are powered up and connected together as shown in figure I-20.

' SENDER: data out pin 1, flow control pin 0
' Baudmode: 9600 N8 inverted
Serout 1\0,16468,["HELLO!"] ' Send the greeting.

' RECEIVER: data in pin 1, flow control pin 0
' Baudmode: 9600 N8 inverted
letta var byte
again:
 Serin 1\0,16468,[letta] ' Get 1 byte.
 debug letta ' Display on screen.
 pause 1000 ' Wait a second.
goto again

Without flow control, the sender would transmit the whole word
“HELLO!” in about 6ms. The receiver would catch the first byte at most;
by the time it got back from the first 1-second Pause, the rest of the
data would be long gone. With flow control, communication is flaw-
less since the sender waits for the receiver to catch up.

In figure I-20, pin 0, fpin, is pulled to ground through a 10k resistor.
This is to ensure that the sender sees a stop signal (0 for inverted comms)
when the receiver is being programmed.

Demo Program
See the examples above.

Figure I-20

P0

P1

VSS

BS2
sender

P0

P1

BS2
receiver

Host PC (for Debug)

programming
cable

VSS
10k

BASIC Stamp II

Page 318 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Serout
SEROUT tpin,baudmode,{pace,}[outputData]
SEROUT tpin\fpin,baudmode,{timeout,tlabel,}[outputData]
Transmit asynchronous (e.g., RS-232) data.

• Tpin is a variable/constant (0–16) that specifies the I/O pin
through which the serial data will be sent. This pin will switch to
output mode and will remain in that state after the instruction is
completed. If Tpin is set to 16, the Stamp uses the dedicated serial-
output pin (SOUT), normally used by the STAMP2 host program.

• Baudmode is a 16-bit variable/constant that specifies serial
timing and configuration. The lower 13 bits are interpreted as the
bit period minus 20µs. Bit 13 ($2000 hex) is a flag that controls the
number of data bits and parity (0=8 bits and no parity, 1=7 bits
and even parity). Bit 14 ($4000 hex) controls the bit polarity
(0=noninverted, 1=inverted). Bit 15 ($8000 hex) determines
whether the pin is driven to both states (0/1) or to one state and
open in the other (0=both driven, 1=open).

• Pace is an optional variable/constant (0–65535) that tells Serout
how long in milliseconds it should pause between transmitting
bytes.

• OutputData is a list of variables, constants and modifiers that
tells Serout how to format outgoing data. Serout can transmit
individual or repeating bytes; convert values into decimal, hex or
binary text representations; or transmit strings of bytes from
variable arrays.

• Fpin is an optional variable/constant (0–15) that specifies the
I/O pin to be used for flow control (byte-by-byte handshaking).
This pin will switch to input mode and remain in that state after
the instruction is completed.

• Timeout is an optional variable/constant (0–65535) used in
conjunction with fpin flow control. Timeout tells Serout how long
in milliseconds to wait for fpin permission to send. If permission
does not arrive in time, the program will continue at tlabel.

• Tlabel is an optional label used with fpin flow control and timeout.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 319

2

Tlabel indicates where the program should go in the event that
permission to transmit data is not granted within the period
specified by timeout.

Explanation
The BS2 can send and receive asynchronous serial data at speeds up to
50,000 bits per second. Serout, the serial-output instruction, can con-
vert and format outgoing data in powerful ways. With all this power
inevitably comes some complexity, which we’ll overcome by walking
you through the process of setting up Serout and understanding its
options. For more information on serial-communication fundamentals,
see the Serin listing.

Physical/Electrical Interface
The BS2 can transmit data serially through any of its I/O pins (tpin =
0—15) or through the SOUT pin (tpin = 16) that goes to the DB9 pro-
gramming connector on BS2 carrier boards. Most common serial de-
vices use the RS-232 standard in which a 1 is represented by –12V and
a 0 by +12V. Serout through the I/O
pins is limited to logic-level voltages
of 0V and +5V; however, most RS-232
devices are designed with sufficient
leeway to accept logic-level Serout
transmissions, provided that they are
inverted (see Serial Timing and Mode
below).

Figure I-21 shows the pinouts of the
two styles of PC com ports and how
to connect them to receive data sent
by Serout through pins 0—15. The fig-
ure also shows loopback connections
that defeat hardware handshaking
used by some PC software.

The SOUT pin can comply with the
RS-232 electrical standard by stealing
the negative signal voltage from an
RS-232 input at SIN. See the BS2 hard-

1

DB-25 Male
(SOLDER SIDE)

DB-9 Female
(SOLDER SIDE)

I/O pin

I/O pin
2345678910111213

1 2 3 4 5

6 7 8 9

141516171819202122232425

NOTE: Most DB25 sockets on
PCs are parallel, not serial, ports.
See your documentation!

1

2

3

4

5

Protective Ground

Transmit Data (TD)

Receive Data

Request to Send (RTS)

Clear to Send (CTS)

6

7

8

20

Data Set Ready (DSR)

Signal Ground (SG)

Data Carrier Detect (DCD)

Data Terminal Ready (DTR)

Ring Indicator (RI) 22

–

3

2

7

8

6

5

1

4

9

DB25Function DB9

Pinouts for Standard PC COM Port
Connectors with Serout Hookup

NOTE: In the connector drawings above, several handshaking lines are
shown connected together: DTR-DSR-DCD and RTS-CTS. This for the
benefit of terminal programs that expect hardware handshaking. You may
omit these connections if you’re using software that doesn’t expect
handshaking, or if you’re writing your own software without handshaking.

Figure I-21

BASIC Stamp II

Page 320 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

ware description and schematic. In order for SOUT to work at the proper
voltage levels, there must be an RS-232 output signal connected to SIN,
and that signal must be quiet (not transmitting data) when data is be-
ing sent through SOUT.

For more information on using the carrier-board DB9 connector for
serial communication, see the
Serin listing and figure I-17.

Serial Timing and Mode
(Baudmode)
Asynchronous serial communi-
cation relies on precise timing.
Both the sender and receiver must
be set for identical timing, usu-
ally expressed in bits per second
(bps) and called baud.

Serout accepts a single 16-bit
value called baudmode that speci-
fies important characteristics of
the serial transmission—the bit
time, data and parity bits, polar-
ity, and drive. Figure I-22 shows
how Serout baudmode is calcu-
lated and table I-6 shows com-
mon baudmodes for standard
serial baud rates.

If you’re communicating with
existing software, its speed(s)
and mode(s) will determine your
choice of baud rate and mode. In
general, 7-bit/even-parity (7E)
mode is used for text, and 8-bit/
no-parity (8N) for byte-oriented
data. Parity can detect some com-
munication errors, but to use it
you lose one data bit. This means
that incoming data bytes trans-

Calculating Baudmode
for BS2 Serout

Bits 0 through 12 of the baudmode are the bit period,
expressed in microseconds (µs). Serout’s actual bit
period is always 20µs longer than specified. Use the
following formula to calculate the baudmode bit period
for a given baud rate:

Step 1: Calculate the Bit Period (bits 0—12)

(INT means ‘convert to integer;’ drop the numbers to the right of the decimal point.)

Bit 13 lets you select one of two combinations of data
bits and parity:

Step 2: Set Data Bits and Parity (bit 13)

1,000,000

baud rate() – 20INT

= 8 bits, no parity
= 7 bits, even parity

0
8192

Bit 14 tells Serout whether the data should be inverted
(as when sent directly to a standard COM port) or
noninverted (to pass through a line driver):

Step 3: Select the Polarity of Serial Output (bit 14)

= noninverted
= inverted

0
16384

D P d B B B B B B B B B B B B B
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

p

Bit period, 0 to 8191µs (+20µs)

Data bits, parity
(0 = 8 bits, no parity; 1 = 7 bits, even parity

Polarity (0 = noninverted; 1 = inverted)

Driven/open (0=driven; 1=open)

If you’re more comfortable thinking in terms of bits,
here’s a bit map of Serout’s baudmode:

FYI: Bit Map of Serout Baudmode

Bit 15 tells Serout whether to drive the output in both
states (0 and 1), or drive to one state and leave open in
the other. If you select open, the state that is driven is
determined by polarity: with inverted polarity open modes
drive to +5V only; noninverted open modes drive to
ground (0V) only. Bit settings:

Step 4: Set Driven or Open Output (bit 15)

= driven
= open

Add your choice to the sum of steps 1 through 3. The
result is the correct serial baudmode for use by Serout.

0
32768

Serout through pin 16 (SOUT) is always inverted, regardless of
the polarity setting. However, polarity will still affect fpin, if used.

Figure I-22

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 321

2

Data Speed

ferred in 7E mode can only represent values from 0 to 127, rather than
the 0 to 255 of 8E mode.

Serout’s “open” baudmodes are used only in special circumstances,
usually networking applications. See the Network example below.

Direct Connection
(Inverted)

Through Line Driver
(Noninverted)

Baud Rate

300
600

1200
2400
4800
9600

19200
38400

8 data bits,
no parity

7 data bits,
even parity

3313 11505
1646 9838

813 9005
396 8588
188 8380

84 8276
32 8224

6 8198

8 data bits,
no parity

7 data bits,
even parity

19697 27889
18030 26222
17197 25389
16780 24972
16572 27764
16468 24660
16416 24608
16390 24582

Common Data Rates and Their Baudmodes

Note: For “open” baudmodes used in networking, add 32778 to values from the table above.

Table I-6

Simple Output and Numeric Conversions
Stripped to just the essentials, Serout can be as simple as:

Serout tpin,baudmode,[outputData]

For example, to send a byte through pin 1 at 9600 bps, 8N, inverted:

Serout 1,16468,[65] ' Send byte value 65 ("A") through pin 1.

When that Serout executes, it changes pin 1 to output and transmits
the byte value 65 (%01000001 binary). If a PC terminal program was
the receiver, the letter A would appear on the screen, since 65 is the
ASCII code for A. (See the ASCII character chart in the appendix.) To
send a number as text requires a modifier, as in this example:

Serout 1,16468,[DEC 65] ' Send text "65" through pin 1.

The modifier DEC tells Serout to convert the value to its decimal-text
equivalent before transmitting. Table I-7 lists the numeric-conversion

Corresponding Baudmode Value

Note: For "open" baudmodes used in networking, add 32768 to values from the table above.

BASIC Stamp II

Page 322 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

modifiers that Serout understands. You can try these modifiers using
Debug (which is actually just a special case of Serout configured spe-
cifically to send data to the STAMP2 host program).

Literal Text and Compound OutputData
Serout sends quoted text exactly as it appears in the outputData list:

Serout 1,16468,["A"] ' Send byte value 65 ("A").
Serout 1,16468,["HELLO"] ' Send series of bytes, "HELLO".

Since outputData is a list, you may combine modifiers, values, text,
strings and so on separated by commas:

temp var byte
temp = 96
Serout 1,16468,["Temperature is ", dec value, " degrees F."]

Serout would send "Temperature is 96 degrees F."

Sending Variable Strings
A string is a byte array used to store variable-length text. Because the
number of bytes can vary, strings require either an end-of-string marker
(usually the ASCII null character—a byte with all bits cleared to 0) or a
variable representing the string’s length. PBASIC2 modifiers for Serout
supports both kinds of strings. Here’s an example of a null-terminated
string:

myText var byte(10) ' An array to hold the string.

myText(0) = "H":myText(1) = "E" ' Store "HELLO" in 1st 5 cells...
myText(2) = "L":myText(3) = "L"
myText(4) = "0":myText(5) = 0 ' Put null (0) after last character.

Serout 1,16468,[STR myText] ' Send "HELLO"

The other type of string—called a counted string—requires a variable
to hold the string length. In most other BASICs, the 0th element of the
byte array contains this value. Because PBASIC2 outputs the 0th array
element, this is not the best way. It makes more sense to put the count
in a separate variable, or in the last element of the array, as in this
example:

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 323

2

myText var byte(10) ' An array to hold the string.

myText(0) = "H":myText(1) = "E" ' Store "HELLO" in first 5 cells...
myText(2) = "L":myText(3) = "L"
myText(4) = "0":myText(9) = 5 ' Put length (5) in last cell.

Serout 1,16468,[STR myText\myText(9)] ' Send "HELLO"

Note that Serout’s string capabilities work only with strings in RAM,
not EEPROM. To send a string from EEPROM you must either (1) Read
it byte-by-byte into an array then output it using one of the STR modi-
fiers, or (2) Read and output one byte at a time. Since either approach
requires Reading individual bytes, method (2) would be simpler. The
demo program for the Read instruction gives an example; making it
work with Serout requires changing Debug...

 debug char ' Show character on screen.
...to Serout, as in this example:
 Serout 1,16468,[char] ' Send the character.

If you have just a few EEPROM strings and don’t need to manipulate
them at runtime, the simplest method of all is to use separate Serouts
containing literal text, as shown in the previous section.

Using the Pacing Option and a Serout/Debug Trick
Serout allows you to pace your serial transmission by inserting a time
delay of 1 to 65535 ms between bytes. Put the pacing value between
the baudmode and the outputData list, like so:

Serout 1,16468,1000,["Slowly"] ' 1-sec delay between characters.

Suppose you want to preview the effect of that 1-second pacing with-
out the trouble of booting terminal software and wiring a connector.
You can use the BS2 Debug window as a receive-only terminal. Tell
Serout to send the data through pin 16 (the programming connector)
at 9600 baud:

Debug cls ' Open a cleared Debug window.
Serout 16,84,1000,["Slowly"] '
Serout to Debug screen.

Controlling Data Flow
In all of the examples above, Serout sent the specified data without

BASIC Stamp II

Page 324 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

checking to see whether the receiving device was ready for it. If the
receiver wasn’t ready, the data was sent anyway, and lost.

With flow control, the serial receiver can tell Serout when to send data.
BS2 flow control works on a byte-by-byte basis; no matter how many
bytes Serout is supposed to send, it will look for permission to send
before each byte. If permission is denied, Serout will wait until it is
granted.

By permission we mean the appropriate state of the flow-control pin—
fpin—specified in the Serout instruction. The logic of fpin depends on
whether an inverted or non-inverted baudmode is specified:

Go Stop
Inverted 1 0
Noninverted 0 1

Here’s an example that demonstrates fpin flow control. It assumes that
two BS2s are powered up and connected together as shown in figure
I-20.

' SENDER: data out pin 1, flow control pin 0
' Baudmode: 9600 N8 inverted
Serout 1\0,16468,["HELLO!"] '
Send the greeting.

' RECEIVER: data in pin 1, flow control pin 0
' Baudmode: 9600 N8 inverted
letta var byte
again:
 Serin 1\0,16468,[letta] ' Get 1 byte.
 debug letta ' Display on screen.
 pause 1000 ' Wait a second.
goto again

Without flow control, the sender would transmit the whole word
“HELLO!” in about 6ms. The receiver would catch the first byte at most;
by the time it got back from the first 1-second Pause, the rest of the
data would be long gone. With flow control, communication is flaw-
less since the sender waits for the receiver to catch up.

In figure I-20, pin 0, fpin, is pulled to ground through a 10k resistor.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 325

2

This is to ensure that the sender sees a stop signal (0 for inverted comms)
when the receiver is being programmed.

Flow-control Timeout
Flow control solves one problem but can create another—if the receiver
isn’t connected, Serout may never get permission to send. The pro-
gram will be stuck in Serout indefinitely. To prevent this, Serout allows
you to specify how long it should wait for permission, from 0 to 65535
ms. If the specified time passes without permission to send, Serout
aborts, allowing the program to continue at tlabel. Here’s the previous
example (just the Sender code) with a 2.5-second timeout:

Serout 1\0,16468,2500,noFlow["HELLO!"]
' ...instructions executed after a successful Serout
stop

noFlow:
' If Serout times-out waiting for flow-control permission,
' It jumps to this label in the program.

Networking with Open Baudmodes
The open baudmodes can be used to connect multiple BS2s to a single
pair of wires to create a party-line network. Open baudmodes only
actively drive the Serout pin in one state; in the other state they discon-
nect the pin. If BS2s in a network used the always-driven baudmodes,
two BS2s could simultaneously output opposite states. This would cre-
ate a short circuit from +5V to ground through the output drivers of
the BS2s. The heavy current flow would likely damage the BS2s (and it
would certainly prevent communication). Since the open baudmodes
only drive in one state and float in the other, there’s no chance of this
kind of short.

The polarity selected for Serout determines which state is driven and
which is open, as follows:

— Polarity — Resistor
State Inverted Noninverted Pulled to

0 open driven GND
1 driven open +5V

BASIC Stamp II

Page 326 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Since open baudmodes only drive
to one state, they need a resistor to
pull the network into the other state,
as shown in the table above and in
figure I-23.

Open baudmodes allow the BS2s to
share a party line, but it is up to your
program to resolve other network-
ing issues, like who talks when and
how to prevent, detect and fix data
errors. In the example shown in fig-
ure I-24 and the program listings
below, two BS2s share a party line.
They monitor the serial line for a
specific cue (“ping” or “pong”), then transmit data. A PC may monitor
net activity via a line driver or CMOS inverter as shown in the figure.

' Net #1: This BS2 sends the word "ping" followed by a linefeed
' and carriage return (for the sake of a monitoring PC). It
' then waits to hear the word "pong" (plus LF/CR), pauses
' 2 seconds, then loops.
b_mode con 32852 ' Baudmode: 9600 noninverted, open, 8N

again:
 serout 0,b_mode,["ping",10,13]
 serin 0,b_mode,[wait ("pong",10,13)]
 pause 2000
goto again

Figure I-24

P0 Vss
(GND)

+5V

1k

P0 Vss
(GND)

BS2
#1

BS2
#2

CMOS Inverter
or Serial Line Driver

PC: Receive
Data (RD)

PC: Signal
Ground (SG)

Open/Noninverted

Open/Inverted

I/O
pin

Vss
(GND)

+5V

1k

I/O
pin

Vss
(GND)

I/O
pin

Vss
(GND)

BS2 BS2 BS2

I/O
pin

Vss
(GND)

1k

I/O
pin

Vss
(GND)

I/O
pin

Vss
(GND)

BS2 BS2 BS2

Figure I-23

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 327

2

' Net #2: This BS2 waits for the word "ping" (plus LF/CR)
' then pauses 2 seconds and sends the word "pong" (LF/CR)
' and loops.

b_mode con 32852 ' Baudmode: 9600 noninverted, open, 8N

again:
 serin 0,b_mode,[wait ("ping",10,13)]
 pause 2000
 serout 0,b_mode,["pong",10,13]
goto again

The result of the two programs is that a monitoring PC would see the
words “ping” and “pong” appear on the screen at 2-second intervals,
showing that the pair of BS2s is sending and receiving on the same
lines. This arrangement could be expanded to dozens of BS2s with the
right programming.

Demo Program
See the examples above.

BASIC Stamp II

Page 328 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Shiftin
SHIFTIN dpin,cpin,mode,[result{\bits}{,result{\bits}...}]
Shift data in from a synchronous-serial device.

• Dpin is a variable/constant (0–15) that specifies the I/O pin that
will be connected to the synchronous-serial device’s data output.
This pin’s I/O direction will be changed to input and will remain
in that state after the instruction is completed.

• Cpin is a variable/constant (0–15) that specifies the I/O pin that
will be connected to the synchronous-serial device’s clock input.
This pin’s I/O direction will be changed to output.

• Mode is a value (0—3) or 2 predefined symbol that tells Shiftin the
order in which data bits are to be arranged and the relationship
of clock pulses to valid data. Here are the symbols, values, and
their meanings:

Symbol Value Meaning
MSBPRE 0 Data msb-first; sample bits before clock pulse
LSBPRE 1 Data lsb-first; sample bits before clock pulse
MSBPOST 2 Data msb-first; sample bits after clock pulse
LSBPOST 3 Data lsb-first; sample bits after clock pulse

(Msb is most-significant bit; the highest or leftmost bit of a nibble,
byte, or word. Lsb is the least-significant bit; the lowest or
rightmost bit of a nibble, byte, or word.)

• Result is a bit, nibble, byte, or word variable in which incoming
data bits will be stored.

• Bits is an optional entry specifying how many bits (1—16) are to
be input by Shiftin. If no bits entry is given, Shiftin defaults to 8
bits.

Explanation
Shiftin provides an easy method of acquiring data from synchronous-
serial devices. Synchronous serial differs from asynchronous serial (like
Serin and Serout) in that the timing of data bits is specified in relation-
ship to pulses on a clock line. Data bits may be valid after the rising or
falling edge of the clock line. This kind of serial protocol is commonly

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 329

2

used by controller peripherals like ADCs, DACs, clocks, memory
devices, etc. Trade names for synchronous-serial protocols include SPI
and Microwire.

At their heart, synchronous-serial devices are essentially shift-regis-
ters—trains of flip-flops that pass data bits along in a bucket-brigade
fashion to a single data-output pin. Another bit is output each time the
appropriate edge (rising or falling, depending on the device) appears
on the clock line. BS2 application note #2 explains shift-register opera-
tion in detail.

A single Shiftin instruction causes the following sequence of events:

Makes the clock pin (cpin) output low.
Makes the data pin (dpin) an input.
Copies the state of the data bit into the msb (lsb- modes) or lsb (msb-

modes) either before (-pre modes) or after (-post modes) the clock
pulse.

Pulses the clock pin high for 14µs.
Shifts the bits of the result left (msb- modes) or right (lsb-modes).
Repeats the appropriate sequence of getting data bits, pulsing the

clock pin, and shifting the result until the specified number of bits
is shifted into the variable.

Making Shiftin work with a particular device is a matter of matching
the mode and number of bits to that device’s protocol. Most manufac-
turers use a timing diagram to illustrate the relationship of clock and
data. Figure I-25a shows Shiftin’s timing. For instance, we can use
Shiftin to acquire the bits generated by a toggle flip-flop, as shown in
figure I-25b. This makes a good example because we know exactly what

IC = 1/2 of a 4013 dual D flip-flop wired as a toggle FF

Shiftin Timing Diagram Circuit for Shift in Demo

10k

CLK

D Q

Q

7,8,10

14

129

11 13

+5V

pin1
(cpin)

pin0
(dpin)

14µs

Clock
(cpin)

Data
(dpin)

–46µs–

-pre modes
sample data

clock pulse

-post modes
sample data

clock pulse
afterbeforea b

Figure I-25

BASIC Stamp II

Page 330 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

data this will give us; each bit will be the inverse of the previous one. If
the first bit is 1, the sequence will be 10101010101... Connect the flip-
flop as shown in figure I-25b and run the following program:

setup:
 if IN0 = 1 then continue ' Force FF to start
 pulsout 1,10 ' sequence with data=1.

continue:
 SHIFTIN 0,1,msbpre,[b1] ' Shiftin msb-first, pre-clock.
 debug "Pre-clock: ",bin8 b1,cr ' Show the result in binary.
 SHIFTIN 0,1,msbpost,[b1] ' Shiftin msb-first, post-clock.
 debug "Post-clock: ",bin8 b1,cr ' Show the result in binary.

You can probably predict what this demonstration will show. Both
Shiftin instructions are set up for msb-first operation, so the first bit
they acquire ends up in the msb (leftmost bit) of the variable. Look at
figure I-25a; the first data bit acquired in the pre-clock case is 1, so the
pre-clock Shiftin returns %10101010. The data line is left with a 1 on it
because of the final clock pulse.

The post-clock Shiftin acquires its bits after each clock pulse. The ini-
tial pulse changes the data line from 1 to 0, so the post-clock Shiftin
returns %01010101.

By default, Shiftin acquires eight bits, but you can set it to shift any
number of bits from 1 to 16 with an optional entry following the vari-
able name. In the example above, substitute this for the first Shiftin
instruction:

SHIFTIN 0,1,msbpre,[b1\4] ' Shiftin 4 bits.

The debug window will display %00001010.

Some devices return more than 16 bits. For example, most 8-bit shift
registers can be daisy-chained together to form any multiple of 8 bits;
16, 24, 32, 40... You can use a single Shiftin instruction with multiple
variables. Each variable can be assigned a particular number of bits
with the backslash (\) option. Modify the previous example:

SHIFTIN 0,1,msbpre,[b1\5,b2] ' 5 bits into b1; 8 bits into b2.
debug "1st variable: ",bin8 b1,cr
debug "2nd variable: ",bin8 b2,cr

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 331

2

Demo Program
See listing 2 of BS2 application note #2 Using Shiftin and Shiftout, or
try the example shown in the explanation above.

BASIC Stamp II

Page 332 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Shiftout
SHIFTOUT dpin,cpin,mode,[data{\bits}{,data{\bits}...}]
Shift data out to a synchronous-serial device.

• Dpin is a variable/constant (0–15) that specifies the I/O pin that
will be connected to the synchronous-serial device’s data input.
This pin’s I/O direction will be changed to output and will
remain in that sate after the instruction is completed.

• Cpin is a variable/constant (0–15) that specifies the I/O pin that
will be connected to the synchronous-serial device’s clock input.
This pin’s I/O direction will be changed to outputand will
remain in that sate after the instruction is completed.

• Mode is a value (0 or 1) or a predefined symbol that tells Shiftout
the order in which data bits are to be arranged. Here are the
symbols, values, and their meanings:

Symbol Value Meaning
LSBFIRST 0 Data shifted out lsb-first.
MSBFIRST 1 Data shifted out msb-first.
(Msb is most-significant bit; the highest or leftmost bit of a nibble,
byte, or word. Lsb is the least-significant bit; the lowest or rightmost
bit of a nibble, byte, or word.)

• Data is a variable or constant containing the data to be sent.

• Bits is an optional entry specifying how many bits (1—16) are to
be ouput. If no bits entry is given, Shiftout defaults to 8 bits.

Explanation
Shiftout provides an easy method of transferring data to synchronous-
serial devices. Synchronous serial differs from asynchronous serial (like
Serin and Serout) in that the timing of data bits is specified in relation-
ship to pulses on a clock line. Data bits may be valid after the rising or
falling edge of the clock line. This kind of serial protocol is commonly
used by controller peripherals like ADCs, DACs, clocks, memory de-
vices, etc. Trade names for synchronous-serial protocols include SPI
and Microwire.

At their heart, synchronous-serial devices are essentially shift-regis-

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 333

2

ters—trains of flip-flops that pass data bits along in a bucket-brigade
fashion to a single data-output pin. Another bit is input each time the
appropriate edge (rising or falling, depending on the device) appears
on the clock line. BS2 application note #2 explains shift-register opera-
tion in detail.

A single Shiftout instruction causes the following sequence of events:

Makes the clock pin (cpin) output low.
Copies the state of the next data bit to be output (working from one

end of the data to the other) to the dpin output latch (corresponding
bit of the OUTS variable).

Makes the data pin (dpin) an output.
Pulses the clock pin high for 14µs.
Repeats the sequence of outputting data bits and pulsing the clock

pin until the specified number of bits is shifted into the variable.

Making Shiftout work with a par-
ticular device is a matter of match-
ing the mode and number of bits
to that device’s protocol. Most
manufacturers use a timing dia-
gram to illustrate the relationship
of clock and data. Figure I-26 shows
Shiftout’s timing, beginning at the
moment the Shiftout instruction
first executes. Timing values in
the figure are rounded to the near-
est microsecond.

Demo Program
See listing 1 of BS2 application note #2 Using Shiftin and Shiftout.

Shiftout Timing Diagram

14µs

Clock
(cpin)

Data
(dpin)

–46µs–

shiftout begins,
makes cpin
output low

15µs 15µs

30µs

=previous state of pin (unknown)

Figure I-26

BASIC Stamp II

Page 334 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Sleep
SLEEP seconds
Put the BS2 into low-power sleep mode for a specified number of sec-
onds.

• Seconds is a variable/constant (1-65535) that specifies the
duration of sleep in seconds.

Explanation
Sleep allows the BS2 to turn itself off, then turn back on after a pro-
grammed period of time. The length of Sleep can range from 2.3 sec-
onds to slightly over 18 hours. Power consumption is reduced to about
50 µA, assuming no loads are being driven.The resolution of the Sleep
instruction is 2.304 seconds. Sleep rounds the specified number of sec-
onds up to the nearest multiple of 2.304. For example, Sleep 1 causes
2.3 seconds of sleep, while Sleep 10 causes 11.52 seconds (5 x 2.304) of
sleep.

Pins retain their previous I/O directions during Sleep. However, out-
puts are interrupted every 2.3 seconds during Sleep due to the way the
chip keeps time.

The alarm clock that wakes the BS2 up is called the watchdog timer.
The watchdog is a resistor/capacitor oscillator built into the PBASIC2
interpreter chip. During Sleep, the chip periodically wakes up and
adjusts a counter to determine how long it has been asleep. If it isn’t
time to wake up, the chip “hits the snooze bar” and goes back to sleep.

To ensure accuracy of Sleep intervals, PBASIC2 periodically compares
the watchdog timer to the more-accurate resonator timebase. It calcu-
lates a correction factor that it uses during Sleep. As a result, longer
Sleep intervals are accurate to approximately ±1 percent.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during Sleep, current will be inter-
rupted for about 18 ms when the BS2 wakes up every 2.3 seconds. The
reason is that the watchdog-timer reset that awakens the BS2 also causes
all of the pins to switch to input mode for approximately 18 ms. When
the PBASIC2 interpreter firmware regains control of the processor, it

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 335

2

restores the I/O directions dictated by your program.

If you plan to use End, Nap, or Sleep in your programs, make sure that
your loads can tolerate these periodic power outages. The simplest
solution is often to connect resistors high or low (to +5V or ground) as
appropriate to ensure a continuing supply of current during the reset
glitch.

Demo Program
This program demonstrates both Sleep’s tim-
ing characteristics and the periodic glitch dis-
cussed above. Connect an LED to pin 0 as
shown in figure I-27 and run the program.
The LED will blink, then the BS2 will go to
Sleep. During Sleep, the LED will remain on,
but will wink out at intervals of approxi-
mately 2.3 seconds.

low 0 ' Turn LED on.
pause 1000 ' Wait 1 second.

again:
 high 0 ' LED off.
 pause 1000 ' Wait 1 second.
 low 0 ' LED back on.
 SLEEP 10 ' Sleep for 10 seconds.
goto again

220Ω

LED

I/O pin

+5V

Figure I-27

BASIC Stamp II

Page 336 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Stop
STOP
Stop program execution.

Explanation
Stop prevents the BS2 from executing any further instructions until it
is reset. The following actions will reset the BS2: pressing and releas-
ing the RESET button on the carrier board, taking the RES pin low then
high, by downloading a new program, or turning the power off then
on.

Stop differs from End in two respects:

• Stop does not put the BS2 into low-power mode. The BS2 draws
just as much current as if it were actively running program
instructions.

• The output glitch that occurs after a program has Ended does not
occur after a program has Stopped.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 337

2

Toggle
TOGGLE pin
Invert the state of a pin.

• Pin is a variable/constant (0–15) that specifies the I/O pin to use.
The state of the corresponding bit of the OUTS register is inverted
and the pin is put into output mode by writing a 1 the
corresponding bit of the DIRS register.

Explanation
Toggle inverts the state of an I/O pin, changing 0 to 1 and 1 to 0. When
the pin is intially in the output mode, Toggle has exactly the same ef-
fect as complementing the corresponding bit of the OUTS register. That
is, Toggle 7 is the same as OUT7 = ~OUT7 (where ~ is the logical NOT
operator).

When a pin is initially in the input mode, Toggle has two effects; it
inverts the output driver (OUTS bit) and changes the pin to output
mode by writing a 1 to the pin’s input/output direction bit (the corre-
sponding bit of the DIRS register).

In some situations Toggle may appear to have no effect on a pin’s state.
For example, suppose pin 2 is in input mode and pulled to +5V by a
10k resistor. Then the following code executes:

DIR2 = 0 ' Pin 2 in input mode.
OUT2 = 0 ' Pin 2 output driver low.
debug ? IN2 ' Show state of pin 2 (1 due to pullup).
TOGGLE 2 ' Toggle pin 2 (invert OUT2, put 1 in DIR2).
debug ? IN2 ' Show state of pin 2 (1 again).

The state of pin 2 doesn’t change—it’s high (due to the resistor) before
Toggle, and it’s high (due to the pin being output high) afterward. The
point of presenting this puzzle is to emphasize that Toggle works on
the OUTS register, which may not match the pin’s state when the pin is
initially an input.

If you want to guarantee that the state of the pin actually changes,
regardless of whether that pin starts as an input or output, just do this:

BASIC Stamp II

Page 338 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

OUT2 = IN2 ' Make output driver match pin state.
TOGGLE 2 ' Then toggle.

If you change the previous example to copy IN2 to OUT2 before Tog-
gling, you’ll see that the state of the pin does change.

Demo Program
Connect LEDs to pins 0 through 3 as shown in figure I-28 and run the
program below. The Toggle instruction will treat you to a light show.
You may also run the demo without LEDs. The debug window will
show you the states of pins 0 through 3.

thePin var nib ' Variable to count 0-3.
again:
 for thePin = 0 to 3 ' Pins 0 to 3 driving LEDs.
 TOGGLE thePin ' Toggle each pin.
 debug cls,bin4 INA ' No LEDs? Watch debug screen.
 pause 200 ' Brief delay.
 next ' Next pin
goto again ' Repeat endlessly.

220Ω

LED

0

220Ω

LED

220Ω

LED

220Ω

LED

1

2

3

Pins
Figure I-28

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 339

2

Write
WRITE address,byte
Write a byte of data to the EEPROM.

• Address is a variable/constant specifying the EEPROM address
(0—2047) to write to.

• Byte is a data byte to be written into EEPROM.

Explanation
The EEPROM is used for both program storage (which builds down-
ward from address 2047) and data storage (which may use any EEPROM
byte not used for program storage). Data may either be downloaded to
the BS2 along with the program via the Data directive, or a running
program may store data in EEPROM using the Write instruction.

EEPROM differs from RAM, the memory in which variables are stored,
in several respects:

(1) Writing to EEPROM takes more time than storing a value in
a variable. Depending on many factors, it may take several
milliseconds for the EEPROM to complete a write. RAM storage
is nearly instantaneous.

(2) The EEPROM can accept a finite number of Write cycles per
byte before it wears out. At the time of this writing, each byte of
the EEPROM used in the BS2 was good for 10 million Write
cycles, and an unlimited number of Reads. If a program frequently
writes to the same EEPROM location, it makes sense to estimate
how long it might take to exceed 10 million writes. For example,
at one write per second (86,400 writes/day) it would take nearly
116 days of continuous operation to exceed 10 million.

(3) The primary function of the EEPROM is to store programs;
data is stored in leftover space. If data overwrites a portion of
your program, the program will most likely crash. Check the
program’s memory map to determine what portion of memory is
occupied by your program and make sure that EEPROM Writes
cannot stray into this area. You may also use the Data directive to
set aside EEPROM space. For instance:

BASIC Stamp II

Page 340 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

name DATA (n)

This directive allocates n bytes of EEPROM starting at the address name
and extending to address name + (n-1). If you restrict Writes to this
range of addresses, you’ll be fine. If your program grows to the point
that it overlaps the addresses allocated, the STAMP2 host program will
generate an error message and refuse to download it. See the section
BS2 EEPROM Data Storage for more information on the Data
directive.

Demo Program
This program is the bare framework of a data logger—an application
that gathers data and stores it in memory for later retrieval. To provide
sample data, connect the circuit of figure I-14a (see RCtime) to pin 7.
Use a 10k resistor and 0.1µF capacitor. Run the program and twiddle
the pot to vary the input data. The program writes the data to EEPROM
at 1-second intervals, then reads it back from the EEPROM. If you plan
to use Write in a similar application, pay close attention to the way the
program allocates the EEPROM with Data and uses constants to keep
track of the beginning and ending addresses of the EEPROM space.
Note that this program uses an unnecessarily large variable (a word)
for the EEPROM address. With only 10 samples and with EEPROM
addresses that start at 0, we could have gotten away with just a nibble.
However, real-world applications could expand to hundreds of
samples, or be located much higher in EEPROM, so we used a word
variable to set a good example.

result var word ' Word variable for RCtime result.
EEaddr var word ' Address of EEPROM storage
locations.

samples con 10 ' Number of samples to get.
log data (samples) ' Set aside EEPROM for samples.
endLog con log+samples-1 ' End of allocated EEPROM.

for EEaddr = log to endLog ' Store each sample in EEPROM.
 high 7: pause 1 ' Charge the cap.
 rctime 7,1,result ' Measure resistance.
 result = result*42/100 ' Scale to fit one byte (0-255)
 debug "Storing ", dec result,tab," at ", dec EEaddr,cr
 WRITE EEaddr,result ' Store it in EEPROM
 pause 1000 ' Wait a second.
next ' Do until all samples done.

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 341

2

pause 2000: debug cls ' Wait 2 seconds, then clear screen.

for EEaddr = log to endLog ' Retrieve each sample from EEPROM.
 read EEaddr,result ' Read back a byte
 debug "Reading ", dec result,tab," at ", dec EEaddr,cr
next ' Do until all samples retrieved.
stop

BASIC Stamp II

Page 342 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Xout
XOUT
mpin,zpin,[house\keyOrCommand{\cycles}{,house\keyOrCommand{\cycles}...}]
Send an X-10 powerline control command (through the appropriate
powerline interface).

• Mpin is the I/O pin (0-15) that outputs X-10 signals (modulation)
to the powerline-interface device. This pin is placed into output
mode.

• Zpin is the I/O pin (0-15) that inputs the zero-crossing signal
from the powerline-interface device. This pin will be placed into
input mode.

• House is the X-10 house code (values 0-15 representing letters A
through P).

• KeyOrCommand is a key on a manual X-10 controller (values
0-15 representing keys 1 through 16) or an X-10 control command
listed in the table below. In Xout instructions you can use either
the command value or the built-in Command constant.

• Cycles is an optional number of times to transmit a given key or
command. If no cycles entry is used, Xout defaults to two. The
cycles entry should be used only with the DIM and BRIGHT
command codes.

Explanation
Xout lets you control appliances via signals sent through household
AC wiring to X-10 modules. The appliances plugged into these mod-
ules can be switched on or off; lights may also be dimmed. Each mod-
ule is assigned a house code and unit code by setting dials or switches
on the module. To talk to a particular module, Xout sends the appro-
priate house code and unit code (key). The module with the correspond-
ing codes then listens for its house code again and a command (on, off,
dim, or bright).

Xout interfaces to the AC powerline through an approved interface
device such as a PL-513 or TW-523, available from Parallax or X-10
dealers. The hookup requires a length of four-conductor phone cable

BASIC Stamp II

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 343

2

and a standard modular phone-base connector (6P4C type). Connec-
tions are as follows:

PL-513
or TW-523 BS2

1 zPin*
2 GND
3 GND
4 mPin

* This pin should also be connected to
+5V through a 10k resistor.

Here are the Xout command codes and their functions:

Command *Code Function
unitOn %10010 Turn on the currently selected unit.
unitOff %11010 Turn off the currently selected unit.
unitsOff %11100 Turn off all modules w/ this house code.
lightsOn %10100 Turn on all lamp modules w/ this house code.
dim %11110 Reduce brightness of currently selected lamp.
bright %10110 Increase brightness of currently selected lamp.
*In most applications, it’s not necessary to know the code for a given X-
10 instruction. Just use the command constant (unitOn, dim, etc.)
instead. But knowing the codes leads to some interesting possibilities.
For example, XORing a unitOn command with the value %1000 turns it
into a unitOff command, and vice-versa. This makes it possible to write
the equivalent of an X-10 “toggle” instruction.

Here is an example of the Xout instruction:

zPin con 0 ' Zpin is P0.
mPin con 1 ' Mpin is P1.
houseA con 0 ' House code A = 0.
unit1 con 0 ' Unit code 1 = 0.

XOUT mPin,zPin,[houseA\unit1] ' Get unit 1's attention..
XOUT mPin,zPin,[houseA\unitOn] ' ..and tell it to turn on.

You can combine those two Xout instructions into one like so:

XOUT mPin,zPin,[houseA\unit1\2,houseA\unitOn] ' Unit 1 on.

BASIC Stamp II

Page 344 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Note that to complete the attention-getting code houseA\unit1 we
tacked on the normally optional cycles entry \2 to complete the com-
mand before beginning the next one. Always specify two cycles in
multiple commands unless you’re adjusting the brightness of a lamp
module.

Here is an example of a lamp-dimming instruction:

zPin con 0 ' Zpin is P0.
mPin con 1 ' Mpin is P1.
houseA con 0 ' House code A = 0.
unit1 con 0 ' Unit code 1 = 0.

XOUT mPin,zPin,[houseA\unit1] ' Get unit 1's attention..
XOUT mPin,zPin,[houseA\unitOff\2,houseA\dim\10] ' Dim halfway.

The dim/bright commands support 19 brightness levels. Lamp mod-
ules may also be turned on and off using the standard unitOn and
unitOff commands. In the example instruction above, we dimmed the
lamp by first turning it comletely off, then sending 10 cycles of the dim
command. This may seem odd, but it follows the peculiar logic of the
X-10 system. See the table in BS2 app note #1, X-10 Control, for com-
plete details.

Demo Program
See the program listing accompanying BS2 app note #1, X-10 Control.

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 345

2

Introduction. This application note shows how to use the new Xout
command to remotely control X-10® lamp and appliance modules.

Background. Home automation—the management of lights and ap-
pliances with a computer—promises to increase security, energy effi-
ciency, and convenience around the house. So why aren’t home-con-
trol systems more common? The answer is probably the wiring; it’s
hard to think of a nastier job than stringing control wiring through the
walls and crawlspaces of an existing home.

Fortunately, there’s a wireless solution for home control called X-10, a
family of control modules that respond to signals sent through existing
AC wiring. The BASIC Stamp II has the built-in ability to generate X-10
control signals with the new Xout instruction.

How it works. From the user’s standpoint, an X-10 system consists of
a control box plugged into a wall outlet, and a bunch of modules
plugged into outlets around the house. The appliances and lights to be
controlled are plugged into the modules.

During the installation of the system, the user assigns two codes to each
of the modules; a house code and a unit code. As the name suggests, the
house code is usually common to all modules in a particular house.
There are 16 house codes, assigned letters A through P. The idea of the
house code is to avoid interference between adjacent homes equipped
with X-10 by allowing the owners to assign different codes to their
modules. The control box must be assigned the same house codes as the
modules it will control.

There are also 16 unit codes (numbered 1 through 16) that identify the
modules within a particular house. If your needs expand beyond 16
modules, it’s generally safe to use another house code for the next group
of 16, since few if any neighborhoods are so infested with X-10 control-
lers that all available house codes are taken. X-10 signals don’t propa-
gate beyond the nearest utility transformer.

Once this simple setup is complete, the user controls the modules by
pressing keys on the control box. Pressing “1 ON” turns module 1 on.

1: X-10 Control

BASIC Stamp II Application Notes

Page 346 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

From a more technical standpoint, X-10 signals are digital codes im-
posed on a 120-kHz carrier that is transmitted during zero crossings of
the AC line. To send X-10 commands, a controller must synchronize to
the AC line frequency with 50-microsecond precision, and transmit an
11-bit code sequence representing the button pressed.

A company named X-10 owns a patent on this system. To encourage
others to use their technology without infringing their patent, X-10 sells
a pair of modules that provide a relatively simple, safe, UL- and CSA-
approved interface with the AC power line. These interfaces are the PL-
513 and TW-523. The PL-513 is a transmit-only unit; the TW-523 can be
used to transmit and receive X-10 codes. The Stamp II presently
supports only transmission of X-10 codes, but either of the interfaces
may be used. The figure shows how they connect to the Stamp II.

A word of caution: The PL-513 or TW-523 provide a safe, opto-isolated
interface through their four-pin modular connector. However, they
derive power directly from the AC power line. Never open the cases of
these devices to make connections or measurements. You’ll be exposing
yourself to a severe—even deadly—shock hazard.

That said, connecting to the PL-513 or TW-523 is easy. They use a
standard four-conductor modular phone base (not handset) connector.
Cutting a 12-foot phone cord in half yields two 6-foot X-10 cables. The

1 2 3 4

TW523 or PL513
powerline
interface

BS2

+5

10k

pin 0

pin 1
4-conductor phone base
(not handset) cable

1

2

3
4

Schematic to accompany X10_DEMO.BS2

1: X-10 Control

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 347

2

color codes can vary in phone cables, so be sure to follow the numbers
imprinted next to the modular jack on the PL-513 or TW-523 unit.

The program listing shows how to send X-10 commands through this
hookup. The listing is self-explanatory, and the procedures are simple,
as long as you keep some ground rules in mind:

• House codes A through P are represented as values from 0 to 15 in
the Xout command.

• Unit codes 1 through 16 are represented as values from 0 to 15 in
the Xout command.

• Every X-10 transmission must include a house code.

• Except for Dim and Bright, all codes are sent for a default of two
cycles. You don’t have to specify the number of cycles for com-
mands other than Dim and Bright, unless you are sending mul-
tiple codes in a single instruction. See the listing for examples.

• It takes 19 cycles for a lamp to go from fully bright to fully dim and
vice versa. There’s also a peculiar logic to the operation of the Dim
and Bright commands (see the table). To set a specific level of
brightness, you should first reset the dimmer module by turning
it off, then back on.

• In some homes, X-10 signals may not be able to reach all outlets
without a little help. A device called an ACT CP000 Phase Coupler
(about $40 retail from the source below) installed on the electrical
breaker box helps X-10 signals propagate across the phases of the
AC line. For larger installations, there are also amplifiers, repeat-
ers, etc.

Sources. X-10 compatible modules are available from many home
centers, electrical suppliers, and electronics retailers, including Radio

Lamp is... And you send...
OFF ON DIM BRIGHT

OFF/FULL no effect turns ON/FULL turns ON/FULL turns ON/FULL

ON/FULL turns OFF/FULL no effect dims no effect

OFF/DIM turns OFF/FULL no effect no effect brightens

ON/DIM turns OFF/FULL no effect dims brightens

Operation of the Dim and Bright Commands

1: X-10 Control

BASIC Stamp II Application Notes

Page 348 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Shack. However, relatively few of these carry the PL-513 and TW-523.
Advanced Services Inc., a home-automation outlet, sells every conceiv-
able sort of X-10 hardware, including the PL-513 and TW-523 (starting
at around $20 at the time of this writing). You may contact them at 800-
263-8608 or 508-747-5598.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: X10_DEMO.BS2 (Demonstration of X-10 control using Xout)
' This program--really two program fragments--demonstrates the
' syntax and use of the new XOUT command. Basically, the command
' works like pressing the buttons on an X-10 control box; first you
' press one of 16 keys to identify the unit you want to control,
' then you press the key for the action you want that unit to
' take (turn ON, OFF, Bright, or Dim). There are also two group-action
' keys, Lights ON and All OFF. Lights ON turns all lamp modules on
' without affecting appliance modules. All OFF turns off all modules,
' both lamp and appliance types.

' Using XOUT requires a 4-wire (2-I/O pin) connection to a PL-513 or
' TW-523 X-10 module. See the application note for sources.
zPin con 0 ' Zero-crossing-detect pin from TW523 or PL513.
mPin con 1 ' Modulation-control pin to TW523 or PL513.

' X-10 identifies modules by two codes: a House code and a Unit code.
' By X-10 convention, House codes are A through P and Unit codes are
' 1 through 16. For programming efficiency, the Stamp II treats both
' of these as numbers from 0 through 15.
houseA con 0 ' House code: 0=A, 1=B... 15=P
Unit1 con 0 ' Unit code: 0=1, 1=2... 15=16
Unit2 con 1 ' Unit code 1=2.

' This first example turns a standard (appliance or non-dimmer lamp)
' module ON, then OFF. Note that once the Unit code is sent, it
' need not be repeated--subsequent instructions are understood to
' be addressed to that unit.

xout mPin,zPin,[houseA\Unit1] ' Talk to Unit 1.
xout mPin,zPin,[houseA\uniton] ' Tell it to turn ON.
pause 1000 ' Wait a second.
xout mPin,zPin,[houseA\unitoff] ' Tell it to turn OFF.

' The next example talks to a dimmer module. Dimmers go from full

1: X-10 Control

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 349

2

' ON to dimmed OFF in 19 steps. Because dimming is relative to
' the current state of the lamp, the only guaranteed way to set a
' predefined brightness level is to turn the dimmer fully OFF, then
' ON, then dim to the desired level. Otherwise, the final setting of
' the module will depend on its initial brightness level.

xout mPin,zPin,[houseA\Unit2] ' Talk to Unit 2.
' This example shows how to combine X-10 instructions into a
' single line. We send OFF to the previously identified unit (Unit2)
' for 2 cycles (the default for non-dimmer commands). Then a comma
' introduces a second instruction that dims for 10 cycles. When you
' combine instructions, don't leave out the number of cycles. The
' Stamp may accept your instruction without complaint, but it
' won't work correctly--it may see the house code as the number of
' cycles, the instruction as the house code, etc.

xout mPin,zPin,[houseA\unitoff\2,houseA\dim\10]

' Just to reinforce the idea of combining commands, here's the
' first example again:

xout mPin,zPin,[houseA\Unit1\2,houseA\uniton] ' Turn Unit 1 ON.
pause 1000 ' Wait a second.
xout mPin,zPin,[houseA\Unit1\2,houseA\unitoff] ' Turn Unit 1 OFF.

' End of program.
stop

BASIC Stamp II Application Notes

Page 350 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 351

2

Introduction. This application note shows how to use the new Shiftin
and Shiftout instructions to efficiently interface the BASIC Stamp II to
synchronous serial peripheral chips.

Background. Many of the most exciting peripheral chips for
microcontrollers are available only with synchronous-serial interfaces.
These go by various names, like SPI, Microwire, three- or four-wire
interface, but they are essentially the same in operation. The BASIC
Stamp II takes advantage of these similarities to offer built-in instruc-
tions—Shiftout and Shiftin—that take most of the work out of com-
municating with synchronous-serial peripherals.

Before plunging into the nuts and bolts of using the new instructions,
let’s discuss some fundamentals. First of all, how does a synchronous-
serial interface differ from a parallel one? Good question, since most
synchronous-serial devices incorporate elements of both serial and
parallel devices.

The building block of both parallel and serial interfaces is called a flip-
flop. There are several types, but we’re going to discuss the D-type or
Data flip-flop. A D-type flip-flop has two inputs (Data and Clock) and
one output (typically called Q). When the logic level on the Clock input
rises (changes from 0 to
1), the flip-flop stores a
snapshot of the logic level
at the Data input to the Q
output. It holds that bit
on Q until the power is
turned off, or until the
opposite state is present
on Data when Clock re-
ceives another 0-to-1
change. (For the sake of
conversation, we call a 0-
to-1 transition a “rising
edge” and 1-to-0 a “fall-
ing edge.”)

The action of a D-type flip-

QD

CLK

FF0

QD

CLK

FF1

QD

CLK

FF2

QD

CLK

FF3

Parallel
Data Out

Latch
Clock

Parallel
Data In

Figure 1. Parallel latch.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Page 352 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

flop is described as “latching” Data
onto Q. Parallel latches, like the
one shown in figure 1, allow sev-
eral bits to be simultaneously
latched onto a set of outputs. This
is one of the ways that a computer
addresses multiple devices on a
single parallel data bus—it puts
the data on the bus, then triggers
one device’s Clock. The data is
latched into the destination de-
vice only; other devices ignore the
data until their Clock lines are trig-
gered.

With different wiring, the parallel
latch becomes a serial one, known
as a shift register (figure 2). See
how this works: When a rising edge appears on the Clock input, all of
the flip-flops latch their Data inputs to their Q outputs. Because they are
wired in a chain with each Q output connected to the next flip-flop’s
Data input, incoming bits ripple down the shift register.

You can picture this process as working like a bucket brigade or a line
of people moving sandbags. In perfect coordination, each person hands
their burden to the next person in line and accepts a new one from the
previous person.

Looking at this from the standpoint of the parallel output, there’s a
potential problem. When data is being clocked into the shift register, the
data at the output isn’t stable—it’s rippling down the line. The cure for
this is to add the previously described parallel latch after the shift
register, and clock it only when we’re finished shifting data in. That’s
the arrangement shown in figure 3.

It isn’t too much of a stretch to imagine how this kind of circuit could be
turned around and used as an input. Data would be grabbed in parallel
by a latch, then transferred to a shift register to be moved one bit at a
time to a serial data output.

QD

CLK

FF0

QD

CLK

FF1

QD

CLK

FF2

QD

CLK

FF3

Serial
Data In

Parallel
Data Out

Shift
Clock

Figure 2. Serial shift register.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 353

2

Now you understand
the communications
hardware used in syn-
chronous serial periph-
erals; it’s basically just a
collection of shift regis-
ters, latches and other
logic. The Stamp II’s
built-in Shiftout and
Shiftin instructions pro-
vided general-purpose
tools for working with
this kind of hardware.
Let’s look at some ex-
amples.

Shift-Register Output
with Shiftout. The most
basic use for Shiftout is to
add an output-only port based on a shift register/latch combination
like the 74HC595 shown in figure 4. Listing 1 demonstrates how simple
it is to send data to a device like this.

QD

CLK

FF0

QD

CLK

FF1

QD

CLK

FF2

QD

CLK

FF3

Serial
Data In

Shift
Clock

QD

CLK

FF0

QD

CLK

FF1

QD

CLK

FF2

QD

CLK

FF3

Parallel
Data Out

Latch
Clock

Figure 3. A shift register plus a latch
makes a serial-to-parallel converter.

74HC
595

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

QB

QC

QD

QE

QF

QG

QH

GND

VCC

QA

DATA IN

OE

LATCH

CLK

RESET

SQH

+5

LEDs
470
(all)

BS2 pin 0

BS2 pin 2

BS2 pin 1

+5

Figure 4. Schematic to accompany 74HC595.BS2.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Page 354 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Shiftout requires just five pieces of information to do its job:

• The pin number of the data connection.

• The pin number of the shift-clock connection.

• The order in which the bits should be sent—least-significant bit
(lsb) first or most-significant bit (msb) first. For the ’595, we chose
msb first, since the msb of the output is farthest down the shift
register from the data input. For other devices, the order of bits is
prescribed by the manufacturer’s spec sheet.

• The variable containing the data to output.

• The number of bits to be sent. (If this entry is omitted, Shiftout will
send eight bits).

Note that once the data is shifted into shift register, an additional
program step—pulsing the Latch line—is required to move the data to
the output lines. That’s because the 74HC595 is internally similar to the
schematic in figure 3. The two-step transfer process prevents the
outputs from rippling as the data is shifted.

The 74HC595 also has two control lines that are not used in our
demonstration, but may prove useful in real-world applications. The
Reset line, activated by writing a 0 to it, simultaneously clears all of the
shift register flip-flops to 0 without affecting the output latch. The
Output-enable (OE) line can effectively disconnect the output latch,
allowing other devices to drive
the same lines. A 0 on OE con-
nects the outputs; a 1 discon-
nects them.

Serial ADC with Shiftin. Fig-
ure 5 and listing 2 demonstrate
how to use Shiftin to obtain
data from an 8-bit serial ana-
log-to-digital converter, the
ADC0831.

Shiftin requires the same five
pieces of information as

BS2 pin 0

BS2 pin 1

BS2 pin 2

ADC
0831

1

2

3

4

8

7

6

5

CS

Vin(+)

Vin(–)

GND

Vcc

CLK

DO

Vref

0–5V in

+5

Figure 5. Schematic for
ADC0831.BS2.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 355

2

Shiftout, plus one more, the relationship of valid data to clock pulses.
Some devices latch bits onto the serial data output on the rising edge of
the clock line. Output bits remain valid until the next rising edge. In
these cases, your program must specify post-clock input for the Shiftin
mode. When bits are latched on the falling edge of the clock, specify pre-
clock input.

With pre-clock input, we sometimes encounter a chicken-and-egg
problem. How can the first bit be clocked out before the first clock pulse?
It can’t, of course. The simple solution is to specify one additional bit in
the Shiftin instruction.

However, most serial peripherals require that some instructions be sent
to them before they return any data. In this case, the falling edge of the
last Shiftout clock cycle clocks the first bit of the following pre-clock
Shiftin instruction.

Serial ADC with Shiftout and Shiftin. The third example (figure 6,
listing 3) uses Shiftout and Shiftin to hold a two-way conversation with
an LTC1298 ADC. An initial Shiftout sends configuration bits to the
LTC1298 to select channel and mode, then a Shiftin gets the 12-bit result
of the conversion. The program listing concentrates on the mechanics of
the Shift instructions; for more detailed information on the ADC itself,
see Stamp Application Note #22 or the manufacturer’s spec sheet.

1k

+5

10µF
tantalum

+

5k
pot

5k
pot

+5

BS2
pin 0

BS2
pin 2

BS2
pin 1

Variable Voltage
Source for Demo

0–5V in

CS

CH0

CH1

GND

Vcc

CLK

Dout

Din

LTC1298

1

Figure 6. Schematic for LTC1298.BS2.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Page 356 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Custom Shift Routines. The key to successful use of the Shift instruc-
tions is obtaining, reading, and understanding the manufacturer’s
specification sheets. In addition to providing the data required to fill in
the parameters for the Shift instructions, the data sheets document
configuration bits, operating modes, internal register arrangements,
and lots of other valuable data.

Sources. The components used in the example applications are avail-
able from Digi-Key, 710 Brooks Avenue South, P. O. Box 677, Thief River
Falls, MN 56701-0677; phone 1-800-344-4539. Packages of components,
documentation, and source code listings for the Stamp I, Stamp II and
PIC microcontrollers are available from Scott Edwards Electronics;
phone 520-459-4802, fax 520-459-0623. These packages, known as
AppKits, are available for the LTC1298 ADC, DS1620 digital thermom-
eter, Xicor X25640 8-kB EEPROM, and others.

Program listings. These programs may be downloaded from our
Internet ftp site at ftp.parallaxinc.com. The ftp site may be reached di-
rectly or through our web site at http://www.parallaxinc.com.

' LISTING 1. SHIFTOUT TO 74HC595
' Program: 74HC595.BS2 (Demonstrate 74HC595 shift register with Shiftout)
' This program demonstrates the use of the 74HC595 shift register as an
' 8-bit output port accessed via the Shiftout instruction. The '595
' requires a minimum of three inputs: data, shift clock, and latch
' clock. Shiftout automatically handles the data and shift clock,
' presenting data bits one at a time on the data pin, then pulsing the
' clock to shift them into the '595's shift register. An additional
' step—pulsing the latch-clock input—is required to move the shifted
' bits in parallel onto the output pins of the '595.

' Note that this application does not control the output-enable or
' reset lines of the '595. This means that before the Stamp first
' sends data to the '595, the '595's output latches are turned on and
' may contain random data. In critical applications, you may want to
' hold output-enable high (disabled) until the Stamp can take control.

DataP con 0 ' Data pin to 74HC595.
Clock con 1 ' Shift clock to '595.
Latch con 2 ' Moves data from shift register to output latch.
counter var byte ' Counter for demo program.

' The loop below moves the 8-bit value of 'counter' onto the output

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 357

2

' lines of the '595, pauses, then increments counter and repeats.
' The data is shifted msb first so that the most-significant bit is
' shifted to the end of the shift register, pin QH, and the least-
' significant bit is shifted to QA. Changing 'msbfirst' to 'lsbfirst'
' causes the data to appear backwards on the outputs of the '595.
' Note that the number of bits is _not_ specified after the variable
' in the instruction, since it's eight, the default.
Again:
 Shiftout DataP,Clock,msbfirst,[counter] ' Send the bits.
 pulsout Latch,1 ' Transfer to outputs.
 pause 50 ' Wait briefly.
 counter = counter+1 ' Increment counter.
goto Again ' Do it again.

' LISTING 2. SHIFTIN FROM ADC0831
' Program: ADC0831.BS2
' This program demonstrates the use of the BS2's new Shiftin instruction
' for interfacing with the Microwire interface of the Nat'l Semiconductor
' ADC0831 8-bit analog-to-digital converter. It uses the same connections
' shown in the BS1 app note.

ADres var byte ' A-to-D result: one byte.
CS con 0 ' Chip select is pin 0.
AData con 1 ' ADC data output is pin 1.
CLK con 2 ' Clock is pin 2.

high CS ' Deselect ADC to start.

' In the loop below, just three lines of code are required to read
' the ADC0831. The Shiftin instruction does most of the work. Shiftin
' requires you to specify a data pin and clock pin (AData, CLK), a
' mode (msbpost), a variable (ADres), and a number of bits (9). The
' mode specifies msb or lsb-first and whether to sample data before
' or after the clock. In this case, we chose msb-first, post-clock.
' The ADC0831 precedes its data output with a dummy bit, which we
' take care of by specifying 9 bits of data instead of 8.

again:
 low CS ' Activate the ADC0831.
 shiftin AData,CLK,msbpost,[ADres\9] ' Shift in the data.
 high CS ' Deactivate '0831.
 debug ? ADres ' Show us the conversion result.
 pause 1000 ' Wait a second.
goto again ' Do it again.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Page 358 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

' LISTING 3. BIDIRECTIONAL COMMUNICATION WITH LTC1298
' Program: LTC1298.BS2 (LTC1298 analog-to-digital converter)
' This program demonstrates use of the Shiftout and Shiftin instructions
' to communicate with an LTC1298 serial ADC. Shiftout is used to
' send setup data to the ADC; Shiftin to capture the results of the
' conversion. The comments in this program concentrate on explaining
' the operation of the Shift instructions. for more information on
' the ADC, see Stamp app note #22 or the Linear Tech spec sheets.

CS con 0 ' Chip select; 0 = active
CLK con 1 ' Clock to ADC; out on rising, in on falling edge.
DIO_n con 2 ' Data I/O pin _number_.
config var nib ' Configuration bits for ADC.
AD var word ' Variable to hold 12-bit AD result.

startB var config.bit0 ' Start bit for comm with ADC.
sglDif var config.bit1 ' Single-ended or differential mode.
oddSign var config.bit2 ' Channel selection.
msbf var config.bit3 ' Output 0s after data xfer complete.

' This program demonstrates the LTC1298 by alternately sampling the two
' input channels and presenting the results on the PC screen using Debug.

high CS ' Deactivate ADC to begin.
high DIO_n ' Set data pin for first start bit.
again: ' Main loop.
 for oddSign = 0 to 1 ' Toggle between input channels.
 gosub convert ' Get data from ADC.
 debug "channel ",DEC oddSign, ": ",DEC AD,cr ' Display data.
 pause 500 ' Wait a half second.
 next ' Change channels.
goto again ' Endless loop.

' Here's where the conversion occurs. The Stamp first sends the config
' bits to the 1298, then clocks in the conversion data. Note the use of
' the new BS2 instructions Shiftout and Shiftin. Their use is pretty
' straightforward here: Shiftout sends data bits to pin DIO and clock
' the CLK pin. Sending the least-significant bit first, it shifts out
' the four bits of the variable config. Then Shiftin changes DIO to
' input and clocks in the data bits—most-significant bit first, post
' clock (valid after clock pulse). It shifts in 12 bits to the variable AD.

convert:
 config = config | %1011 ' Set all bits except oddSign.
 low CS ' Activate the ADC.
 shiftout DIO_n,CLK,lsbfirst,[config\4]' Send config bits.
 shiftin DIO_n,CLK,msbpost,[AD\12] ' Get data bits.
 high CS ' Deactivate the ADC.
return ' Return to program.

2: Using Shiftin & Shiftout

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 359

2

3: Phoneline Interface

Introduction. This application note shows how to interface the BS2 to
the phone line in applications that use the DTMFout instruction.

Background. The BS2 instruction DTMFout generates dual-tone, mul-
tifrequency signals—the same musical beeps used to dial the phone,
activate pagers, and access repeaters in ham-radio applications.

Commercial designs that interface electronic devices to the phone line
normally require the approval of the Federal Communications Com-
mission (FCC) to ensure the quality and reliability of telephone service.
Manufacturers of phone accessories often take the shortcut of using an
off-the-shelf interface, known as a Data Access Arrangement (DAA).
Since the DAA has already been checked out by the FCC, it’s generally
much easier to get a DAA-based design approved than a from-scratch
circuit. Unfortunately, DAAs tend to be somewhat expensive in small
quantities ($25+ each), and are sold primarily through high-volume
distributors geared toward serving manufacturers.

Where does this leave experimenters, hobbyists, and one-off instru-
ment makers? Pretty much on their own. For them, we present the
circuit below. It’s not a full-blown DAA suitable for production de-
signs, but it is a good starting point for prototype DTMF-transmit

Schematic of the phone-line interface.

Jameco (JC), 1-800-831-4242
or 415-592-8097

Parts Sources

600-600Ω
transformer

(JC: 117760)

280V “Sidactor”
(DK: P3002AB-ND)

10Ω
(both)

3.9V zeners (both)
DK: 1N5228BCT-ND

phone line
(red and green)

0.001µF

0.1µF1k

P0

BS2
connect switch

(or relay contacts)

Digi-Key (DK), 1-800-344-4539
or 218-681-6674

P3000AA61-ND

BASIC Stamp II Application Notes

Page 360 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

3: Phoneline Interface

applications using the BS2. It’s based on a circuit presented in Encyclo-
pedia of Electronic Circuits, Volume 5, by Graf and Sheets (TAB/McGraw
Hill, 1995; ISBN 0-07-011077-8). We’ve filled in specific component
values and sources, added parts for coupling the BS2, and tested the
circuit’s ability to dial the phone.

How it works. Starting at the phone-line end of the circuit, a double-
pole single-throw (DPST) switch or set of relay contacts isolates the
circuit from the phone line when the circuit is not in use. Closing the
switch puts the phone into the “off-hook” condition, which causes the
phone company to generate a dialtone. Although a single set of contacts
would be sufficient to break the circuit, a tradition of robust design in
phone circuits makes it normal for a hook switch to break both sides of
the circuit.

After the switch, a Sidactor surge-protection device clips large voltage
spikes that might result from nearby lightning strikes. Its voltage rating
is selected to let it do its surge-protection job without interfering with
relatively high ringing voltages or phone-company test voltages. Note
that nothing can provide 100-percent lightning immunity, but the
Sidactor is cheap insurance against most routine surges.

A 600-to-600-ohm transformer isolates the BS2 from the line’s DC
voltages. On the other side of the transformer, a pair of zener diodes
clips any voltage over approximately 4.6 volts. The remaining resistors
and capacitors couple the DTMF tones from the BS2 into the trans-
former. They also work together to smooth the ragged edges of the
DTMF tones, which are generated using fast pulse-width modulation
(PWM). Before filtering, these tones contain high-frequency compo-
nents that can make them sound distorted or fuzzy. With the circuit
shown, the tones come through crystal clear.

Programming. You’ll be amazed at how easy it is to dial the phone with
the DTMFout instruction. Suppose you want to dial 624-8333—one line
will do the trick:

DTMFout 0,[6,2,4,8,3,3,3]

where 0 is the pin number (0-15) connected to the interface and the

BASIC Stamp II Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 361

2

3: Phoneline Interface

numbers inside the square brackets are the numbers to dial. Values of
0-9 represent those same buttons on the phone keypad; 10 is the star (*)
key; 11 is the pound sign (#); and 12 through 15 are additional tones that
aren’t meant for phone-subscriber use. They’re included primarily for
non-phone DTMF applications like remote controls and ham-radio
purposes. You may specify values as literal numbers, as we did above,
or as variables. Nibble-sized variables are perfect for holding DTMF
digits.

For each digit in square brackets, DTMFout sends the corresponding
tone for 200 milliseconds (ms), followed by a silent pause of 50 ms. This
timing gives the phone company equipment plenty of time to recognize
and respond to the tones. If you want some other timing scheme, you
can place on and off times between the pin numbers and the tone list,
like so:

DTMFout 0,1000,500,[6,2,4,8,3,3,3]

That instruction would transmit each tone for a full second (1000 ms),
and pause in silence for a half second (500 ms) after each tone.

Sources. Components needed for the simple phone-line interface are
available from Digi-Key and Jameco; see the contact information in the
schematic. For commercial applications, one manufacturer of DAAs is
Cermetek Microelectronics, 406 Pasman Drive, Sunnyvale, CA 94089;
phone 800-882-6271; fax 408-752-5004.

BASIC Stamp II Application Notes

Page 362 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Appendix A

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 363

A

Control Codes Printing Characters

Name/Function *Char Code Char Code Char Code Char Code

null NUL 0 <space> 32 @ 64 ‘ 96
start of heading SOH 1 ! 33 A 65 a 97
start of text STX 2 " 34 B 66 b 98
end of text ETX 3 # 35 C 67 c 99
end of xmit EOT 4 $ 36 D 68 d 100
enquiry ENQ 5 % 37 E 69 e 101
acknowledge ACK 6 & 38 F 70 f 102
bell BEL 7 ’ 39 G 71 g 103
backspace BS 8 (40 H 72 h 104
horizontal tab HT 9) 41 I 73 i 105
line feed LF 10 * 42 J 74 j 106
vertical tab VT 11 + 43 K 75 k 107
form feed FF 12 ’ 44 L 76 l 108
carriage return CR 13 - 45 M 77 m 109
shift out SO 14 . 46 N 78 n 110
shift in SI 15 / 47 O 79 o 111
data line escape DLE 16 0 48 P 80 p 112
device control 1 DC1 17 1 49 Q 81 q 113
device control 2 DC2 18 2 50 R 82 r 114
device control 3 DC3 19 3 51 S 83 s 115
device control 4 DC4 20 4 52 T 84 t 116
non acknowledge NAK 21 5 53 U 85 u 117
synchronous idle SYN 22 6 54 V 86 v 118
end of xmit block ETB 23 7 55 W 87 w 119
cancel CAN 24 8 56 X 88 x 120
end of medium EM 25 9 57 Y 89 y 121
substitute SUB 26 : 58 Z 90 z 123
escape ESC 27 ; 59 [91 { 124
file separator FS 28 < 60 \ 92 | 125
group separator GS 29 = 61] 93 } 126
record separator RS 30 > 62 ^ 94 ~ 127
unit separator US 31 ? 63 - 95 <delete> 128

* Note that the control codes have no standardized screen symbols. The characters listed for them are just names used in
referring to these codes. For example, to move the cursor to the beginning of the next line of a pritner or terminal often
requires sending linefeed and carriage return codes. This common pair is referred to as “LF/CR.”

ASCII Chart

Appendix A

Page 364 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Appendix B

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 365

B

Reserved Words

BASIC STAMP I BASIC STAMP II
AND ON2400 ABS HOME OUTL

B0..B13 OR AND IHEX OUTPUT
BIT0..BIT15 OT300 ASC IHEX1..IHEX4 OUTS

BRANCH OT600 BELL IF PAUSE
BSAVE OT1200 BKSP IN0..IN15 RCTIME

BUTTON OT2400 BIN INA REV
DEBUG OUTPUT BIN1..BIN4 INB PULSIN

DIR0..DIR7 PAUSE BIT INC PULSOUT
DIRS PIN0..PIN7 BIT0..BIT15 IND PWM

EEPROM PINS BRANCH INH RANDOM
END PORT BRIGHT INL READ
FOR POT BUTTON INPUT REP

GOSUB PULSIN BYTE INS REVERSE
GOTO PULSOUT CLS ISBIN SBIN
HIGH PWM CON ISBIN1..ISBIN16 SBIN1..SBIN16

IF RANDOM COS ISHEX SDEC
INPUT READ COUNT ISHEX1..ISHEX4 SDEC1..SDEC5

LET REVERSE CR LIGHTSON SERIN
LOOKDOWN SERIN DATA LOOKDOWN SEROUT

LOOKUP SEROUT DCD LOOKUP SHEX
LOW SLEEP DEBUG LOW SHEX1..SHEX4
MAX SOUND DEC LOWBIT SHIFTIN
MIN STEP DEC1..DEC5 LOWNIB SHIFTOUT

N300 SYMBOL DIG LSBFIRST SIN
N600 T300 DIM LSBPOST SKIP

N1200 T600 DIR0..DIR15 LSBPRE SLEEP
N2400 T1200 DIRA MAX STEP
NAP T2400 DIRB MIN STOP

NEXT THEN DIRC MSBFIRST STR
ON300 TOGGLE DIRD MSBPOST SQR
ON600 W0..W6 DIRH MSBPRE TAB

ON1200 WRITE DIRL NAP THEN
DIRS NCD TO

DTMFOUT NEXT TOGGLE
END NIB UNITOFF
FOR NIB0..NIB3 UNITON

FREQOUT NOT UNITSOFF
GOSUB OR VAR
GOTO OUT0..OUT15 WAIT
HEX OUTA WAITSTR

HEX1..HEX4 OUTB WORD
HIGH OUTC WRITE

HIGHBIT OUTD XOR
HIGHNIB OUTH XOUT

The following table shows the reserved words for each stamp module.

Appendix B

Page 366 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 367

C

BASIC Stamp I and Stamp II Conversions

INTRODUCTION .. 371
TYPOGRAPHICAL CONVENTIONS ..371
HOW TO USE THIS APPENDIX .. 374
COMMAND AND DIRECTIVE DIFFERENCES..................................... 375

RAM SPACE AND REGISTER ALLOCATION 376
BASIC Stamp I ...376

Stamp I I/O and Variable Space ...376
BASIC Stamp II ..377

Stamp II I/O and Variable Space ..377
BS1 to BS2 Register Allocation Conversion381
BS2 to BS1 Register Allocation Conversion381

BRANCH .. 383
BASIC Stamp I ...383
BASIC Stamp II ..383

BSAVE .. 384
BASIC Stamp I ...384
BASIC Stamp II ..384

BUTTON...385
BASIC Stamp I ...385
BASIC Stamp II ..385

COUNT .. 387
BASIC Stamp I ...387
BASIC Stamp II ..387

DEBUG .. 388
BASIC Stamp I ...388
BASIC Stamp II ..388

DATA ..391
BASIC Stamp I ...391
BASIC Stamp II ..391

DTMFOUT .. 394
BASIC Stamp I ...394
BASIC Stamp II ..394

EEPROM (See DATA) ... 395

BASIC Stamp I and Stamp II Conversions

Page 368 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

END ... 396
BASIC Stamp I ...396
BASIC Stamp II ..396

EXPRESSIONS.. 397
BASIC Stamp I ...397
BASIC Stamp II ..397

FOR...NEXT ..399
BASIC Stamp I ...399
BASIC Stamp II ..399

FREQOUT ... 401
BASIC Stamp I ...401
BASIC Stamp II ..401

GOSUB .. 403
BASIC Stamp I ...403
BASIC Stamp II ..403

GOTO ..404
BASIC Stamp I ...404
BASIC Stamp II ..404

HIGH ..405
BASIC Stamp I ...405
BASIC Stamp II ..405

IF...THEN... 406
BASIC Stamp I ...406
BASIC Stamp II ..406

INPUT ... 407
BASIC Stamp I ...407
BASIC Stamp II ..407

LET .. 408
BASIC Stamp I ...408
BASIC Stamp II ..408

LOOKDOWN... 410
BASIC Stamp I ...410
BASIC Stamp II ..410

LOOKUP...412
BASIC Stamp I ...412
BASIC Stamp II ..412

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 369

C

LOW ... 413
BASIC Stamp I ...413
BASIC Stamp II ..413

NAP ... 414
BASIC Stamp I ...414
BASIC Stamp II ..414

OUTPUT...415
BASIC Stamp I ...415
BASIC Stamp II ..415

PAUSE .. 416
BASIC Stamp I ...416
BASIC Stamp II ..416

POT (See RCTIME) ...417
PULSIN.. 418

BASIC Stamp I ...418
BASIC Stamp II ..418

PULSOUT ... 420
BASIC Stamp I ...420
BASIC Stamp II ..420

PWM ..421
BASIC Stamp I ...421
BASIC Stamp II ..421

RANDOM.. 423
BASIC Stamp I ...423
BASIC Stamp II ..423

RCTIME ...424
BASIC Stamp I ...424
BASIC Stamp II ..424

READ ..427
BASIC Stamp I ...427
BASIC Stamp II ..427

REVERSE ... 428
BASIC Stamp I ...428
BASIC Stamp II ..428

BASIC Stamp I and Stamp II Conversions

Page 370 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

SERIN ... 429
BASIC Stamp I ...429
BASIC Stamp II ..429

SERIN Baudmode Conversion ..430

SEROUT ...433
BASIC Stamp I ...433
BASIC Stamp II ..433

SEROUT Baudmode Conversion ...434

SHIFTIN ...437
BASIC Stamp I ...437
BASIC Stamp II ..437

SHIFTOUT .. 439
BASIC Stamp I ...439
BASIC Stamp II ..439

SLEEP ... 441
BASIC Stamp I ...441
BASIC Stamp II ..441

SOUND (See FREQOUT) .. 442
STOP ..443

BASIC Stamp I ...443
BASIC Stamp II ..443

TOGGLE ...444
BASIC Stamp I ...444
BASIC Stamp II ..444

WRITE .. 445
BASIC Stamp I ...445
BASIC Stamp II ..446

XOUT ..446
BASIC Stamp I ...446
BASIC Stamp II ..446

X-10 Commands ...446

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 371

C

INTRODUCTION
The BASIC Stamp I and BASIC Stamp II have many differences in both
hardware and software. While it is trivial to recognize the differences
in the Stamp hardware, the modifications to the PBASIC command
structure are intricate and not always obvious. This appendix describes
the Stamp I and Stamp II PBASIC differences in a detailed manner to
aid in the conversion of programs between the two modules. This
document may also serve to give a better understanding of how cer-
tain features of the two versions can be helpful in problem solving.

TYPOGRAPHICAL CONVENTIONS
This Appendix will use a number of symbols to deliver the needed infor-
mation in a clear and concise manner. Unless otherwise noted the follow-
ing symbols will have consistent meanings throughout this document.

TOPIC HEADING
Each discussion of a topic or PBASIC command will begin with a topic
heading such as the one above.

MODULE HEADING

When separate discussion of a Stamp I or Stamp II module is neces-
sary it will begin with a module heading such as this one.

•

•

Inside the module section bulleted items will precede information on
the properties of various arguments for the indicated command.

○ ○

CONVERSION:

When conversion between the two versions of PBASIC are necessary,
each set of steps will begin under the conversion heading as shown
above. This header will always begin with the word “Conversion”
and will indicate in which direction the conversion is taking place; i.e.
from BS1 to BS2 or from BS2 to BS1.

BASIC Stamp I and Stamp II Conversions

Page 372 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

1. First do this...

2. Next do this...

The most important steps in conversion will be listed in a numeric
sequence within the conversion section. The order of the numbered
steps may be important in some situations and unimportant in others;
it is best to follow the order as closely as possible.

Tips which are not vital to the conversion are listed within the conver-
sion section and are preceded by bullets as shown above. These tips
include additional information on valid argument types, properties of
the command, etc. and may be used for further optimization of the
code if desired.

As an example, using the above conventions, a typical section within
this document will look like this:

SAMPLE COMMAND

BASIC STAMP I

Command syntax line shown here

• Argument one is…

• Argument two is…

BASIC STAMP II

Command syntax line shown here

• Argument one is...

• Argument two is...

○ ○

CONVERSION: BS1 R BS2

1. First do this...

2. Next do this...

• You might like to know this...

• You might want to try this...

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 373

C

○ ○

CONVERSION: BS1 Q BS2

1. First do this...

2. Next do this...

• You might like to know this...

• You might want to try this...

The following symbols appear within command syntax listings or
within the text describing them.

UPPER CASE All command names will be shown is upper case let-
tering within the command syntax line. Argument
names will be in upper case lettering outside of the
command syntax line.

lower case All arguments within the command syntax line will
be in lower case lettering.

() Parentheses may appear inside a command syntax line
and indicate that an actual parenthesis character is re-
quired at that location.

[] Brackets may appear inside a command syntax line
and indicate that an actual bracket character is required
at that location.

[|] Brackets with an internal separator may appear in the
text following a command syntax line and indicate that
one, and only one, of the items between the separa-
tors may be specified.

{ } Wavy brackets may appear inside a command syntax
line and indicate that the items they surround are op-
tional and may be left out of the command. The wavy
bracket characters themselves should not be used
within the command, however.

BASIC Stamp I and Stamp II Conversions

Page 374 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

#..# Double periods between numbers indicate that a con-
tiguous range of numbers are allowed for the given
argument. Wherever a range of numbers are shown it
usually indicates the valid range which a command
expects to see. If a number is given which is outside
of this range the Stamp will only use the lowest bits of
the value which correspond to the indicated range. For
example, if the range 0..7 is required (a 3 bit value)
and the number 12 is provided, the Stamp will only
use the lowest 3 bits which would correspond to a
value of 4.

HOW TO USE THIS APPENDIX
This appendix should be used as a reference for converting specific
commands, or other PBASIC entities, from one version of the Stamp to
another. While this document will help to convert most of the pro-
grams available for the Stamp I and Stamp II, some programs may
require logic changes to achieve correct results. The required logic
changes are beyond the scope of this
document.

In an effort to lessen the time spent in performing a code conversion
the following routine should be followed in the order listed for each
program.

1. Review the entire code briefly to familiarize yourself with how it func-
tions and the types of commands and expressions which are used.

2. Consult the RAM SPACE AND REGISTER ALLOCATION
section in this manual and go through the entire program carefully
converting symbols, variables and expressions to the proper format.

3. Go through the code instruction by instruction, consulting the
appropriate section in this document, and convert each one to the
appropriate form.

4. Make any necessary circuit changes as required by the new stamp
code.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 375

C

COMMAND AND DIRECTIVE DIFFERENCES
Many enhancements to the Stamp I command structure were made in
the Stamp II. Commands have also been added, replaced or removed.
The following table shows the differences between the two modules.

BASIC Stamp I BASIC Stamp II Comments
BRANCH BRANCH Syntax Modifications
BSAVE Removed

BUTTON BUTTON
COUNT New Command

DEBUG DEBUG Enhanced
EEPROM DATA Enhanced

DTMFOUT New Command
END END

(Expressions) (Expressions) Enhanced
FOR...NEXT FOR...NEXT Enhanced

GOSUB GOSUB Enhanced
GOTO GOTO
HIGH HIGH

IF...THEN IF...THEN Enhanced
INPUT INPUT
LET (Expression) Enhanced

LOOKDOWN LOOKDOWN Enhanced
LOOKUP LOOKUP Syntax Modifications

LOW LOW
NAP NAP

OUTPUT OUTPUT
PAUSE PAUSE

POT RCTIME Enhanced
PULSIN PULSIN Enhanced

PULSOUT PULSOUT Enhanced
PWM PWM Enhanced

RANDOM RANDOM
READ READ

(Register Allocation) (Register Allocation) Enhanced
REVERSE REVERSE

SERIN SERIN Enhanced
SEROUT SEROUT Enhanced

SHIFTIN New Command
SHIFTOUT New Command

SLEEP SLEEP
SOUND FREQOUT Enhanced

STOP New Command
TOGGLE TOGGLE
WRITE WRITE

XOUT New Command

BASIC Stamp I and Stamp II Conversions

Page 376 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

RAM SPACE AND REGISTER ALLOCATION

BASIC STAMP I

The RAM space in the BASIC Stamp I consists of eight 16-bit words.
Each word has a unique, predefined name as shown in the table below.
Each word consists of two 8-bit bytes which have unique, predefined
names. Additionally the first two words, PORT and W0, can be ac-
cessed as individual bits.

The first word, named PORT, is reserved to allow access and control
over the 8 I/O pins on the Stamp I. This word consists of two bytes,
PINS and DIRS, which represent the status and the data direction of
the pins.

The other seven words are general purpose registers for use by the
PBASIC program. They may be used via their direct name or by as-
signing symbols as aliases to specific registers.

To assign a symbol to a specific register, use the following format:

SYMBOL symbolname = registername

Example: SYMBOL LoopCounter = W0

• SYMBOLNAME is a series of characters (letters, numbers and un-
derscores but not starting with a number) up to 32 characters in
length.

• REGISTERNAME is a valid bit, byte or word register name as
shown in the table below.

You may assign a symbol to a constant value by using a similar format:

SYMBOL symbolname = constantvalue

Example: SYMBOL MaxLoops = 100

• SYMBOLNAME is a series of characters (letters, numbers and un-
derscores but not starting with a number) up to 32 characters in
length.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 377

C

• CONSTANTVALUE is a valid number in decimal, hexidecimal,
binary or ascii.

Stamp I I/O and Variable Space
Word Name Byte Name Bit Names Special Notes
PORT PINS PIN0 - PIN7 I/O pins; bit addressable.

DIRS DIR0 - DIR7 I/O pin direction control;

bit addressable.

W0 B0 BIT0 - BIT7 Bit addressable.

B1 BIT8 - BIT15 Bit addressable.

W1 B2

B3

W2 B4

B5

W3 B6

B7

W4 B8

B9

W5 B10

B11

W6 B12 Used by GOSUB instruction.

B13 Used by GOSUB instruction.

BASIC STAMP II

The RAM space of the BASIC Stamp II consists of sixteen words of 16
bits each. Each word and each byte within the word has a unique,
predefined name similar to the Stamp I and shown in the table below.

The first three words, named INS, OUTS and DIRS, are reserved to
allow access and control over the 16 I/O pins on the Stamp II. These
reserved words represent the input states, output states and directions
of the pins respectively and are the Stamp II version of the single con-
trol word, PORT, on the Stamp I. In comparison to the Stamp I, the
control registers’ size has been doubled and the I/O register PINS has
been split into two words, INS and OUTS, for flexibility. Each word
consists of a predefined name for its byte, nibble and bit parts.

BASIC Stamp I and Stamp II Conversions

Page 378 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

The other thirteen words are general purpose registers for use by the
PBASIC program. There are two methods of referencing these regis-
ters within the Stamp II as follows:

1. They may be referenced via their direct name or by defining sym-
bols as aliases.

- OR -

2. They may be referenced by defining variables of specific types (byte,
word, etc.). The software will automatically assign variables to
registers in an efficient manner.

The first method is used in the Stamp I, and supported in the Stamp II,
as a means of directly allocating register space. The second method
was introduced with the Stamp II as a means of indirectly allocating
register space and is the recommended method.

It is important to note that defining variables of specific types in the
Stamp II is not directly equivalent to assigning symbols to registers in
the Stamp I. Defining variables of specific types on the Stamp II al-
lows the software to efficiently and automatically organize variable
space within the general purpose registers while assigning symbols to
registers allows you to organize variable space yourself. While both
methods of register allocation are legal in the Stamp II, care should be
taken to implement only one method of register use within each pro-
gram. Each PBASIC program should either reference all registers by
their predefined names (or symbols assigned to them) or reference all
registers by defining variables of specific types and let the software do
the organization for you. If you use both methods within the same
program, it is likely that variables will overlap and your program will
behave erratically. The following diagram may serve to clarify the use
of the register allocation methods within a single Stamp II program:

TheByte VAR B0

TheByte=25
:
B4=15

Using only method 1 within a
program is safe.

TheByte VAR BYTE

TheByte=34
:
TheByte=10/7

Using only method 2 within a
program is safe.

TheByte VAR BYTE

TheByte=120
:
W0=2
B1=10

Using both methods within a
program leads to erratic execution.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 379

C

To define a variable of a specific type, use the following format.

variablename VAR [type{(arraysize)} | previousvariable{.modifier{.modifier...}}]

Example:

LoopCounter VAR WORD 'defines LoopCounter as a word.
LoopCounter2 VAR BYTE(2) 'defines LoopCounter2 as an array of

'two bytes.
FirstBit VAR LoopCounter.LOWBIT 'defines FirstBit as the lowest bit

'within the variable LoopCounter.

• VARIABLENAME is a series of characters (letters, numbers and
underscores but not starting with a number) up to 32 characters in
length.

• TYPE is a valid variable type of BIT, NIB, BYTE or WORD.

• ARRAYSIZE is an optional constant value, in parentheses, speci-
fying the number of elements of TYPE to define for the variable
VARIABLENAME.

• PREVIOUSVARIABLE is the name of a previously defined vari-
able. This can be used to assign alias names to the same variable
space.

• MODIFIER is an optional offset, preceded by a period ‘.’, which
indicates which part of a previously defined variable to set
VARIABLENAME to. Valid modifiers are: LOWBYTE,
HIGHBYTE, BYTE0..1, LOWNIB, HIGHNIB, NIB0..3, LOWBIT,
HIGHBIT and BIT0..15.

You may define a constant by using a similar format:

constantname CON constantexpression

Example:

MaxLoops CON 100 'defines MaxLoops as a constant
'equivalent to the number 100.

MaxLoops2 CON 50 * 4 / 2 'also defines MaxLoops as a
'constant equivalent to the number 100.

BASIC Stamp I and Stamp II Conversions

Page 380 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

• CONSTANTNAME is a series of characters (letters, numbers and
underscores but not starting with a number) up to 32 characters in
length.

• CONSTANTEXPRESSION is a numerical expression in decimal,
hexidecimal, binary or ascii using only numbers and the +, -, *,
/, &, |, ^, << or >> operators. NOTE: Parentheses are not
allowed and expressions are always computed using 16-bits.

Stamp II I/O and Variable Space
Word Name Byte Name Nibble Names Bit Names Special Notes

INS INL INA, INB, IN0 - IN7, Input pins; word, byte, nibble
INH INC, IND IN8 - IN15 and bit addressable.

OUTS OUTL OUTA, OUTB, OUT0 - OUT7, Output pins; word, byte,
OUTH OUTC, OUTD OUT8 - OUT15 nibble and bit addressable.

DIRS DIRL DIRA, DIRB, DIR0 - DIR7, I/O pin direction control; word,
DIRH DIRC, DIRD DIR8 - DIR15 byte, nibble and bit addressable.

W0 B0 General Purpose; word, byte,
B1 nibble and bit addressable.

W1 B2 General Purpose; word, byte,
B3 nibble and bit addressable.

W2 B4 General Purpose; word, byte,
B5 nibble and bit addressable.

W3 B6 General Purpose; word, byte,
B7 nibble and bit addressable.

W4 B8 General Purpose; word, byte,
B9 nibble and bit addressable.

W5 B10 General Purpose; word, byte,
B11 nibble and bit addressable.

W6 B12 General Purpose; word, byte,
B13 nibble and bit addressable.

W7 B14 General Purpose; word, byte,
B15 nibble and bit addressable.

W8 B16 General Purpose; word, byte,
B17 nibble and bit addressable.

W9 B18 General Purpose; word, byte,
B19 nibble and bit addressable.

W10 B20 General Purpose; word, byte,
B21 nibble and bit addressable.

W11 B22 General Purpose; word, byte,
B23 nibble and bit addressable.

W12 B24 General Purpose; word, byte,
B25 nibble and bit addressable.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 381

C

○ ○

SYMBOL CONVERSION: BS1 R BS2

1. Remove the ‘SYMBOL’ directive from variable or constant decla-
rations.

2. On all variable declarations, replace the predefined register name,
to the right of the ‘=’, with the corresponding variable type or reg-
ister name according to the following table:

BS1 to BS2 Register Allocation Conversion
Stamp I Register Name Stamp II Variable Type / Register Name

PORT NO EQUIVALENT*

PINS or PIN0..PIN7 INS / OUTS or IN0..IN7 / OUT0..OUT7**

DIRS or DIR0..DIR7 DIRS or DIR0..DIR7

W0..W6 WORD

B0..B13 BYTE

BIT0..BIT15 BIT

* The PORT control register has been split into three registers, INS, OUTS and DIRS,
on the Stamp II. There is no predefined name representing all registers as a group as
in the Stamp I. Additional symbol and/or program structure and logic changes are
necessary to access all three registers properly.

** The Stamp I PINS register has been split into two registers, INS and OUTS, in the
Stamp II. Each register now has a specific task, input or output, rather than a dual
task, both input and output, as in the Stamp I. If the Stamp I program used the
symbol assigned to PINS for both input and output, an additional symbol is neces-
sary to access both functions. This may also require further changes in program
structure and logic.

1. On all variable declarations, replace the equal sign, ‘=’, with ‘VAR’.

2. On all constant declarations, replace the equal sign, ‘=’, with ‘CON’.

○ ○

VARIABLE OR CONSTANT CONVERSION: BS1 Q BS2

1. Insert the ‘SYMBOL’ directive before the variable’s name or
constant’s name in the declaration.

2. On all variable declarations, replace the variable type or register
name, to the right of the ‘=’, with the corresponding, predefined
register name according to the following table:

BASIC Stamp I and Stamp II Conversions

Page 382 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BS2 to BS1 Register Allocation Conversion
Stamp II Variable Type / Register Name Stamp I Register Name

INS PINS
OUTS PINS
DIRS DIRS

WORD W0..W6
BYTE B0..B13
NIB B0..B13*
BIT BIT0..BIT15**

* There are no registers on the Stamp I which are nibble addressable. The best
possible solution is to place one or two nibble variables within a byte regis-
ter and modify the code accordingly.

** The only general purpose registers on the Stamp I which are bit addressable
are B0 and B1. BIT0..BIT7 correspond to the bits within B0 and BIT8..BIT15
correspond to the bits within B1. If you have a set of bit registers in the
Stamp II program, you should reserve B0 and B1 for this bit usage; i.e.: do
not assign any other symbols to B0 or B1.

3. On all variable and constant declarations, replace the variable or
constant directive, ‘VAR’ or ‘CON’, with an equal sign, ‘=’.

○ ○

ASSIGNMENT CONVERSION: BS1 Q BS2

1. Remove the ‘LET’ command if it is specified.

2. If PINS or PIN0..PIN7 appears to the left, or to the left and right, of
the equal sign, ‘=’, replace PINS with OUTS and PIN0..PIN7 with
OUT0..OUT7.

3. If PINS or PIN0..PIN7 appears to the right of the equal sign, ‘=’,
replace PINS with INS and PIN0..PIN7 with IN0..IN7.

4. If PORT appears in an assignment, determine which byte (PINS or
DIRS) is affected and replace PORT with the corresponding Stamp
II symbol (INS, OUTS or DIRS). If both bytes are affected, separate
assignment statements may be needed to accomplish the equiva-
lent effect in the Stamp II.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 383

C

BRANCH

BASIC STAMP I
BRANCH index,(label0, label1,... labeln)

• INDEX is a constant or a bit, byte or word variable.

• LABEL0..LABELN are valid labels to jump to according to the value
of INDEX.

BASIC STAMP II
BRANCH index,[label0, label1,... labeln]

• INDEX is a constant, expression or a bit, nibble, byte or word
variable.

• LABEL0..LABELN are valid labels to jump to according to the value
of INDEX.

○ ○

CONVERSION: BS1 R BS2

1. Change open and close parentheses, “(“ and “)”, to open and close
brackets, “[“ and “]”.

Example:
BS1: BRANCH B0, (Loop1, Loop2, Finish)

BS2: BRANCH BranchIdx, [Loop1, Loop2, Finish]

○ ○

CONVERSION: BS1 Q BS2

1. Change open and close brackets, “[” and “]”, to open and close
parentheses, “(“ and “)”.

Example:
BS2: BRANCH BranchIdx, [Loop1, Loop2, Finish]

BS1: BRANCH B0, (Loop1, Loop2, Finish)

BASIC Stamp I and Stamp II Conversions

Page 384 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BSAVE

BASIC STAMP I
BSAVE

• This is a compiler directive which causes the Stamp I software to
create a file containing the tokenized form or the associated source
code.

BASIC STAMP II
NO EQUIVELANT COMMAND

○ ○

CONVERSION:

No conversion possible.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 385

C

BUTTON

BASIC STAMP I
BUTTON pin, downstate, del ay, rate, workspace, targetstate, label

• PIN is a constant or a bit, byte or word variable in the range 0..7.

• DOWNSTATE is a constant or a bit, byte or word variable in the
range 0..1.

• DELAY is a constant or a bit, byte or word variable in the range
0..255.

• RATE is a constant or a bit, byte or word variable in the range
0..255.

• WORKSPACE is a byte or word variable.

• TARGETSTATE is a constant or a bit, byte or word variable in the
range 0..1.

• LABEL is a valid label to jump to in the event of a button press.

BASIC STAMP II
BUTTON pin, downstate, del ay, rate, workspace, targetstate, label

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• DOWNSTATE is a constant, expression or a bit, nibble, byte or word
variable in the range 0..1.

• DELAY is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..255.

• RATE is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..255.

• WORKSPACE is a byte or word variable.

• TARGETSTATE is a constant, expression or a bit, nibble, byte or
word variable in the range 0..1.

BASIC Stamp I and Stamp II Conversions

Page 386 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

• LABEL is a valid label to jump to in the event of a button press.

○ ○

CONVERSION: BS1 R BS2

1. PIN may be a constant or a bit, nibble, byte or word variable in the
range 0..15.

2. Any or all arguments other than LABEL may be nibble variables
for efficiency.

Example:
BS1: BUTTON 0, 1, 255, 0, B0, 1, ButtonWasPressed

BS2: BUTTON 0, 1, 255, 0, WkspcByte, 1, ButtonWasPressed

○ ○

CONVERSION: BS1 Q BS2

1. PIN must be a constant or a bit, byte or word variable in the range
0..7.

2. No arguments may be nibble variables.

Example:
BS2: BUTTON 12, 1, 255, 0, WkspcByte, 1, ButtonWasPressed

BS1: BUTTON 7, 1, 255, 0, B0, 1, ButtonWasPressed

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 387

C

COUNT

BASIC STAMP I
NO EQUIVELANT COMMAND

BASIC STAMP II
COUNT pin, period, result

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• PERIOD is a constant, expression or a bit, nibble, byte or word
variable in the range 0..65535.

• RESULT is a bit, nibble, byte or word variable.

○ ○

CONVERSION:

No conversion possible.

BASIC Stamp I and Stamp II Conversions

Page 388 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

DEBUG

BASIC STAMP I
DEBUG outputdata{,outputdata...}

• OUTPUTDATA is a text string, bit, byte or word variable (no con-
stants allowed).

• If no formatters are specified DEBUG defaults to “variablename =
value” + carriage return.

FORMATTERS:
(The following formatting characters may precede the variable name)

displays value in decimal followed by a space.
$ displays “variablename = $value ” + carriage return; where

value is in hexidecimal.
% displays “variablename = %value ” + carriage return; where

value is in binary.
@ displays “variablename = ‘character’ ” + carriage return; where

character is an ascii character.

SPECIAL SYMBOLS:
(The following symbols can be included in the output data)

CLS causes the debug window to be cleared.
CR causes a carriage return in the debug window.

BASIC STAMP II
DEBUG outputdata{,outputdata...}

• OUTPUTDATA is a text string, constant or a bit, nibble, byte or
word variable.

• If no formatters are specified DEBUG defaults to ascii character
display without spaces or carriage returns following the value.

FORMATTERS:
(The following formatting tokens may precede the data elements as
indicated below)

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 389

C

ASC? value Displays “variablename = ‘character’ ”
+ carriage return; where character is an
ascii character.

STR bytearray Displays values as an ascii string until
a value of 0 is reached.

STR bytearray\n Displays values as an ascii string for n
bytes.

REP value\n Displays value n times.

DEC{1..5} value Displays value in decimal, optionally
limited or padded for 1 to 5 digits.

SDEC{1..5} value Displays value in signed decimal, op-
tionally limited or padded for 1 to 5 dig-
its. Value must not be less than a word
variable.

HEX{1..4} value Displays value in hexidecimal, option-
ally limited or padded for 1 to 4 digits.

SHEX{1..4} value Displays value in signed hexidecimal,
optionally limited or padded for 1 to 4
digits. Value must not be less than a
word variable.

IHEX{1..4} value Displays value in hexidecimal preceded
by a “$” and optionally limited or pad-
ded for 1 to 4 digits.

ISHEX{1..4} value Displays value in signed hexidecimal
preceded by a “$” and optionally lim-
ited or padded for 1 to 4 digits. Value
must not be less than a word variable.

BIN{1..16} value Displays value in binary, optionally lim-
ited or padded for 1 to 16 digits.

SBIN{1..16} value Displays value in signed binary, optionally
limited or padded for 1 to 16 digits. Value
must not be less than a word variable.

BASIC Stamp I and Stamp II Conversions

Page 390 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

IBIN{1..16} value Displays value in binary preceded by a
“%” and optionally limited or padded
for 1 to 16 digits.

ISBIN{1..16} value Displays value in signed binary pre-
ceded by a “%” and optionally limited
or padded for 1 to 16 digits. Value must
not be less than a word variable.

SPECIAL SYMBOLS:
(The following symbols can be included in the output data)

BELL Causes the computer to beep.

BKSP Causes the cursor to backup one space.

CLS Causes the debug window to be cleared.

CR Causes a carriage return to occur in debug window.

HOME Causes the cursor in the debug window to return to
home position.

TAB Causes the cursor to move to next tab position.

○ ○

CONVERSION: BS1 R BS2

1. Replace all ‘#’ formatters with ‘DEC’.

2. Replace all ‘$’ formatters with ‘HEX?’.

3. Replace all ‘%’ formatters with ‘BIN?’.

4. Replace all ‘@’ formatters with ‘ASC?’.

5. If variable has no formatters preceding it, add the ‘DEC?’ formatter
before variable.

• Signs, type indicators, strings and digit limitation formatting
options are available for more flexibility.

Example:
BS1: DEBUG #B0, $B1, %B2

BS2: DEBUG DEC AByte, HEX? AWord, BIN? ANibble

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 391

C

○ ○

CONVERSION: BS1 Q BS2

1. Remove any ‘DEC?’ formatters preceding variables.

2. Replace all ‘DEC’ formatters with ‘#’.

3. Replace all ‘HEX?’ formatters with ‘$’.

4. Replace all ‘BIN?’ formatters with ‘%’.

5. Replace all ‘ASC?’ formatters with ‘@’.

6. Delete any ‘?’ formatting characters.

7. Signs, type indicators, strings and digit limitation formatters are
not available in the Stamp I. Manual formatting will have to be
done (possibly multiple DEBUG statements) to accomplish the
same formatting.

Example:
BS2: DEBUG DEC AByte, HEX? AWord, BIN? ANibble, CR

BS1: DEBUG #B0, $B1, %B2, CR

BASIC Stamp I and Stamp II Conversions

Page 392 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

DATA

BASIC STAMP I
EEPROM {location,}(data{,data...})

• LOCATION is in the range 0..255.

• DATA is a constant in the range 0..255. No variables are allowed.

BASIC STAMP II
{pointer} DATA {@location,} {WORD} {data}{(size)} {, { WORD} {data}{(size)}...}

• POINTER is an optional undefined constant name or a bit, nibble,
byte or word variable which is assigned the value of the first
memory location in which data is written.

• @LOCATION is an optional constant, expression or a bit, nibble,
byte or word variable which designates the first memory location
in which data is to be written.

• WORD is an optional switch which causes DATA to be stored as
two separate bytes in memory.

• DATA is an optional constant or expression to be written to memory.

• SIZE is an optional constant or expression which designates the
number of bytes of defined or undefined data to write/reserve in
memory. If DATA is not specified then undefined data space is
reserved and if DATA is specified then SIZE bytes of data equal to
DATA are written to memory.

○ ○

CONVERSION: BS1 R BS2

1. Replace the EEPROM directive with the DATA directive.

2. If LOCATION is specified, insert an at sign, ‘@’, immediately
before it.

3. Remove the open and close parentheses, ‘(‘ and ‘)’.

• The POINTER constant and WORD and (SIZE) directives may be
used for added flexibility.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 393

C

Example:
BS1: EEPROM 100, (255, 128, 64, 92)

BS2: DATA @100, 255, 128, 64, 92

○ ○

CONVERSION: BS1 Q BS2

1. If a POINTER constant is specified, remove it and set it equal to
the value of the first location using a Stamp I assign statement.

2. Replace the DATA directive with the EEPROM directive.

3. If LOCATION is specified, remove the at sign, ‘@’, immediately
before it.

4. If the WORD directive is given, remove it and convert the data
element immediately following it, if one exists, into two bytes of
low-byte, high-byte format. If no data element exists immediately
following the WORD directive, (the (SIZE) directive must exist)
insert zero data element pairs, ‘0, 0,’ for the number of elements
given in (SIZE).

5. Add an open parenthesis, ‘(‘, just before the first data element and
a close parenthesis, ‘)’, after the last data element.

6. If the (SIZE) directive is given, remove it and copy the preceding
data element, if available, into the number of SIZE data elements.
If data was not given, insert SIZE data elements of zero, ‘0’, sepa-
rated by commas.

Example:
BS2: MyDataPtr DATA @100, 255, 128(2), 64, WORD 920, (10)

BS1: SYMBOL MyDataPtr = 100
EEPROM MyDataPtr, (255, 128, 128, 64, 152, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0)

BASIC Stamp I and Stamp II Conversions

Page 394 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

DTMFOUT

BASIC STAMP I
NO EQUILEVANT COMMAND

BASIC STAMP II
DTMFOUT pin, {ontime, offtime,}[key{,key...}]

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• ONTIME and OFFTIME are constants, expressions or bit, nibble,
byte or word variables in the range 0..65535.

• KEY is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION:

No conversion possible.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 395

C

EEPROM (See DATA)

BASIC Stamp I and Stamp II Conversions

Page 396 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

END

BASIC STAMP I
END

• 20uA reduced current (no loads).

BASIC STAMP II
END

• 50uA reduced current (no loads).

○ ○

CONVERSION:

No conversion necessary.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 397

C

EXPRESSIONS

BASIC STAMP I
{-} value ?? value {?? value...}

• Stamp I expressions are only allowed within an assignment state-
ment. See the LET command for more detail.

• VALUE is a constant or a bit, byte or word variable.

• ?? is +,-,*,**,/,//,MIN,MAX,&,1,^,&/,|/,^/.

BASIC STAMP II
{?} value ?? value {?? {?} value}

• Stamp II expressions are allowed in place of almost any argument
in any command as well as within an assignment statement.

• ? is SQR, ABS, ~, -, DCD, NCD, COS, SIN.

• VALUE is a constant or a bit, nibble, byte or word variable.

• ?? is +,-,*,**,*/,/,//,MIN,MAX,&,|,^,DIG,<<,>>,REV.

• Parentheses may be used to modify the order of expression
evaluation.

○ ○

CONVERSION: BS1 R BS2

1. Remove the LET command. This is not allowed in the Stamp II.

• VARIABLE and VALUE may be nibble variables for efficiency.

• The optional unary operator {-} may now also include SQR, ABS,
~, DCD, NCD, COS and SIN.

• The binary operators can now include */, DIG, <<, >> and REV.

Example:
BS1: LET b0 = -10 + 16

BS2: Result = -10 + 16

BASIC Stamp I and Stamp II Conversions

Page 398 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

○ ○

CONVERSION: BS1 Q BS2

1. Remove any unary operator other than minus (-) and modify the
equation as appropriate, if possible.

2. The binary operator can not be */, DIG, <<, >> or REV.

3. VARIABLE and VALUE must not be a nibble variable.

Example:
BS2: Result = ~%0001 + 16

BS1: b0 = %1110 + 16

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 399

C

FOR...NEXT

BASIC STAMP I
FOR variable = start TO end {STEP {-} stepval}...NEXT {variable}

• Up to 8 nested FOR...NEXT loops are allowed.

• VARIABLE is a bit, byte or word variable.

• START is a constant or a bit, byte or word variable.

• END is a constant or a bit, byte or word variable.

• STEPVAL is a constant or a bit, byte or word variable.

• VARIABLE (after NEXT) must be the same as VARIABLE
(after FOR).

BASIC STAMP II
FOR variable = start TO end {STEP stepval}...NEXT

• Up to 16 nested FOR...NEXT loops are allowed.

• VARIABLE is a bit, nibble, byte or word variable.

• START is a constant, expression or a bit, nibble, byte or word
variable.

• END is a constant, expression or a bit, nibble, byte or word
variable.

• STEPVAL is an optional constant, expression or a bit, nibble, byte
or word variable and must be positive.

○ ○

CONVERSION: BS1 R BS2

1. Remove the minus sign “-“ from the step value if given. The Stamp
II dynamically determines the direction at run-time depending on
the order of START and END. This allows for great flexibility in
programming.

BASIC Stamp I and Stamp II Conversions

Page 400 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

2. Remove the VARIABLE name after the NEXT statement if given.
The variable is always assumed to be from the most recent FOR
statement and is not allowed in the Stamp II.

• VARIABLE, START, END and STEPVAL may be a nibble variable
for efficiency.

• Up to 16 nested FOR...NEXT statements may be used.

Example:
BS1: FOR B0 = 10 TO 1 STEP -1

{code inside loop}
NEXT B0

BS2: FOR LoopCount = 10 TO 1 STEP 1
{code inside loop}
NEXT

○ ○

CONVERSION: BS1 Q BS2

1. VARIABLE, START, END and STEPVAL must not be a nibble.

2. If negative stepping is to be done, a negative STEPVAL must be
specified.

3. Must have no more than 8 nested FOR...NEXT loops.

Example:
BS2: FOR LoopCount = 100 TO 10 STEP 2

{code inside loop}
NEXT

BS1: FOR B0 = 100 TO 10 STEP -2
{code inside loop}
NEXT

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 401

C

FREQOUT

BASIC STAMP I
SOUND pin, (note, duration {,note, duration...})

• PIN is a constant or a bit, byte or word variable in the range of 0..7.

• NOTE is a constant or a bit, byte or word variable in the range of
0..255 representing frequencies in the range 94.8 Hz to 10,550 Hz.

• DURATION is a constant or a bit, byte or word variable in the
range of 1..255 specifying the duration in 12 ms units.

BASIC STAMP II
FREQOUT pin, milliseconds, freq1 {,freq2}

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range of 0..15.

• MILLISECONDS is a constant, expression or a bit, nibble, byte or
word variable.

• FREQ1 and FREQ2 are constant, expression or bit, nibble, byte or
word variables in the range 0..32767 representing the correspond-
ing frequencies. FREQ2 may be used to output 2 sine waves on
the same pin simultaneously.

○ ○

CONVERSION: BS1 R BS2

1. Change command name ‘SOUND’ to ‘FREQOUT’.

2. Remove the parentheses, ‘(‘ and ‘)’.

3. Swap the orientation of DURATION with NOTE and multiply DU-
RATION by 12.

4. (MILLISECONDS = DURATION * 12).

5. Calculate FREQ1 using the formula: FREQ1 = 1/(95 x 10-6 + ((127 -
NOTE) * 83 x 10-6).

5. Place successive NOTE and DURATION pairs into separate
FREQOUT commands.

BASIC Stamp I and Stamp II Conversions

Page 402 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

• PIN may be in the range 0..15.

Example:
BS1: SOUND 1, (92, 128, 75, 25)

BS2: FREQOUT 1, 1536, 333
FREQOUT 1, 300, 226

○ ○

CONVERSION: BS1 Q BS2

1. Change command name ‘FREQOUT’ to ‘SOUND’.

2. PIN must be in the range 0..7.

3. Insert an open parenthesis just before the MILLISECONDS argu-
ment.

4. Swap the orientation of MILLISECONDS with FREQ1 and divide
MILLISECONDS by 12. (DURATION = MILLISECONDS / 12).

5. Calculate NOTE using the formula: NOTE = 127 - ((1/FREQ1) - 95
x 10-6) / 83 x 10-6.

6. Successive FREQOUT commands may be combined into one
SOUND command by separating NOTE and DURATION pairs
with commas.

7. Insert a close parenthesis, ‘)’, after the last DURATION argument.

• Notes can not be mixed as in the Stamp II

Example:
BS2: FREQOUT 15, 2000, 400

FREQOUT 15, 500, 600

BS1: SOUND 7, (98, 167, 108, 42)

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 403

C

GOSUB

BASIC STAMP I
GOSUB label

• Up to 16 GOSUBs allowed per program.

• Up to 4 nested GOSUBs allowed.

• Word W6 is modified with every occurrence of GOSUB.

BASIC STAMP II
GOSUB label

• Up to 255 GOSUBs allowed per program.

• Up to 4 nested GOSUBs allowed.

○ ○

CONVERSION: BS1 R BS2

• Up to 255 GOSUBs can be used in the program.

• No general purpose variables are modified with the occurrence of
GOSUB.

○ ○

CONVERSION: BS1 Q BS2

1. Only 16 GOSUBs can be used in the program.

• Word W6 is modified with every occurrence of GOSUB.

BASIC Stamp I and Stamp II Conversions

Page 404 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

GOTO

BASIC STAMP I
GOTO label

BASIC STAMP II
GOTO label

○ ○

CONVERSION:

No conversion necessary.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 405

C

HIGH

BASIC STAMP I
HIGH pin

• PIN is a constant, expression or a bit, byte or word variable in the
range 0..7.

BASIC STAMP II
HIGH pin

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION: BS1 R BS2

• PIN may be a constant, expression or a bit, nibble, byte or word
variable in the range 0..15.

○ ○

CONVERSION: BS1 Q BS2

• PIN must be a constant or a bit, byte or word variable in the range
0..7.

Example:
BS2: HIGH 15

BS1: HIGH 7

BASIC Stamp I and Stamp II Conversions

Page 406 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

IF...THEN

BASIC STAMP I
IF variable ?? value {AND/OR variable ?? value...} THEN label

• VARIABLE is a bit, byte or word variable. No constants are al-
lowed.

• ?? is =, <>, >, <, >=, <=.

• VALUE is a constant or a bit, byte, or word variable.

• LABEL is a location to branch to if the result is true.

BASIC STAMP II
IF conditionalexpression THEN label

• CONDITIONALEXPRESSION is any valid Boolean expression us-
ing the =, <>, >, <, >=, <=, conditional operators and the AND,
OR, NOT, and XOR logical operators.

• LABEL is a location to branch to if the result is true.

○ ○

CONVERSION: BS1 R BS2

1. If VARIABLE is PINS or PIN0..PIN7 then replace in with INS or
IN0..IN7.

○ ○

CONVERSION: BS1 Q BS2

1. If the INS or OUTS symbol is specified to the left of the conditional
operator, replace it with PINS.

2. If the logical operator NOT is specified, remove it and switch the
conditional operator to negative logic.

3. If one of the values is an expression, you must perform the calcula-
tion in a dummy variable outside of the IF...THEN statement.

Example:
BS2: IF NOT FirstValue > LastValue * (2 + NextValue) THEN Loop

BS1: Temp = 2 + NextValue * LastValue
IF FirstValue <= Temp THEN Loop

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 407

C

INPUT

BASIC STAMP I
INPUT pin

• PIN is a constant, expression or a bit, byte or word variable in the
range 0..7.

BASIC STAMP II
INPUT pin

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION: BS1 R BS2

• PIN may be a nibble variable in the range 0..15.

○ ○

CONVERSION: BS1 Q BS2

• PIN must not be a nibble variable and must be in the range 0..7
only.

Example:
BS2: INPUT 15

BS1: INPUT 7

BASIC Stamp I and Stamp II Conversions

Page 408 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

LET

BASIC STAMP I
{LET} variable = {-} value ?? value {?? value...}

• VARIABLE is a bit, byte or word variable.

• VALUE is a constant or a bit, byte or word variable.

• ?? is +,-,*,**,/,//,MIN,MAX,&,1,^,&/,|/,^/.

BASIC STAMP II
variable = {?} value ?? value {?? {?} value}

• VARIABLE is a bit, nibble, byte or word variable.

• ? is SQR, ABS, ~, -, DCD, NCD, COS, SIN.

• VALUE is a constant or a bit, nibble, byte or word variable.

• ?? is +,-,*,**,*/,/,//,MIN,MAX,&,|,^,DIG,<<,>>,REV.

• Parentheses may be used to modify the order of expression
evaluation.

○ ○

CONVERSION: BS1 R BS2

1. Remove the LET command. This is not allowed in the Stamp II.

• VARIABLE and VALUE may be nibble variables for efficiency.

• The optional unary operator {-} may now also include SQR, ABS,
~, DCD, NCD, COS and SIN.

• The binary operators can now include */, DIG, <<, >> and REV.

Example:
BS1: LET b0 = -10 + 16

BS2: Result = -10 + 16

○ ○

CONVERSION: BS1 Q BS2

1. Remove any unary operator other than minus (-) and modify the
equation as appropriate, if possible.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 409

C

2. The binary operator can not be */, DIG, <<, >> or REV.

3. VARIABLE and VALUE must not be a nibble variable.

Example:
BS2: Result = ~%0001 + 16

BS1: b0 = %1110 + 16

BASIC Stamp I and Stamp II Conversions

Page 410 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

LOOKDOWN

BASIC STAMP I
LOOKDOWN value, (value0, value1,... valueN), variable

• VALUE is a constant or a bit, byte or word variable.

• VALUE0, VALUE1, etc. are constants or a bit, byte or word
variables.

• VARIABLE is a bit, byte or word variable.

BASIC STAMP II
LOOKDOWN value, {??,} [value0, value1,... valueN], variable

• VALUE is a constant, expression or a bit, nibble, byte or word
variable.

• ?? is =, <>, >, <, <=, =>. (= is the default).

• VALUE0, VALUE1, etc. are constants, expressions or bit, nibble,
byte or word variables.

• VARIABLE is a bit, nibble, byte or word variable.

○ ○

CONVERSION: BS1 R BS2

1. Change all parentheses, “(“ and “)”, to brackets, “[“ and “]”

• Any or all arguments may be nibble variables for efficiency.

• The optional ?? operator may be included for flexibility.

Example:
BS1: LOOKDOWN b0, (“A”, “B”, “C”, “D”), b1

BS2: LOOKDOWN ByteValue, [“A”, “B”, “C”, “D”], Result

○ ○

CONVERSION: BS1 Q BS2

1. Change all brackets, “[“ and “]”, to parentheses, “(“ and “)”.

2. Remove the “??,” argument if it exists and modify the list if
possible. “=” is assumed in the Stamp I.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 411

C

• None of the arguments may nibble variables.

Example:
BS2: LOOKDOWN ByteValue, [1, 2, 3, 4], Result

BS1: LOOKDOWN b0, (1, 2, 3, 4), b1

BASIC Stamp I and Stamp II Conversions

Page 412 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

LOOKUP

BASIC STAMP I
LOOKUP index, (value0, value1,... valueN), variable

• INDEX is a constant or a bit, byte or word variable.

• VALUE0, VALUE1, etc. are constants or a bit, byte or word
variables.

• VARIABLE is a bit, byte or word variable.

BASIC STAMP II
LOOKUP index, [value0, value1,... valueN], variable

• INDEX is a constant, expression or a bit, nibble, byte or word
variable.

• VALUE0, VALUE1, etc. are constants, expressions or bit, nibble,
byte or word variables.

• VARIABLE is a bit, nibble, byte or word variable.

○ ○

CONVERSION: BS1 R BS2

1. Change all parentheses, “(“ and “)”, to brackets, “[“ and “]”

• Any or all arguments may be nibble variables for efficiency.

Example:
BS1: LOOKUP b0, (1, 2, 3, 4), b1

BS2: LOOKUP ByteValue, [1, 2, 3, 4], Result

○ ○

CONVERSION: BS1 Q BS2

1. Change all brackets, “[“ and “]”, to parentheses, “(“ and “)”

• None of the arguments may nibble variables.

Example:
BS2: LOOKUP ByteValue, [1, 2, 3, 4], Result

BS1: LOOKUP b0, (1, 2, 3, 4), b1

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 413

C

LOW

BASIC STAMP I
LOW pin

• PIN is a constant or a bit, byte or word variable in the range 0..7.

BASIC STAMP II
LOW pin

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION: BS1 R BS2

• PIN may be a constant or a bit, nibble, byte or word variable in the
range 0..15.

○ ○

CONVERSION: BS1 Q BS2

PIN must be a constant or a bit, byte or word variable in the range
0..7.

Example:
BS2: LOW 15

BS1: LOW 7

BASIC Stamp I and Stamp II Conversions

Page 414 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

NAP

BASIC STAMP I
NAP period

• PERIOD is a constant or a bit, byte or word variable in the range
0..7 representing 18ms intervals.

• Current is reduced to 20uA (assuming no loads).

BASIC STAMP II
NAP period

• PERIOD is a constant, expression or a bit, nibble, byte or word
variable in the range 0..7 representing 18ms intervals.

• Current is reduced to 50uA (assuming no loads).

○ ○

CONVERSION:

No conversion necessary.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 415

C

OUTPUT

BASIC STAMP I
OUTPUT pin

• PIN is a constant or a bit, byte or word variable in the range 0..7.

BASIC STAMP II
OUTPUT pin

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION: BS1 R BS2

• PIN may be a constant or a bit, nibble, byte or word variable in the
range 0..15.

○ ○

CONVERSION: BS1 Q BS2

1. PIN must be a constant or a bit, byte or word variable in the range
0..7.

Example:
BS2: OUTPUT 15

BS1: INPUT 7

BASIC Stamp I and Stamp II Conversions

Page 416 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

PAUSE

BASIC STAMP I
PAUSE milliseconds

• MILLISECONDS is a constant or a bit, byte or word variable in the
range 0..65535.

BASIC STAMP II
PAUSE milliseconds

• MILLISECONDS is a constant, expression or a bit, nibble, byte or
word variable in the range 0..65535.

○ ○

CONVERSION:

No conversion necessary.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 417

C

POT (See RCTIME)

BASIC Stamp I and Stamp II Conversions

Page 418 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

PULSIN

BASIC STAMP I
PULSIN pin, state, variable

• PIN is a constant, expression or a bit, byte or word variable in the
range 0..7.

• STATE is a constant, expression or a bit, byte or word variable in
the range 0..1.

• VARIABLE is a bit, byte or word variable.

• Measurements are in 10uS intervals and the instruction will time
out in 0.65535 seconds.

BASIC STAMP II
PULSIN pin, state, variable

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• STATE is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..1.

• VARIABLE is a bit, nibble, byte or word variable.

• Measurements are in 2uS intervals and the instruction will time
out in 0.13107 seconds.

○ ○

CONVERSION: BS1 R BS2

• Any or all arguments may be a nibble variable for efficiency.

• PIN may be in the range 0..15.

• Returned value is 5 times less than in the Stamp I counterpart.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 419

C

○ ○

CONVERSION: BS1 Q BS2

• None of the arguments may be a nibble variable.

• PIN must be in the range 0..7.

• Returned value is 5 times more than in the Stamp I counterpart.

Example:
BS2: PULSIN 15, 1, Result

BS1: PULSIN 7, 1, W0

BASIC Stamp I and Stamp II Conversions

Page 420 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

PULSOUT

BASIC STAMP I
PULSOUT pin, time

• PIN is a constant or a bit, byte or word variable in the range 0..7.

• TIME is a constant or a bit, byte or word variable in the range
0..65535 representing the pulse width in 10uS units.

BASIC STAMP II
PULSOUT pin, period

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• PERIOD is a constant, expression or a bit, nibble, byte or word
variable in the range 0..65535 representing the pulse width in 2uS
units.

○ ○

CONVERSION: BS1 R BS2

1. PERIOD = TIME * 5.

• PIN may be a nibble variable in the range 0..15.

Example:
BS1: PULSOUT 1, 10

BS2: PULSOUT 1, 50

○ ○

CONVERSION: BS1 Q BS2

1. TIME = PERIOD / 5.

• PIN must be in the range 0..7 and must not be a nibble variable.

Example:
BS2: PULSOUT 15, 25

BS1: PULSOUT 7, 5

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 421

C

PWM

BASIC STAMP I
PWM pin, duty, cycles

• PIN is a constant or a bit, byte or word variable in the range 0..7.

• DUTY is a constant or a bit, byte or word variable in the range
0..255.

• CYCLES is a constant or a bit, byte or word variable in the range
0..255 representing the number of 5ms cycles to output.

BASIC STAMP II
PWM pin, duty, cycles

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• DUTY is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..255.

• CYCLES is a constant, expression or a bit, nibble, byte or word
variable in the range 0..255 representing the number of 1ms cycles
to output.

○ ○

CONVERSION: BS1 R BS2

1. CYCLES = CYCLES * 5.

• PIN may be a nibble variable in the range 0..15.

Example:
BS1: PWM 0, 5, 1

BS2: PWM 0, 5, 5

BASIC Stamp I and Stamp II Conversions

Page 422 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

○ ○

CONVERSION: BS1 Q BS2

1. CYCLES = CYCLES / 5.

• PIN must be in the range 0..7 and must not be a nibble variable.

Example:
BS2: PWM 15, 5, 20

BS1: PWM 7, 5, 4

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 423

C

RANDOM

BASIC STAMP I
RANDOM variable

• VARIABLE is a byte or word variable in the range 0..65535.

BASIC STAMP II
RANDOM variable

• VARIABLE is a byte or word variable in the range 0..65535.

○ ○

CONVERSION: BS1 R BS2

• The numbers generated for any given input will not be the same
on the Stamp II as in the Stamp I.

○ ○

CONVERSION: BS1 Q BS2

• The numbers generated for any given input will not be the same
on the Stamp I as in the Stamp II.

BASIC Stamp I and Stamp II Conversions

Page 424 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

RCTIME

BASIC STAMP I
POT pin, scale, bytevariable

• PIN is a constant or a bit, byte or word variable in the range 0..7.

• SCALE is a constant or a bit, byte or word variable in the range
0..255.

• BYTEVARIABLE is a byte variable.

BASIC STAMP II
RCTIME pin, state, variable

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

• STATE is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..1.

• VARIABLE is a bit, nibble, byte or word variable.

○ ○

CONVERSION: BS1 R BS2

1. Modify the circuit connected to PIN to look similar to the follow-
ing diagram. (Note, your values for the resistors and capacitor
may be different).

2. Insert two lines before the POT command as follows:

HIGH pin ; where PIN is the same PIN in the POT command.

0.1uF

PIN

10 K (Pot)

+5

220

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 425

C

PAUSE delay ; where DELAY is an appropriate time in millisec-
onds to allow the capacitor to; fully discharge. You
may have to try different DELAY values to find
an optimal; value.

3. Change the command’s name from ‘POT’ to ‘RCTIME’.

4. Replace the SCALE argument with a STATE argument; our example
requires a 1.

• PIN may be a nibble variable in the range 0..15.

○ ○

CONVERSION: BS1 Q BS2

1. Modify the circuit connected to PIN to look similar to the follow-
ing diagram. (Note, your values for the resistor and capacitor may
be different).

2. Delete the code before the RCTIME command which discharges
the capacitor. This code usually consists of two lines as follows:

HIGH pin ; where PIN is the same PIN in the RCTIME
command.

PAUSE delay ; where DELAY is an appropriate time in millisec-
onds to allow the capacitor to; fully discharge.

3. Change the command’s name from ‘RCTIME’ to ‘POT’.

4. Use the ALT-P key combination to determine the appropriate scale
factor for the POT you are using as described in the BASIC Stamp
I manual.

0.1uF

PIN
10 K (Pot)

BASIC Stamp I and Stamp II Conversions

Page 426 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

5. Replace the STATE argument with a SCALE argument.

6. Make VARIABLE a byte variable.

• PIN must be in the range 0..7 and must not be a nibble variable.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 427

C

READ

BASIC STAMP I
READ location, variable

• LOCATION is a constant or a bit, byte or word variable in the range
0..255.

• VARIABLE is a bit, byte or word variable.

BASIC STAMP II
READ location, variable

• LOCATION is a constant, expression or a bit, nibble, byte or word
variable in the range 0..2047.

• VARIABLE is a bit, nibble, byte or word variable.

○ ○

CONVERSION: BS1 R BS2

• LOCATION and VARIABLE may be a nibble variable for efficiency.

• LOCATION may be in the range 0..2047.

○ ○

CONVERSION: BS1 Q BS2

• LOCATION and VARIABLE must not be a nibble variable.

• LOCATION must be in the range 0..255.

BASIC Stamp I and Stamp II Conversions

Page 428 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

REVERSE

BASIC STAMP I
REVERSE pin

• PIN is a constant or a bit, byte or word variable in the range 0..7.

BASIC STAMP II
REVERSE pin

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION: BS1 R BS2

• PIN may be a constant, expression or a bit, nibble, byte or word
variable in the range 0..15.

○ ○

CONVERSION: BS1 Q BS2

• PIN must be a constant or a bit, byte or word variable in the range
0..7.

Example:
BS2: REVERSE 15

BS1: REVERSE 7

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 429

C

SERIN

BASIC STAMP I
SERIN pin, baudmode {,(qualifier {,qualifier...}) } {,{#} variable...}

• PIN is a constant or a bit, byte or word variable in the range 0..7.

• BAUDMODE is a constant or a bit, byte or word variable in the
range 0..7 or a symbol with the following format:
[T|N][2400|1200|600|300].

• QUALIFIERs are optional constants or a bit, byte or word vari-
ables which must be received in the designated order for execu-
tion to continue.

• VARIABLE is a bit, byte or word variable.

• # will convert ascii numbers to a binary equivalent.

BASIC STAMP II
SERIN rpin{\fpin}, baudmode, {plabel,} {timeout, tlabel,} [inputdata]

• RPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..16.

• FPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15.

• BAUDMODE is a constant, expression or a bit, nibble, byte or word
variable in the range 0..65535.

• PLABEL is a label to jump to in case of a parity error.

• TIMEOUT is a constant, expression or a bit, nibble, byte or word
variable in the range 0..65535 representing the number of millisec-
onds to wait for an incoming message.

• TLABEL is a label to jump to in case of a timeout.

• INPUTDATA is a set of constants, expressions and variable names
separated by commas and optionally proceeded by the formatters
available in the DEBUG command, except the ASC and REP

BASIC Stamp I and Stamp II Conversions

Page 430 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

formatters. Additionally, the following formatters are available:

STR bytearray\L{\E} input a string into bytearray
of length L with optional end-
character of E. (0’s will fill
remaining bytes).

SKIP L input and ignore L bytes.

WAITSTR bytearray{\L} Wait for bytearray string (of
L length, or terminated by 0
if parameter is not specified
and is 6 bytes maximum).

WAIT (value {,value...}) Wait for up to a six-byte se-
quence.

○ ○

CONVERSION: BS1 R BS2

1. BAUDMODE is a constant or a bit, nibble, byte or word variable
equal to the bit period of the baud rate plus three control bits which
specify 8-bit/7-bit, True/Inverted and Driven/Open output. The
following table lists the Stamp I baudmodes and the correspond-
ing Stamp II baudmode:

SERIN Baudmode Conversion
Stamp I Baudmode Stamp II Baudmode
0 T2400 396
1 T1200 813
2 T600 1646
3 T300 3313
4 N2400 396 + $4000
5 N1200 813 + $4000
6 N600 1646 + $4000
7 N300 3313 + $4000

2. INPUTDATA includes QUALIFIERS and VARIABLES and must

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 431

C

be encased in brackets, “[“ and “]”. If QUALIFIERS are present,
insert the modifier “WAIT” immediately before the open paren-
thesis before the first QUALIFIER.

3. Replace any optional “#” formatters with the equivalent “DEC”
formatter.

• RPIN = PIN and may be in the range 0..16

• BAUDMODE may be any bit period in between 300 baud and 50000
baud and can be calculated using the following formula:
INT(1,000,000/Baud Rate) - 20.

• The optional formatter may include any formatter listed for
INPUTDATA above.

Example:
BS1: SERIN 0, 1, (“ABCD”), #B0, B1

BS2: SERIN 0, 813, [WAIT(“ABCD”), DEC FirstByte, SecondByte]

○ ○

CONVERSION: BS1 Q BS2

1. PIN = RPIN and must be in the range 0..7.

2. Remove the FPIN argument “\fpin” if it is specified. No flow con-
trol pin is available on the Stamp I.

3. BAUDMODE is a constant or a symbol or a bit, byte or word vari-
able representing one of the predefined baudmodes. Refer to the
BAUDMODE Conversion table above for Stamp II baudmodes and
their corresponding Stamp I baudmodes. While the Stamp II
baudmode is quite flexible, the Stamp I can only emulate specific
baud rates.

4. Remove the PLABEL argument if it is specified. No parity error
checking is done on the Stamp I.

5. Remove the TIMEOUT and TLABEL arguments if they are speci-
fied. No timeout function is available on the Stamp I; the program
will halt at the SERIN instruction until satisfactory data arrives.

6. Remove the brackets, “[“ and “]”.

BASIC Stamp I and Stamp II Conversions

Page 432 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

7. If QUALIFIERS are specified within a WAIT modifier, remove the
word “WAIT”.

8. IF QUALIFIERS are specified within a WAITSTR modifier, replace
the word “WAITSTR” with an open parenthesis, “(“. Convert the
bytearray into a constant text or number sequence separated by
commas if necessary (remove the length specifier “\L” if one ex-
ists) and insert a close parenthesis, “)”, immediately afterward.

9. If a variable is preceded with a DEC formatter, replace the word
“DEC” with “#”.

10. Any formatter other than DEC and WAIT or WAITSTR has no di-
rect equivalent in the Stamp I and must be removed. Additional
variables or parsing routines will have to be used to achieve the
same results in the Stamp I as with the Stamp II.

Example:
BS2: SERIN 15, 813, 1000, TimedOut, [WAIT(“ABCD”), DEC

FirstByte, SecondByte]

BS1: SERIN 7, 1, (“ABCD”), #B0, B1

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 433

C

SEROUT

BASIC STAMP I
SEROUT pin, baudmode, ({#} data {, {#} data...})

• PIN is a constant or a bit, byte or word variable in the range 0..7.

• BAUDMODE is a constant or a bit, byte or word variable in the
range 0..15 or a symbol with the following format:
{O}[T|N][2400|1200|600|300].

• DATA is a constant or a bit, byte or word variable.

• # will convert binary numbers to ascii text equivalents up to 5 dig-
its in length.

BASIC STAMP II
SEROUT tpin{\fpin}, baudmode, {pace,} {timeout, tlabel,} [outputdata]

• TPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..16.

• FPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15.

• BAUDMODE is a constant, expression or a bit, nibble, byte or word
variable in the range 0..60657.

• PACE is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..65535 specifying a time (in milliseconds) to
delay between transmitted bytes. This value can only be specified
if the FPIN is not specified.

• TIMEOUT is a constant, expression or a bit, nibble, byte or word
variable in the range 0..65535 representing the number of millisec-
onds to wait for the signal to transmit the message. This value can
only be specified if the FPIN is specified.

• TLABEL is a label to jump to in case of a timeout. This can only be
specified if the FPIN is specified.

BASIC Stamp I and Stamp II Conversions

Page 434 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

• OUTPUTDATA is a set of constants, expressions and variable names
separated by commas and optionally proceeded by the formatters
available in the DEBUG command.

○ ○

CONVERSION: BS1 R BS2

1. BAUDMODE is a constant or a bit, nibble, byte or word variable
equal to the bit period of the baud rate plus three control bits which
specify 8-bit/7-bit, True/Inverted and Driven/Open output. The
following table lists the Stamp I baudmodes and the correspond-
ing Stamp II baudmode:

SEROUT Baudmode Conversion
Stamp I Baudmode Stamp II Baudmode

0 T2400 396
1 T1200 813
2 T600 1646
3 T300 3313
4 N2400 396 + $4000
5 N1200 813 + $4000
6 N600 1646 + $4000
7 N300 3313 + $4000
8 OT2400 396 + $8000
9 OT1200 813 + $8000
10 OT600 1646 + $8000
11 OT300 3313 + $8000
12 ON2400 396 + $C000
13 ON1200 813 + $C000
14 ON600 1646 + $C000
15 ON300 3313 + $C000

1. Replace the parentheses, “(“ and “)”, with brackets, “[“ and “]”.

2. Replace any optional “#” formatters with the equivalent “DEC”
formatter.

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 435

C

• TPIN = PIN and may be in the range 0..16.

• BAUDMODE may be any bit period in between 300 baud and 50000
baud and can be calculated using the following formula:
INT(1,000,000/Baud Rate) - 20.

• The optional formatter may include any valid formatter for the
DEBUG command.

Example:
BS1: SEROUT 3, T2400, (“Start”, #B0, B1)

BS2: SEROUT 3, 396, [“Start”, DEC FirstByte, SecondByte]

○ ○

CONVERSION: BS1 Q BS2

1. PIN = TPIN and must be in the range 0..7.

2. Remove the FPIN argument “\fpin” if it is specified. No flow con-
trol pin is available on the Stamp I.

3. BAUDMODE is a constant or a symbol or a bit, byte or word vari-
able representing one of the predefined baudmodes. Refer to the
BAUDMODE Conversion table above for Stamp II baudmodes and
their corresponding Stamp I baudmodes. While the Stamp II
baudmode is quite flexible, the Stamp I can only emulate specific
baud rates.

4. Remove the PACE argument if it is specified. No pace value is
allowed on the Stamp I.

5. Remove the TIMEOUT and TLABEL arguments if they are speci-
fied. No timeout function is available on the Stamp I; the program
will transmit data regardless of the status of the receiver.

6. Replace the brackets, “[“ and “]”, with parentheses, “(“ and “)”.

7. If a variable is preceded with a DEC formatter, replace the word
“DEC” with “#”.

8. Any formatter other than DEC has no direct equivalent in the Stamp
I and must be removed. Additional variables or constants will
have to be used to achieve the same results in the Stamp I as with
the Stamp II.

BASIC Stamp I and Stamp II Conversions

Page 436 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Example:
BS2: SEROUT 15, 3313, 1000, TimedOut, [“Start”, DEC FirstByte,

SecondByte]

BS1: SEROUT 7, T300, (“Start”, #B0, B1)

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 437

C

SHIFTIN

BASIC STAMP I
NO EQUIVELANT COMMAND

BASIC STAMP II
SHIFTIN dpin, cpin, mode, [result{\bits} { ,result{\bits}... }]

• DPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the data pin.

• CPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the clock pin.

• MODE is a constant, symbol, expression or a bit, nibble, byte or
word variable in the range 0..4 specifying the bit order and clock
mode. 0 or MSBPRE = msb first, pre-clock, 1 or LSBPRE = lsb first,
pre-clock, 2 or MSBPOST = msb first, post-clock, 3 or LSBPOST =
lsb first, post-clock.

• RESULT is a bit, nibble, byte or word variable where the received
data is stored.

• BITS is a constant, expression or a bit, nibble, byte or word vari-
able in the range 1..16 specifying the number of bits to receive in
RESULT. The default is 8.

○ ○

CONVERSION: BS1 R BS2

• Code such as the following:

SYMBOL Value = B0 'Result of shifted data
SYMBOL Count = B1 'Counter variable
SYMBOL CLK = 0 'Clock pin is pin 0
SYMBOL DATA = PIN1 'Data pin is pin 1

DIRS = %00000001 'Set Clock pin as output and Data pin as input

FOR Count = 1 TO 8
PULSOUT CLK,1 'Preclock the data
Value = Value * 2 + DATA 'Shift result left and grab next data bit

NEXT Count

BASIC Stamp I and Stamp II Conversions

Page 438 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

May be converted to the following code:

Value VAR BYTE 'Result of shifted data
CLK CON 0 'Clock pin is pin 0
DATA CON 1 'Data pin is pin 1

DIRS = %0000000000000001 'Set Clock pin as output and Data pin
as input

SHIFTIN DATA, CLK, MSBPRE, [Value\8]

○ ○

CONVERSION: BS1 Q BS2

• Code such as the following:

Value VAR BYTE 'Result of shifted data

DIRS = %0000000000000001 'Clock pin is 0 and Data pin is 1

SHIFTIN 1, 0, LSBPOST, [Value\8]

May be converted to the following code:

SYMBOL Value = B0 'Result of shifted data
SYMBOL Count = B1 'Counter variable

DIRS = %00000001 'Clock pin is 0 and Data pin is 1

FOR Count = 1 TO 8
Value = DATA * 256 + Value / 2 'Shift grab next data bit and shift right
PULSOUT CLK,1 'Postclock the data

NEXT Count

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 439

C

SHIFTOUT

BASIC STAMP I
NO EQUIVELANT COMMAND

BASIC STAMP II
SHIFTOUT dpin, cpin, mode, [data{\bits} {, data{\bits}... }]

• DPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the data pin.

• CPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the clock pin.

• MODE is a constant, symbol, expression or a bit, nibble, byte or
word variable in the range 0..1 specifying the bit order. 0 or
LSBFIRST = lsb first, 1 or MSBFIRST = msb first.

• DATA is a constant, expression or a bit, nibble, byte or word vari-
able containing the data to send out.

• BITS is a constant, expression or a bit, nibble, byte or word vari-
able in the range 1..16 specifying the number of bits of DATA to
send. The default is 8.

○ ○

CONVERSION: BS1 R BS2

Code such as the following:

SYMBOL Count = B1 'Counter variable
SYMBOL CLK = 0 'Clock pin is pin 0
SYMBOL DATA = PIN1 'Data pin is pin 1

DIRS = %00000011 'Set Clock and Data pins as outputs

B0 = 125 'Value to be shifted out

FOR Count = 1 TO 8
DATA = BIT7 'Send out MSB of B0
PULSOUT CLK,1 'Clock the data
B0 = B0 * 2 'Shift the value left; note that this causes us

'to lose the value
NEXT Count 'when we’re done shifting

BASIC Stamp I and Stamp II Conversions

Page 440 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

May be converted to the following code:

Value VAR BYTE 'Value to be shifted out
CLK CON 0 'Clock pin is pin 0
DATA CON 1 'Data pin is pin 1

DIRS = %0000000000000011 'Set Clock and Data pins as
'outputs

Value = 125

SHIFTOUT DATA, CLK, MSBFIRST, [Value\8] 'Note that value is still intact
'after were done shifting

○ ○

CONVERSION: BS1 Q BS2

Code such as the following:

Value VAR BYTE 'Value to be shifted out
CLK CON 0 'Clock pin is pin 0
DATA CON 1 'Data pin is pin 1

DIRS = %0000000000000011 'Set Clock and Data pins as
'outputs

Value = 220

SHIFTOUT DATA, CLK, LSBFIRST, [Value\8] 'Note that value is still intact
'after were done shifting

May be converted to the following code:

SYMBOL Count = B1 'Counter variable
SYMBOL CLK = 0 'Clock pin is pin 0
SYMBOL DATA = PIN1 'Data pin is pin 1

DIRS = %00000011 'Set Clock and Data pins as
'outputs

B0 = 220 'Value to be shifted out

FOR Count = 1 TO 8
DATA = BIT0 'Send out LSB of B0
PULSOUT CLK,1 'Clock the data
B0 = B0 / 2 'Shift the value left; note that

'the value is lost after were
'done

NEXT Count 'shifting

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 441

C

SLEEP

BASIC STAMP I
SLEEP seconds

• SECONDS is a constant or a bit, byte or word variable in the range
1..65535 specifying the number of seconds to sleep.

BASIC STAMP II
SLEEP seconds

• SECONDS is a constant, expression or a bit, nibble, byte or word
variable in the range 0..65535 specifying the number of seconds to
sleep.

○ ○

CONVERSION:

No conversion necessary.

BASIC Stamp I and Stamp II Conversions

Page 442 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

SOUND (See FREQOUT)

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 443

C

STOP

BASIC STAMP I
NO EQUIVELANT COMMAND

BASIC STAMP II
STOP

• Execution is frozen, such as with the END command, however,
low-power mode is not entered and the I/O pins never go into
high impedance mode.

○ ○

CONVERSION: BS1 R BS2

Code such as the following:

StopExecution: GOTO StopExecution

May be converted to the following code:

StopExecution: STOP

○ ○

CONVERSION: BS1 Q BS2

Code such as the following:

Quit: STOP

May be converted to the following code:

Quit: GOTO Quit

BASIC Stamp I and Stamp II Conversions

Page 444 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

TOGGLE

BASIC STAMP I
TOGGLE pin

• PIN is a constant or a bit, byte or word variable in the range 0..7.

BASIC STAMP II
TOGGLE pin

• PIN is a constant, expression or a bit, nibble, byte or word variable
in the range 0..15.

○ ○

CONVERSION: BS1 R BS2

• PIN may be a nibble variable and may be in the range 0..15.

○ ○

CONVERSION: BS1 Q BS2

• PIN must not be a nibble variable and must be in the range 0..7.

Example:
BS2: TOGGLE 15

BS1: TOGGLE 7

Appendix C

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 445

C

WRITE

BASIC STAMP I
WRITE location, data

• LOCATION is a constant or a bit, byte or word variable in the range
0..255.

• DATA is a constant or a bit, byte or word variable.

BASIC STAMP II
WRITE location, data

• LOCATION is a constant, expression or a bit, nibble, byte or word
variable in the range 0..2047.

• DATA is a constant, expression or a bit, nibble, byte or word
variable.

○ ○

CONVERSION: BS1 R BS2

• LOCATION and DATA may be a nibble variable for efficiency.

• LOCATION may be in the range 0..2047.

○ ○

CONVERSION: BS1 Q BS2

• LOCATION and DATA must not be a nibble variable.

• LOCATION must be in the range 0..255.

BASIC Stamp I and Stamp II Conversions

Page 446 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

XOUT

BASIC STAMP I
NO EQUIVELANT COMMAND

BASIC STAMP II
XOUT mpin, zpin, [house\keyorcommand{\cycles}

{, house\keyorcommand{\cycles}... }]

• MPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the modulation pin.

• ZPIN is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the zero-crossing pin.

• HOUSE is a constant, expression or a bit, nibble, byte or word vari-
able in the range 0..15 specifying the house code A..P respectively.

• KEYORCOMMAND is a constant, expression or a bit, nibble, byte
or word variable in the range 0..15 specifying keys 1..16 respec-
tively or is one of the commands in the following table:

X-10 Commands
X-10 Command (symbol) Value

UNITON %10010
UNITOFF %11010

UNITSOFF %11100
LIGHTSON %10100

DIM %11110
BRIGHT %10110

• CYCLES is a constant, expression or a bit, nibble, byte or word
variable in the range 2..65535 specifying the number of cycles to
send. (Default is 2).

○ ○

CONVERSION:

No conversion possible.

Appendix D

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 447

D

BA
SI

C
St

am
p

I S
ch

em
at

ic

Schematics

Page 448 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stam
p II Schem

atic

