Frameworks and
Components

Amit Shabtay

-

Frameworks

~

\

“A reusable, semi-complete application
that can be specialized to produce a
custom application”

“A set of cooperating abstract and

concrete classes that makes a reusable

design for a specific class of software”

An Object-Oriented Reuse Technique
Design Reuse + Code Reuse

)

4 N

Comparison of Reuse Techniques

Components are less abstract than frameworks

Frameworks are incomplete applications: They compile,
but they don't run

Components are usually framework-specific

Framework generates an application while components
comprise the application.

Framework encapsulate all data
to generate the application.

o

-

Comparison of Reuse Techniques II

~

\

Frameworks are less abstract than
patterns
Include actual code
Specific to programming language
Specific to one application domain
Many patterns came from successful FWs

Patterns are described as micro-architecture

)

4 N

A Tiny Example: Calculators

interface Calculator

getValue(), compute(Operator o), clear(), undo()

Uses Command pattern, optionally Singleton

Remembers parentheses, can iterate on their tree
inferface Operator

Descendants: UnaryOperator, BinaryOperator

Concrete classes: Plus, Minus, Power, ...

Acts as Command class, supports Composites
interface VisualCalculator

Observer on Calculator, can display operators on buttons

can display current computation tree
k All are extendible, “Main” receives interfaces

-

Designing an OO Framework

~

Domain Knowledge

What applications is the framework for?

What is common to all of them?
Architecture

Biggest, most critical technical decisions

What is required besides classes?
Object-oriented design

Design Reuse: Patterns

Inversion of Control + Find right hooks

J

-

Framework as a Pyramid

o

Architectural
level

Design pattern
level

Component
repository

J

-

Domain Knowledge

\

a.k.a. Analysis or Modeling

Common "significant” decisions:
Major concepts of the modeled domain
Major operations
Use cases: How users do common tasks

For example, a calculator

Concepts: unary operator, binary operator,
current value, in-memory value, shift key

Operations: Clear, use operator, compute
Use case: Computing an average of 7 numbersj

-

~

Architecture

The set of significant decisions about the
structure of software, the division to
components and subsystems and their interfaces
and guidelines to composing them

Common "significant” decisions:
Programming language, operating system, hardware
Use of major external libraries or applications
Physical Distribution, processes and threads
Main Concepts: Kinds of modules and interfaces
Communication and synchronization between modules

-

~

For Example: JCA

Security Model

Java Cryptography Architecture (JCA, JCE)
Encryption, Digital Signatures, Key Management
Open for new algorithms, new implementations

Main Concepts

Provider: provides implementations for a subset of the
Java Security API, identified by name

Engine Classes: functionality for a type of crypto
behavior, such as Signature and KeyPairéenerator
Factory Methods: static methods in engine classes that
return instances of them for a given algorithm

k Performance and scalability J K Key Store: System identity scope /
4 N 4)
JCAIIL JCA IIT

_

Generating a public/private key pair:
KeyPairGenerator keygen =
KeyPairGenerator.getinstance(“DSA”, “MY_PROVIDER’);
keygen.initialize(keySize, new SecureRandom(userSeed));
KeyPair pair = keygen.generateKeyPair();
Cast to DSAKeyPairGenerator is required to initialize it
with algorithm-specific parameters (p,q.9)
Generating a signature:
Signature sha = Signature.getinstance("SHA-1);
PrivateKey priv = pair.getPrivate();
sha.initSign(priv);

byte[] sig = sha.sign(); j

Provider is optional in getInstance()

-

Although implementations will usually be non-
Java, they must be wrapped in Java classes
Statically, add lines to java.security text file
Security.providerName.n = com.acme.providerPackage
nis the preference order of the provider, 1 is highest
Providers can be managed dynamically too:
Class Security has addProvider(), getProvider()
Class Provider has getName(), getVersion(), getInfo()
Providers must write a "Master class”
Specifies which implementations are offered by it
There are standard names for known algorithms j

-

~

JCA IV: Summary

-

So what does the architecture answer?

Domain Knowledge: What behavior (engine classes) shoulg
be supported at all?

How are different algorithms and different
implementations defined and selected?

How should non-Java implementations be used?

How can an administrator configure a key store and a
trusted set of providers and implementations?

How can commercial companies sell Java-compatible
closed-source implementations of security features

Not only classes and interfaces

Persistent key store, config files, non-Java code
Practical, management and economic considerations j

4 N

Hooks

Hook = Hotspot = Plug-point

Points where the FW can be customized
Design issues requiring domain knowledge

How to find the right hooks?

Few or many hooks?

What should be the default behavior?
Implementation alternatives

Template Method

Strategy or Prototype

K Observer /

-

~

Framework Colors

-

White-Box Frameworks
Extended by inheritance from framework classes
Template Method, Builder, Bridge, Abstract Factory
Require intimate knowledge of framework structure
Black-Box Frameworks
Extended by composition with framework classes
Strategy, State, Visitor, Prototype, Observer
More flexible, slightly less efficient

Gray-box Frameworks

What usually happens in real life... J

4 N

Framework Colors IT

Frameworks tend to evolve to being black-box
AWT 1.0 had a white-box event model
Each visual component had an Aand/eEvent() method
Each frame inherited and overrode it
The method was a long switch statement
AWT 1.1 and Swing are black-box

Observer pattern: UL components publish events to
registered listeners

Why is black-box better?

Separation of concerns: better abstractions

K Important for (automatic) code generation /

-

~

Designing an OO Framework

Domain Knowledge
What applications is the framework for?
What is common to all of them?
Architecture
Biggest, most critical technical decisions
What is required besides classes?
Object-oriented design
Design Reuse: Patterns

Inversion of Control + Find right hooks j

4 N

Application Domains

System Infrastructure
Operating System Wrappers: MFC, MacApp
Communication Protocols: RMI
Database Access: ADO, JDO
Security: JCA, JSA

User Interfaces
SmallTalk-80 is the first widely used OOFW
Swing, Delphi, MFC, COM...

Integrated with development environments

-

~

Application Domains IT

-

Middleware / Object Request Brokers
Object Request Brokers: CORBA, COM+, EJB
Web Services: .NET, Sun One

Enterprise Applications
Enterprise = Critical to day-to-day work
Usually developed inside organizations
Notable Exception: IBM's San-Francisco
Telecomm, Manufacturing, Avionics, Finance,

Insurance, Healthcare, Warehouses, Billing...

)

-

Framework Strengths

\

Reuse, Reuse, Reusel
Design + Code
Extensibility
Enables the creation of reusable Components
Enforced Design Reuse
An "“Educational” Tool
Partitioning of Knowledge & Training
Technical vs. Applicative Specialization /

-

~

Framework Weaknesses

-

Development effort

Generic frameworks are harder to design and build

They are also hard to validate and debug
Maintenance

Does the FW or the app heed to change?

Interface changes requires updating all apps
Learning Curve

Unlike class libraries, you can't learn one class at a time
Integratibility of multiple frameworks

Efficiency

Lack of standards j

-

~

There's Big Money Involved

\

All "big players" develop and sell FWs
So you must use our language (Swing)
So you must use our operating system (MFC)
So you must use our development tool (Delphi)
So you must use our database (Oracle)
There's a component industry too
Companies that write and sell components

Frameworks are an economic necessity
Unwise to develop UT, DB, ORB alone today /

