
Generic Programming

Amit Shabtay

March 3rd, 2004 Object Oriented Design Course 2

The Problem

� Assume we have a nice Stack implementation.
• Our stack receives only Objects

� The problem:
• We need different stacks for int, String and
Method.

• We don’t want the problems of:

Stack.add(“clearly not a method”);

…

Method m = (Method)stack.pop();

March 3rd, 2004 Object Oriented Design Course 3

Solution (?)

� Let’s create IntStack , StringStack
and MethodStack.

� All of them will rely on the original
Stack as internal implementation.

� Are there any problems?
• A lot of code duplication

• It’s hard to add new types

March 3rd, 2004 Object Oriented Design Course 4

Another Problem

� We want to use a swap function between
two ints.

void swap(int& a, int&b) {

int temp = a; a = b; b = temp;

}

� What about swap(double&, double&) and
swap(Method&, Method&) ?

March 3rd, 2004 Object Oriented Design Course 5

The Actual Solution

� Generic programming.
(The ability to have type parameters on your type)

� Write the code once, and worry about
the type at compile time
• The code is suitable to all types

• Easy to add types later

• No code duplication

• Demands from types

March 3rd, 2004 Object Oriented Design Course 6

So How Do We Do It?

swap<Class T>(T& a, T& b) {

T temp = a;

a = b;

b = temp;

}

� Looks simple?

March 3rd, 2004 Object Oriented Design Course 7

Java 1.4.2 vs. 1.5 and Autoboxing

� ArrayList list = new ArrayList(); //1.4.2
list.add(0, new Integer(42));
int total = ((Integer)list.get(0)).intValue();

� ArrayList<Integer> list = new ArrayList<Integer>();//1.5
list.add(0, new Integer(42));
int total = list.get(0).intValue();

� ArrayList<Integer> list =
new ArrayList<Integer>(); //1.5 auto-boxing

list.add(0, 42);
int total = list.get(0);

March 3rd, 2004 Object Oriented Design Course 8

Uses

� Containers
• list

• set

• vector

• map

� Algorithms
• sort

• search

• copy

March 3rd, 2004 Object Oriented Design Course 9

C++ Templates

� The most known use of generic
programming

� STL – Standard Template Library
• Containers

• vector, set, hash_map

• Algorithms
• for_each, swap, binary_search, min, max

March 3rd, 2004 Object Oriented Design Course 10

What about Java?

� Until now Java had large collection set
• Set, List, Map, Iterator, and more

• sort(), search(), fill(), copy(), max(), min()

� One major problem – the collections are
not type safe
• No problem to do

Map.put(“key”, “4”);

Integer i = (Integer)map.get(“key”);

March 3rd, 2004 Object Oriented Design Course 11

Java Generics

� Added as one of the new features of
Java 1.5 (“Tiger”)

� Done in the compiler only
• Converts
String s = vector<String>.get(3) to
String s = (String)vector.get(3)

March 3rd, 2004 Object Oriented Design Course 12

How to Use Generics ?

List<Integer> myIntList = new LinkedList<Integer>();

myIntList.add(new Integer(0));

Integer x = myIntList.iterator().next();

March 3rd, 2004 Object Oriented Design Course 13

And What About the Collection ?

public interface List<E> {

void add(E x);

Iterator<E> iterator();

}

public interface Iterator<E> {

E next();

boolean hasNext();

}

March 3rd, 2004 Object Oriented Design Course 14

Subtyping

List<String> ls =

new ArrayList<String>();

List<Object> lo = ls;

lo.add(new Object());
//Attempts to assign an Object to a String!

String s = ls.get(0);

//Compiler will not permit

March 3rd, 2004 Object Oriented Design Course 15

Subtyping (cont.)

� Foo is subtype of Bar if:
• Foo extends Bar

• Foo implements Bar

� C is a generic container C<E>

� Results that C<Foo> is not subtype of
C<Bar>

March 3rd, 2004 Object Oriented Design Course 16

Generic Algorithms (1)

� How to print entire Collection?

� Do we have to use Collection<Object> ?

� Use wildcard

void printCollection(Collection<?> c){

for (Object e : c) {

System.out.println(e);

}

}

March 3rd, 2004 Object Oriented Design Course 17

Generic Algorithms (2)

� What happens when we want to use specific
method?

public void

drawAll(List<Shape> shapes) {

for (Shape s: shapes) {

s.draw(this);

}

}

� What about subtyping?
• List<Circle>

March 3rd, 2004 Object Oriented Design Course 18

Generic Algorithms (3)

� The solution
public void

drawAll(List<? extends Shape> shapes)

{…} //Called bounded wildcard.

March 3rd, 2004 Object Oriented Design Course 19

More About Wildcards

Collection<?> c = new ArrayList<String>();

c.add(new Object());

public void addRectangle(List<? extends
Shape> shapes) {

shapes.add(0, new Rectangle());

}

March 3rd, 2004 Object Oriented Design Course 20

Super vs. Extends

� The syntax ? super T denotes an unknown
type that is a supertype of T.

� It is the dual of the ? extends T to denote an
unknown type that is a subtype of T.

March 3rd, 2004 Object Oriented Design Course 21

Collection<Object>
vs Collection<?> vs Collection

� Collection<Object> is a collection of
heterogeneous instances of potentially no
common type

� Collection<?> is a collection of homogeneous
instances of some common types – we just
don’t know what that common type is

� Collection is a raw type – we should avoid it

March 3rd, 2004 Object Oriented Design Course 22

Many More Features

� Java Generics are one of the important
language features of Java 1.5

� More information in
http://java.sun.com/developer/technic
alArticles/J2SE/generics/

� J2SE 5.0 in a Nutshell
http://java.sun.com/developer/technic
alArticles/releases/j2se15/

March 3rd, 2004 Object Oriented Design Course 23

Java Generics Summary

� Java Generics use a technique known as
type erasure which is the process of
translating or rewriting code that uses
generics into non-generic code

� all information between angle brackets
is erased.

March 3rd, 2004 Object Oriented Design Course 24

C# Generics

� Very similar to Java

� public struct Point<T>
{ public T X; public T Y; }

� Point<int> point;
point.X = 1; point.Y = 2;

� See http://msdn.microsoft.com/
for more information

March 3rd, 2004 Object Oriented Design Course 25

Java Generics vs. C++ Templates vs. C#

� Java borrowed C++ syntax and made it
mean something very different

� Type erasure vs. code generation in
C++.

� Evaluated in compile time in java and
c++, run time in c#

