Generic Programming

Amit Shabtay

/

~

The Problem

Assume we have a nice Stack implementation.
Our stack receives only Objects
The problem:

We need different stacks for int, String and
Method.

We don't want the problems of:
Stack.add(“clearly not a method”);

Method m = (Method)stack.pop();

/

March 3rd, 2004 Object Oriented Design Course 2

/

\

Solution (?)

o

Let's create IntStack , StringStack
and MethodStack.
All of them will rely on the original
Stack as internal implementation.
Are there any problems?

A lot of code duplication

It's hard to add new types

March 3rd, 2004 Object Oriented Design Course 3

/

~

Another Problem

We want to use a swap function between
two ints.

void swap(int& a, inté&b) {
int temp = a; a = b; b = temp;
}

What about swap(double&, doubled) and
swap(Method&, Method&) ?

March 3rd, 2004 Object Oriented Design Course 4

-

The Actual Solution

Generic programming.
(The ability to have type parameters on your type)
Write the code once, and worry about
the type at compile time

The code is suitable to all types

Easy to add types later

No code duplication

Demands from types

March 3rd, 2004 Object Oriented Design Course 5

~

So How Do We Do It?

o

swap<Class T>(T& a, T& b) {

T temp = a:
a=b:;
b = temp:

}

Looks simple?

March 3rd, 2004 Object Oriented Design Course 6




///’

‘\\\

Java 1.4.2 vs. 1.5 and Autoboxing

.

ArrayList list = new ArrayList(); //1.4.2
list.add(0, new Integer(42)):
int total = ((Integer)list.get(0)).intValue();

ArraylList<Integer> list = new ArraylList<Integer>();//1.5
list.add(0, new Integer(42));
int total = list.get(0).intValue();

ArrayList<Integer> list =
new ArrayList<Integer>(); //1.5 auto-boxing
list.add(0, 42);

int total = list.get(0);

)

March 3rd, 2004 Object Oriented Design Course 7

///’

Uses

.

Containers
list
set
vector
map

Algorithms
sort
search

copy

j

March 3rd, 2004 Object Oriented Design Course 8

///’

‘\\\

C++ Templates

o

The most known use of generic
programming
STL - Standard Template Library

Containers
* vector, set, hash_map
Algorithms
* for_each, swap, binary_search, min, max

)

March 3rd, 2004 Object Oriented Design Course 9

///’

~

What about Java?

o

Until now Java had large collection set
Set, List, Map, Iterator, and more
sort(), search(), fill(), copy(), max(), min()
One major problem - the collections are
not type safe
No problem to do
Map.put (“key”, “4");
Integer i = (Integer)map.get (“key”);

J

March 3rd, 2004 Object Oriented Design Course 10

-

~

Java Generics

Added as one of the new features of
Java 1.5 ("Tiger")

Done in the compiler only

Converts
String s = vector<String>.get(3) to
String s = (String)vector.get (3)

)

March 3rd, 2004 Object Oriented Design Course 11

-

~

How to Use Generics ?

o

List<Integer> myIntList = new LinkedList<Integers();
myIntList.add(new Integer(0));

Integer x = myIntList.iterator().next();

March 3rd, 2004 Object Oriented Design Course 12




And What About the Collection ?

‘\\

.

public interface List<E> {
void add(E x);
Iterator<E> iterator();

}

public interface Iterator<E> {
E next ();
boolean hasNext () ;

}

March 3rd, 2004 Object Oriented Design Course 13

Subtyping

.

List<String> Is =

new ArrayList<String>();
List<Object> lo = |s; //Compiler will not permit
lo.add(new Object());
//Attempts to assigh an Object to a String!
String s = Is.get(0);

j

March 3rd, 2004 Object Oriented Design Course 14

//’

Subtyping (cont.)

Foo is subtype of Bar if:
Foo extends Bar
Foo implements Bar
C is a generic container C<E>

Results that C<Foo> is not subtype of
C<Bar>

)

March 3rd, 2004 Object Oriented Design Course 15

//’

~

Generic Algorithms (1)

o

How to print entire Collection?
Do we have to use Collection<Object> ?
Use wildcard

void printCollection(Collection<?> c) {
for (Object e c) {
System.out .println(e);

}

J

March 3rd, 2004 Object Oriented Design Course 16

Generic Algorithms (2)

~

o

What happens when we want to use specific
method?

public void
drawAll (List<Shape> shapes) {
for (Shape s: shapes) {
s.draw(this);
}
}

What about subtyping?
List<Circle>

March 3rd, 2004 Object Oriented Design Course 17

-

~

Generic Algorithms (3)

o

The solution
public void

drawAll (List<? extends Shape> shapes)
{..} //Called bounded wildcard.

J

March 3rd, 2004 Object Oriented Design Course 18




\

More About Wildcards

Collection<?> ¢ = new ArrayList<String>();
c.add(new Object()):

.

public void addRectangle(List<? extends
Shape> shapes) {
shapes.add(0, new Rectangle()):

}

)

March 3rd, 2004 Object Oriented Design Course 19

4 N

Super vs. Extends

The syntax ? super T denotes an unknown
type that is a supertype of T.

It is the dual of the ? extends T to denote an
unknown type that is a subtype of T.

\ /

March 3rd, 2004

Object Oriented Design Course 20

/

\

Collection<Object>
vs Collection<?> vs Collection

o

Collection<Object> is a collection of
heterogeneous instances of potentially no
common type

Collection<?> is a collection of Aomogeneous
instances of some common types - we just
don't know what that common type is

Collection is a raw fype - we should avoid it

)

March 3rd, 2004 Object Oriented Design Course 21

4 N

Many More Features

Java Generics are one of the important
language features of Java 1.5

More information in

J2SE 5.0 in a Nutshell

- /

March 3rd, 2004

Object Oriented Design Course 22

-

~

Java Generics Summary

Java Generics use a technique known as
type erasure which is the process of
translating or rewriting code that uses
generics into non-generic code

all information between angle brackets
is erased.

)

March 3rd, 2004 Object Oriented Design Course 23

4 N

C# Generics

Very similar to Java
public struct Point<T>

{ public T X; public TY: }
Point<int> point;

point.X = 1; point.¥ = 2;
See

for more information

March 3rd, 2004 Object Oriented Design Course 24




/

Java Generics vs. C++ Templates vs. C#

Java borrowed C++ syntax and made it
mean something very different

Type erasure vs. code generation in
C++.

Evaluated in compile time in java and
c++, run time in c#

March 3rd, 2004 Object Oriented Design Course 25




