
Frameworks and 
Components

Amit Shabtay

Frameworks

� “A reusable, semi-complete application 
that can be specialized to produce a 
custom application”

� “A set of cooperating abstract and 
concrete classes that makes a reusable 
design for a specific class of software”

� An Object-Oriented Reuse Technique
• Design Reuse + Code Reuse

Comparison of Reuse Techniques

� Components are less abstract than frameworks

• Frameworks are incomplete applications: They compile, 
but they don’t run

• Components are usually framework-specific
• Framework generates an application while components 
comprise the application.

• Framework encapsulate all data 
to generate the application.

Comparison of Reuse Techniques II

� Frameworks are less abstract than 
patterns
• Include actual code

• Specific to programming language

• Specific to one application domain

• Many patterns came from successful FWs

� Patterns are described as micro-architecture

A Tiny Example: Calculators

� interface Calculator
• getValue(), compute(Operator o), clear(), undo()
• Uses Command pattern, optionally Singleton
• Remembers parentheses, can iterate on their tree

� interface Operator
• Descendants: UnaryOperator, BinaryOperator
• Concrete classes: Plus, Minus, Power, …
• Acts as Command class, supports Composites

� interface VisualCalculator
• Observer on Calculator, can display operators on buttons, 
can display current computation tree

� All are extendible, “Main” receives interfaces

Designing an OO Framework

1. Domain Knowledge
• What applications is the framework for?

• What is common to all of them?

2. Architecture
• Biggest, most critical technical decisions

• What is required besides classes?

3. Object-oriented design
• Design Reuse: Patterns

• Inversion of Control + Find right hooks 



Framework as a Pyramid

� Architectural 
level

� Design pattern 
level

� Component 
repository 

Domain Knowledge

� a.k.a. Analysis or Modeling
� Common “significant” decisions:
• Major concepts of the modeled domain
• Major operations
• Use cases: How users do common tasks

� For example, a calculator
• Concepts: unary operator, binary operator, 
current value, in-memory value, shift key
• Operations: Clear, use operator, compute
• Use case: Computing an average of n numbers

Architecture

� The set of significant decisions about the 
structure of software, the division to 
components and subsystems and their interfaces, 
and guidelines to composing them

� Common “significant” decisions:
• Programming language, operating system, hardware
• Use of major external libraries or applications
• Physical Distribution, processes and threads
• Main Concepts: Kinds of modules and interfaces
• Communication and synchronization between modules
• Security Model
• Performance and scalability

For Example: JCA

� Java Cryptography Architecture (JCA, JCE)
• Encryption, Digital Signatures, Key Management

• Open for new algorithms, new implementations

� Main Concepts
• Provider: provides implementations for a subset of the 
Java Security API, identified by name

• Engine Classes: functionality for a type of crypto 
behavior, such as Signature and KeyPairGenerator

• Factory Methods: static methods in engine classes that 
return instances of them for a given algorithm

• Key Store: System identity scope

JCA II

� Generating a public/private key pair:
KeyPairGenerator keygen =

KeyPairGenerator.getInstance(“DSA”, “MY_PROVIDER”);

keygen.initialize(keySize, new SecureRandom(userSeed));

KeyPair pair = keygen.generateKeyPair();

• Cast to DSAKeyPairGenerator is required to initialize it 
with algorithm-specific parameters (p,q,g)

� Generating a signature:
Signature sha = Signature.getInstance(“SHA-1”);

PrivateKey priv = pair.getPrivate();

sha.initSign(priv);

byte[] sig = sha.sign();

• Provider is optional in getInstance()

JCA III

� Although implementations will usually be non-
Java, they must be wrapped in Java classes

� Statically, add lines to java.security text file
• Security.providerName.n = com.acme.providerPackage

• n is the preference order of the provider, 1 is highest

� Providers can be managed dynamically too:
• Class Security has addProvider(), getProvider()

• Class Provider has getName(), getVersion(), getInfo()

� Providers must write a “Master class”
• Specifies which implementations are offered by it

• There are standard names for known algorithms



JCA IV: Summary

� So what does the architecture answer?
• Domain Knowledge: What behavior (engine classes) should 
be supported at all?

• How are different algorithms and different 
implementations defined and selected?

• How should non-Java implementations be used?
• How can an administrator configure a key store and a 
trusted set of providers and implementations?

• How can commercial companies sell Java-compatible 
closed-source implementations of security features

� Not only classes and interfaces
• Persistent key store, config files, non-Java code
• Practical, management and economic considerations

Hooks

� Hook = Hotspot = Plug-point
• Points where the FW can be customized

� Design issues requiring domain knowledge
• How to find the right hooks?

• Few or many hooks?

• What should be the default behavior?

� Implementation alternatives
• Template Method

• Strategy or Prototype

• Observer

Framework Colors

� White-Box Frameworks
• Extended by inheritance from framework classes

• Template Method, Builder, Bridge, Abstract Factory

• Require intimate knowledge of framework structure

� Black-Box Frameworks
• Extended by composition with framework classes

• Strategy, State, Visitor, Prototype, Observer

• More flexible, slightly less efficient

� Gray-box Frameworks
• What usually happens in real life…

Framework Colors II

� Frameworks tend to evolve to being black-box
� AWT 1.0 had a white-box event model
• Each visual component had an handleEvent() method
• Each frame inherited and overrode it
• The method was a long switch statement

� AWT 1.1 and Swing are black-box
• Observer pattern: UI components publish events to 
registered listeners

� Why is black-box better?
• Separation of concerns: better abstractions
• Important for (automatic) code generation

Designing an OO Framework

1. Domain Knowledge
• What applications is the framework for?

• What is common to all of them?

2. Architecture
• Biggest, most critical technical decisions

• What is required besides classes?

3. Object-oriented design
• Design Reuse: Patterns

• Inversion of Control + Find right hooks 

Application Domains

� System Infrastructure
• Operating System Wrappers: MFC, MacApp
• Communication Protocols: RMI
• Database Access: ADO, JDO
• Security: JCA, JSA

� User Interfaces
• SmallTalk-80 is the first widely used OOFW
• Swing, Delphi, MFC, COM…
• Integrated with development environments



Application Domains II

� Middleware / Object Request Brokers
• Object Request Brokers: CORBA, COM+, EJB
•Web Services: .NET, Sun One

� Enterprise Applications
• Enterprise = Critical to day-to-day work
• Usually developed inside organizations
• Notable Exception: IBM’s San-Francisco
• Telecomm, Manufacturing, Avionics, Finance, 
Insurance, Healthcare, Warehouses, Billing…

Framework Strengths

� Reuse, Reuse, Reuse!
• Design + Code

� Extensibility
• Enables the creation of reusable Components

� Enforced Design Reuse
• An “Educational” Tool

� Partitioning of Knowledge & Training
• Technical vs. Applicative Specialization

Framework Weaknesses

� Development effort
• Generic frameworks are harder to design and build
• They are also hard to validate and debug

� Maintenance
• Does the FW or the app need to change?
• Interface changes requires updating all apps

� Learning Curve
• Unlike class libraries, you can’t learn one class at a time

� Integratibility of multiple frameworks
� Efficiency
� Lack of standards

There’s Big Money Involved

� All “big players” develop and sell FWs
• So you must use our language (Swing)
• So you must use our operating system (MFC)
• So you must use our development tool (Delphi)
• So you must use our database (Oracle)

� There’s a component industry too
• Companies that write and sell components

� Frameworks are an economic necessity
• Unwise to develop UI, DB, ORB alone today


