
Dynamic Proxies

Amit Shabtay

March 3rd, 2004 Object Oriented Design Course 2

Dynamic Proxies

� Main idea:
• The proxy wraps objects and adds

functionality.

• All proxy methods invocations are
dispatched to the invoke(...) method of the
instance invocation handler.

• These methods will be handled by the
proxy instance.

March 3rd, 2004 Object Oriented Design Course 3

Dynamic Proxies Scheme

Create
Object

Proxy instance

Create
Object

The proxy also receives
an invocation handler

Wrap
Calling a method

foo() calls invoke() Before foo...
Invoke foo()
after foo...

Mast implement
interface(s)

The heart is the
invocation handler

March 3rd, 2004 Object Oriented Design Course 4

Dynamic Proxies

� Support for creating classes at runtime
• Each such class implements interface(s)
• Every method call to the class will be

delegated to a handler, using reflection
• The created class is a proxy for its handler

� Applications
• Aspect-Oriented Programming: standard

error handling, log & debug for all objects
• Creating dynamic event handlers

March 3rd, 2004 Object Oriented Design Course 5

Invocation Handlers

� Start by defining the handler:
•interface

java.lang.reflect.InvocationHandler

• With a single method:

Object invoke(// return value of call
Object proxy, // call’s target
Method method, // the method called
Object[] args) // method’s arguments

� The “real” call made: proxy.method(args)
• Simplest invoke(): method.invoke(proxy,args)

March 3rd, 2004 Object Oriented Design Course 6

Creating a Proxy Class

� Define the proxy interface:
interface Foo { Object bar(Object obj); }

� Use java.lang.reflect.Proxy static methods
to create the proxy class:
Class proxyClass = Proxy.getProxyClass(

Foo.class.getClassLoader(), new

Class[] { Foo.class });

� First argument – the new class’s class loader
� 2nd argument – list of implemented interfaces
� The expression C.class for a class C is the static

version of C_obj.getClass()

March 3rd, 2004 Object Oriented Design Course 7

Creating a Proxy Instance

� A proxy class has one constructor which takes one
argument – the invocation handler

� Given a proxy class, find and invoke this
constructor:

Foo foo = (Foo)proxyClass.

getConstructor(new Class[] { InvocationHandler.class }).

newInstance(new Object[] { new MyInvocationHandler() });

March 3rd, 2004 Object Oriented Design Course 8

� Class Proxy provides a shortcut:
Foo f = (Foo) Proxy.newProxyInstance(

Foo.class.getClassLoader(),
new Class[] { Foo.class },
new MyInvocationHandler());

� Note that all members of Class[] should be
interfaces only.

March 3rd, 2004 Object Oriented Design Course 9

A Few More Details I

� We ignored a bunch of exceptions
• IllegalArgumentException if proxy class can’t exist

• UndeclaredThrowableException if the handler throws
an exception the interface didn’t declare

• ClassCastException if return value type is wrong

• InvocationTargetException wraps checked exceptions

� A proxy class’s name is undefined
• But begins with Proxy$

� The syntax is very unreadable!
• Right, but it can be encapsulated inside the handler

March 3rd, 2004 Object Oriented Design Course 10

A Few More Details II

� Primitive types are wrapped by Integer,
Boolean, and so on for argument

� This is also true for the return values.

� If null is returned for a primitive type,
then a NullPointerException will be thrown
by the method invocation.

March 3rd, 2004 Object Oriented Design Course 11

A Debugging Example

� We’ll write an extremely generic class, that
can wrap any object and print a debug
message before and after every method call
to it

� Instead of a public constructor, it will have a
static factory method to encapsulate the
proxy instance creation

� It will use InvocationTargetException to be
exception-neutral to the debugged object

March 3rd, 2004 Object Oriented Design Course 12

A Debugging Example II

� The class’s definition and construction:
public class DebugProxy
implements java.lang.reflect.InvocationHandler {

private Object obj;
public static Object newInstance(Object obj) {

return java.lang.reflect.Proxy.newProxyInstance(
obj.getClass().getClassLoader(),
obj.getClass().getInterfaces(),
new DebugProxy(obj)); }

private DebugProxy(Object obj) {
this.obj = obj; }

March 3rd, 2004 Object Oriented Design Course 13

A Debugging Example III
� The invoke() method:

public Object invoke(Object proxy, Method m,
Object[] args) throws Throwable {

Object result;
try {
System.out.println("before method " + m.getName());
result = m.invoke(obj, args);

} catch (InvocationTargetException e) {
throw e.getTargetException();

} catch (Exception e) {
throw new RuntimeException("unexpected:” +
e.getMessage());

} finally {
System.out.println("after method " + m.getName());

}
return result; }

March 3rd, 2004 Object Oriented Design Course 14

A Debugging Example IV

� Now that the handler is written, it’s very
simple to use. Just define an interface:
interface Foo { Object bar(Object o); }

class FooImpl implements Foo { … }

� And wrap it with a DebugProxy:
Foo foo = (Foo)DebugProxy.newInstance(new FooImpl());

� This is not much different than using any
proxy or decorator

� Just much, much slower

March 3rd, 2004 Object Oriented Design Course 15

Dynamic Proxies: Summary

� Applications similar to above example:
• Log every exception to a file and re-throw it

• Apply an additional security policy

� Other kinds of applications exist as well
• Dynamic event listeners in Swing

• In general, being an observer to many different
objects or interfaces at once

� It’s a relatively new feature – from JDK 1.3
• There may be other future applications

March 3rd, 2004 Object Oriented Design Course 16

More Information

� http://java.sun.com/j2se/1.4.2/docs/
guide/reflection/proxy.html

� http://java.sun.com/j2se/1.4.2/docs/
api/java/lang/reflect/Proxy.html

