Dynamic Proxies

Amit Shabtay

-

Dynamic Proxies

_

Main idea:
The proxy wraps objects and adds
functionality.
All proxy methods invocations are
dispatched to the invoke(...) method of the
instance invocation handler.
These methods will be handled by the
proxy instance.

)

March 3rd, 2004 Object Oriented Design Course 2

-

Dynamic Proxies Scheme

The proxy also receives
an invocation handler

Calling a method

Proxy instance

foo() calls invoke() | Before foo...
gr!‘;a_cfe e, Create 0 ()7‘ Invoke foo()
ect Object after foo...

Mast implement
interface(s)

_

The heart is the

-

~

Dynamic Proxies

invocation handler

)

March 3rd, 2004 Object Oriented Design Course 3

_

Support for creating classes at runtime
Each such class implements interface(s)

Every method call to the class will be
delegated to a handler, using reflection

The created class is a proxy for its handler

Applications

Aspect-Oriented Programming: standard
error handling, log & debug for all objects

Creating dynamic event handlers

)

March 3rd, 2004 Object Oriented Design Course 4

-

~

Invocation Handlers

_

Start by defining the handler:
interface
java.lang.reflect.InvocationHandler
With a single method:
Object invoke (

Object proxy,
Method method,
Object[] args)

The "real” call made: proxy.method(args)

// return value of call
// call's target

// the method called
// method's arguments

-

~

Creating a Proxy Class

Simplest invoke(): method.invoke(proxy,args) J

March 3rd, 2004 Object Oriented Design Course 5

Define the proxy interface:

interface Foo { Object bar (Object obj); }
Use java.lang.reflect.Proxy static methods
to create the proxy class:

Class proxyClass = Proxy.getProxyClass (

Foo.class.getClassLoader (), new
Class[] { Foo.class });

First argument - the new class's class loader
2nd argument - list of implemented interfaces

The expression Cclass for a class C is the static
version of ¢ _obj.getClass()

March 3rd, 2004 Object Oriented Design Course 6

~

Creating a Proxy Instance

_

A proxy class has one constructor which takes one
argument - the invocation handler

Given a proxy class, find and invoke this
constructor:
Foo foo = (Foo)proxyClass.
getConstructor(new Class[] { InvocationHandler.class }).
newInstance(new Object[] { hew MyInvocationHandler() }):

)

March 3rd, 2004 Object Oriented Design Course 7

_

Class Proxy provides a shortcut:

Foo f = (Foo) Proxy.newProxyInstance(
Foo.class.getClassLoader(),
new Class[]{ Foo.class },
new MyInvocationHandler());

Note that all members of Class[] should be
interfaces only.

)

March 3rd, 2004 Object Oriented Design Course 8

-

~

A Few More Details T

We ignored a bunch of exceptions
IllegalArgumentException if proxy class can't exist

Undeclared ThrowableException if the handler throws
an exception the interface didn't declare

ClassCastException if return value type is wrong
Invocation TargetException wraps checked exceptions
A proxy class's name is undefined
But begins with Proxy$
The syntax is very unreadable!
Right, but it can be encapsulated inside the handler

)

March 3rd, 2004 Object Oriented Design Course 9

-

~

A Few More Details IT

_

Primitive types are wrapped by Integer,
Boolean, and so on for argument

This is also true for the return values.

If null is returned for a primitive type,
then a NullPointerException will be thrown
by the method invocation.

)

March 3rd, 2004 Object Oriented Design Course 10

-

~

A Debugging Example

We'll write an extremely generic class, that
can wrap any object and print a debug
message before and after every method call
to it

Instead of a public constructor, it will have a
static factory method to encapsulate the
proxy instance creation

It will use InvocationTargetException to be

exception-neutral to the debugged object J

March 3rd, 2004 Object Oriented Design Course 1"

-

~

A Debugging Example II

_

The class's definition and construction:

public class DebugProxy
implements java.lang.reflect.InvocationHandler {

private Object obj;
public static Object newInstance(Object obj) {
return java.lang.reflect.Proxy.newProxyInstance(
obj.getClass().getClassLoader(),
obj.getClass().getInterfaces(),
new DebugProxy(obj)); }
rivate DebugProxy(Object obj
P ‘rhis.gbj = Zgj; }‘I A

/

March 3rd, 2004 Object Oriented Design Course 12

-

A Debugging Example ITI

_

The invoke() method:

public Object invoke(Obg’)ecT proxy, Method m,
Object[] args) throws Throwable {

Object result;
try {
System.out.println("before method " + m.getName()):
result = m.invoke(obj, args);
} catch (InvocationTargetException e) {
throw e.get TargetException();
} catch (Exception e) {
throw new RuntimeException("unexpected:” +
e.getMessage());
} finally {
System.out.printin("after method " + m.getName());

}
return result; }

March 3rd, 2004 Object Oriented Design Course 13

-

A Debugging Example IV

_

Now that the handler is written, it's very
simple to use. Just define an interface:
interface Foo { Object bar(Object o): }

class FooImpl implements Foo { ... }

And wrap it with a DebugProxy:

Foo foo = (Foo)DebugProxy.newInstance(new FooImpl());
This is not much different than using any
proxy or decorator

Just much, much slower

March 3rd, 2004 Object Oriented Design Course 14

-

Dynamic Proxies: Summary

_

Applications similar to above example:
Log every exception to a file and re-throw it
Apply an additional security policy

Other kinds of applications exist as well
Dynamic event listeners in Swing
In general, being an observer to many different
objects or interfaces at once

It's a relatively new feature - from JDK 1.3
There may be other future applications

)

March 3rd, 2004 Object Oriented Design Course 15

-

More Information

_

March 3rd, 2004 Object Oriented Design Course 16

