
Design Patterns

David Talby

This Lecture

� Re-routing method calls

• Chain of Responsibility

� Coding partial algorithms

• Template Method

� The Singleton Pattern

� Patterns Summary

16. Chain of Responsibility

� Decouple the sender and receiver of a 

message, and give more than one 

receiver a chance to handle it

� For example, a context-sensitive help 

system returns help on the object 

currently in focus

� Or its parent if it has no help

� Recursively

The Requirements

� Allow calling for context-sensitive help from 

any graphical object

� If the object can’t handle the request (it 

doesn’t include help),

it knows where to forward it

� The set of possible handlers is defined and 

changed dynamically

The Solution

� Define a HelpHandler base class:

class HelpHandler

{

handleHelp() {

if (successor != NULL)

successor->handleHelp();

}

HelpHandler* successor = NULL;

}

The Solution II

� Class Graphic inherits HelpHandler

� Graphic descendants that have help to 

show redefine handleHelp:

handleHelp() {

ShowMessage(“Buy upgrade”);

}

� Either the root Graphic object or 

HelpHandler itself can redefine handleHelp

to show a default



The UML The Fine Print

� Receipt isn’t guaranteed

� Usually parents initialize the successor of

an item upon creation

• To themselves or their successor

� The kind of request doesn’t have to be

hard-coded:
class Handler {

handle(Request* request) {

// rest as before

Known Uses

� Context-sensitive help

� Messages in a multi-protocol network 

service

� Handling user events in a user interface 

framework

� Updating contained objects/queries in a 

displayed document

19. Template Method

� Define the skeleton of an algorithm and let 

subclasses complete it

� For example, a generic binary tree class or 

sort algorithm cannot be fully implemented 

until a comparison operator is defined

� How do we implement everything except 

the missing part?

The Requirements

� Code once all parts of an algorithm that 

can be reused

� Let clients fill in the gaps

The Solution

� Code the skeleton in a class where only the 

missing parts are abstract:

class BinaryTree<G>

{

void add(G* item) {

if (compare(item, root))

// usual logic

}

int compare(G* g1, G* g2) = 0;

}



The Solution II

� Useful for defining comparable objects in 

general:
class Comparable
{

operator <(Comparable x) = 0;
operator >=(Comparable x) {

return !(this < x);
}
operator >(Comparable x) {

return !(this < x) &&
!(this == x);

}
}

The Solution III

� A very common pattern:

class HelpHandler

{

handleHelp() {

if (successor != NULL)

successor->handleHelp();

}

HelpHandler* successor = NULL;

}

The UML The Fine Print

� The template method is public, but the ones 

it calls should be protected

� The called methods can be declared with an 

empty implementation if this is a common 

default

� This template can be replaced by passing 

the missing function as a template parameter

� Java sometimes requires more coding due to 

single inheritance

Known Uses

� So fundamental that it can be found almost 

anywhere

� Factory Method is a kind of template 

method specialized for creation

20. Singleton

� Ensure that only one instance of a class 

exists, and provide a global access point to it

� For example, ensure that there’s one 

WindowManager, FileManager or PrintSpooler

object in the system

� Desirable to encapsulate the instance and 

responsibility for its creation in the class



The Solution

� O-O languages support methods shared by all 

objects of a class

• static in C++ and Java

• class methods in SmallTalk, Delphi

� The singleton class has a reference to its single 

instance

� The instance has a getter method which initializes it 

on the first request

� The class’s constructor is protected to prevent 

creating other instances

The Solution

class Spooler {

public:
static Spooler* instance() {

if (_instance == NULL)

_instance = new Spooler();

return _instance;

}

protected:

Spooler() { ... }

private:

static Spooler* _instance = 0;
}

The UML The Fine Print

� Passing arguments for creation can be done 

with a create(...) method

� Making the constructor public makes it possible 

to create other instance except the “main” one

• Not a recommended style

� instance() can manage concurrent access or 

manage a list of instances

� Access to singletons is often a bottleneck in 

concurrent systems

Known Uses

� Every system has singletons!

� WindowManager, PrinterManager, 

FileManager, SecurityManager, ...

� Class Application in a framework

� Log and error reporting classes

� With other design patterns

21. Bridge

� Separate an abstraction from its 

implementations

� For example, a program must run on several 

platforms

� An Entire Hierarchy of Interfaces must be 

supported on each platform

� Using Abstract Factory alone would result in 

a class per platform per interface – too many 

classes!



22. Interpreter

� Given a language, define a data structure 

for representing sentences along with an 

interpreter for it

� For example, a program must interpret 

code or form layout, or support search with 

regular expression and logical criteria

� Not covered here

23. Momento

� Without violating encapsulation, store an 

object’s internal state so that it can be 

restored later

� For example, a program must store a 

simulation’s data structures before a random 

or approximation action, and undo must be 

supported

� Not covered here

Patterns Summary

� O-O concepts are simple

• Objects, Classes, Interfaces

• Inheritance vs. Composition

� Open-Closed Principle

� Single Choice Principle

� Pattern of patterns

The Benefits of Patterns

� Finding the right classes

� Finding them faster

� Common design jargon

� Consistent format

� Coded infrastructures

� and above all:

Pattern = Documented Experience


