Design Patterns

David Talby

-

This Lecture

_

Re-routing method calls
Chain of Responsibility

Coding partial algorithms
Template Method

The Singleton Pattern

Patterns Summary

)

-

16. Chain of Responsibility

~

Decouple the sender and receiver of a
message, and give more than one
receiver a chance to handle it

For example, a context-sensitive help
system returns help on the object
currently in focus

Or its parent if it has no help
k Recursively

-

The Requirements

~

o

Allow calling for context-sensitive help from
any graphical object

If the object can’t handle the request (it
doesn’t include help),

it knows where to forward it

The set of possible handlers is defined and
changed dynamically

-

The Solution

Define a HelpHandler base class:

class HelpHandler
{
handleHelp () {
if (successor != NULL)
successor—>handleHelp () ;
}

HelpHandler* successor = NULL;

K }

-

~

The Solution 1l

)

o

Class Graphic inherits HelpHandler
Graphic descendants that have help to
show redefine handleHelp:
handleHelp() {
ShowMessage (“Buy upgrade”) ;
}
Either the root Graphic object or
HelpHandler itself can redefine handleHelp
to show a default /

-

The UML

\

SUCCESS0r

T

HandleRequasi(}

ConcreteHandler1 ConcreteHandler2

HandieRequest() HandleRequest()

-

~

The Fine Print

_

Receipt isn’t guaranteed
Usually parents initialize the successor of
an item upon creation

To themselves or their successor

The kind of request doesn’t have to be
hard-coded:

class Handler {

handle (Request* request) {
// rest as before 4//

-

Known Uses

_

Context-sensitive help

Messages in a multi-protocol network
service

Handling user events in a user interface
framework

Updating contained objects/queries in a
displayed document

)

-

~

19. Template Method

o

Define the skeleton of an algorithm and let
subclasses complete it

For example, a generic binary tree class or
sort algorithm cannot be fully implemented
until a comparison operator is defined

How do we implement everything except
the missing part?

)

-

The Requirements

~

Code once all parts of an algorithm that
can be reused

Let clients fill in the gaps

-

~

The Solution

o

Code the skeleton in a class where only the
missing parts are abstract:

class BinaryTree<G>
{
void add(G* item) {
if (compare(item, root))
// usual logic
}
int compare(G* gl, G* g2) = 0;

} /

-

~

The Solution 1l

_

Useful for defining comparable objects in
general:

class Comparable
{
operator < (Comparable x) = 0;
operator >=(Comparable x) {
return ! (this < x);
}
operator > (Comparable x) {
return ! (this < x) &&
! (this == x);

) -/

4 N

The Solution 111

A very common pattern:

class HelpHandler
{
handleHelp () {
if (successor != NULL)
successor->handleHelp();
}

HelpHandler* successor = NULL;

0

-

The UML

_

AbstractClass

=]

TemplateMethod(} O==f======="==== PrimitiveOperation1 ()
PrimifiveOperation ()
PrimitiveOperalionZ()

:

ConcreteClass

PhimitiveOperation2()

PrimitiveCperation ()
PrimitiveOperation2()

4 N

The Fine Print

The template method is public, but the ones
it calls should be protected

The called methods can be declared with an
empty implementation if this is a common
default

This template can be replaced by passing
the missing function as a template parameter

Java sometimes requires more coding due to

k single inheritance /

-

~

Known Uses

So fundamental that it can be found almost
anywhere

Factory Method is a kind of template
method specialized for creation

4 N

20. Singleton

Ensure that only one instance of a class
exists, and provide a global access point to it
For example, ensure that there’s one
WindowManager, FileManager or PrintSpooler
object in the system

Desirable to encapsulate the instance and
responsibility for its creation in the class

- /

-

The Solution

~

_

0O-0 languages support methods shared by all
objects of a class

static in C++ and Java
class methods in SmallTalk, Delphi

The singleton class has a reference to its single
instance

The instance has a getter method which initializes it

on the first request

The class’s constructor is protected to prevent
creating other instances

-

The Solution

)

_

class Spooler {

public:
static Spooler* instance() {
if (_instance == NULL)

_instance = new Spooler();
return _instance;

}

protected:
Spooler() { ... }
private:
static Spooler* _instance = 0; /

-

The UML

~

_

Singleton

stafic Instance() OF--q-----=----9 refum uniguelnstance
SingletonOperation()

GetSingletonDatal}

static uniquelnstance
singlatonData

-

~

The Fine Print

o

Passing arguments for creation can be done
with a create(...) method

Making the constructor public makes it possible
to create other instance except the “main” one

Not a recommended style
instance() can manage concurrent access or
manage a list of instances
Access to singletons is often a bottleneck in
concurrent systems /

-

Known Uses

Every system has singletons!

WindowManager, PrinterManager,
FileManager, SecurityManager, ...

Class Application in a framework
Log and error reporting classes
With other design patterns

-

~

21. Bridge

Separate an abstraction from its
implementations

For example, a program must run on several
platforms

An Entire Hierarchy of Interfaces must be
supported on each platform

Using Abstract Factory alone would result in
a class per platform per interface — too many

classes! /

-

~

22. Interpreter

_

Given a language, define a data structure
for representing sentences along with an
interpreter for it

For example, a program must interpret
code or form layout, or support search with
regular expression and logical criteria

Not covered here

)

-

~

23. Momento

_

Without violating encapsulation, store an
object’s internal state so that it can be
restored later
For example, a program must store a
simulation’s data structures before a random
or approximation action, and undo must be
supported

/

Not covered here

-

~

Patterns Summary

0O-0O concepts are simple
Objects, Classes, Interfaces
Inheritance vs. Composition

Open-Closed Principle
Single Choice Principle
Pattern of patterns

-

The Benefits of Patterns

~

o

Finding the right classes
Finding them faster
Common design jargon
Consistent format
Coded infrastructures

and above all:

Pattern = Documented Experience /

