Exceptions

Amit Shabtay

4 N

Covariance\Contravariance Reminder

class Parent {
void test (covar : Mammal, contravar :
Mammal) : boolean

}

class Child extends Parent {
void test (covar : Cat, contravar :
Animal) : boolean }

- /

March 3rd, 2004

Object Oriented Design Course 2

-

LSP Reminder

Functions that use pointers or
references to base classes must be
able to use objects of derived classes
without knowing it

4 N

Covariance and LSP

Class Skier {

Skier roommate;
void share(Skier s);

}

Class Girl {
Girl roommate;
void share(Girl g);

}

Class RankedGirl {
RankedGirl roommate;

‘ RankedGirl ‘ ‘ RankedBoy‘

March 3rd, 2004 Object Oriented Design Course 3

k void share(RankedGirl rg);
} /

March 3rd, 2004

Object Oriented Design Course 4

_

What happens when we do the following
Skier s; Boy b; Girl g:
b = new Boy(): g = new Girl();
s=b;
s.share(g);
g.share(b);

Does Covariance agree with
LSP?

Contravariance? J

March 3rd, 2004 Object Oriented Design Course 5

4 N

The Role of Exceptions

Definition: a method succeeds if it
terminates in a state satisfying its contract.
It failsif it does not succeed.

Definition: An exceptionis a runtime event
that may cause a routine to fail.

Exception cases
An assertion violation (pre-, post-, invariant, loop)
A hardware or operating system problem
Intentional call to tArow
k A failure in a method causes an exception in its caller /

March 3rd, 2004 Object Oriented Design Course 6

4 N

Disciplined Exception Handling

Mistake 1: Handler doesn't restore stable state
Mistake 2: Handler silently fails its own
contract
There are two correct approaches
Resumption: Change conditions, and retry method
Termination: Clean up and fail (re-throw exception)
Correctness of a catch clause
Resumption: { True } Catch { Inv A Pre }

k Termination: { True } Catch { Inv} /

March 3rd, 2004

Object Oriented Design Course 7

Improper Flow of Control

Mistake 3: Using exceptions for control flow
try { value = hashtable.find(key): }
catch (NotFoundException e) { value = null; }
It's bad design
The contract should never include exceptions
It's extremely inefficient
Global per-class data is initialized and stored
Each fry, catch, or exception specification cost time

Throwing an exception is orders of magnitude slower
k than returning from a function call

)

March 3rd, 2004 Object Oriented Design Course 8

4 N

Constructors & Destructors

Never let an exception leave a destructor

In C++: Throwing an exception while destroying due to
another exception causes terminate()

In finalize() The finalize() method is stopped
The result is resource leaks (yes, in Java t0o)

C++ doesn't destroy partially built objects

Throwing an exception in a constructor after resources
were allocated leads to resource leaks

Either split initialization to a method, or avoid pointers

Use auto_ptr<T> members instead of T* pointers for const
k members or members initialized in constructor

March 3rd, 2004 Object Oriented Design Course 9

-

Case Study: Genericity

~

It's very difficult to write generic, reusable
classes that handle exceptions well

Genericity requires considering exceptions from the
template parameters as well

Both default and copy constructors may throw
Assignment and equality operators may throw
In Java: constructors, equals()and clone() may throw

See Tom Cargill paper's Stack<T> class code

_

)

March 3rd, 2004 Object Oriented Design Course 10

4 N

"Warm-up” bugs not related to
exceptions:

Lets consider the code:

Stacky;

Stack x=y;

assert(y.count() == 0);
Copy and assignment do not set fopin
empty stacks

Assignment does not protect against
self-assignment

o)

March 3rd, 2004

Object Oriented Design Course "

-

Goals

~

Exception Neutrality
Exceptions raised from inner code (called
functions or class T) are propagated well
Weak Exception Safety

Exceptions (either from class itself or from
inner code) do hot cause resource leaks
(This doesn't mean that the object can be reused)

Strong Exception Safety

If a method terminates due to an exception,
K the object's state remains unchanged

)

March 3rd, 2004 Object Oriented Design Course 12

-

Case Study: Throwing from the
constructor

~

_

Is there a problem with the "throw" in
the constructor or copy constructor?

What will happen?

March 3rd, 2004 Object Oriented Design Course 13

Case Study: Restoring State

~

Bug: Throwing OutOfMemory in push()
fop has already been incremented
count(), push(), pop() can no longer be used
Fix: restore fop when throwing the exception,
or can be declared in API (not recommended)
Bug: Throwing OutOfMemoty in
operator=()
Old array is freed before new one allocated
In x=y, x would be inconsistent after failure
Fix: Allocate new array into a temporary first

March 3rd, 2004 Object Oriented Design Course 14

-

Case Study: Memory Leaks

_

Bug: What if T.operator=()throws?
It can happen: stack<stack<int>>
See assignment in for loop of copy constructor
If T throws here, no stack destructor is called
The array allocated in the first line is leaked
Bug: Same problem in push()
Again, assignment in for loop may throw
Only new_buffer points to allocated array
In case of exception, this array will be leaked

March 3rd, 2004 Object Oriented Design Course 15

-

Case Study: More on State

_

Bug: pop() ends with return v/top--]
This involves copying the returned object
What if its copy constructor throws?
fop has already been decremented

State of the stack has changed, and the
client cannot retry to pop the same element

)

March 3rd, 2004 Object Oriented Design Course 16

-

Case Study: More on Memory

Bug: operator=() assumes T constructs well.
What happens if this is not the case?

First line: delete [Jv:

Second line: v = new T[nelems = s.nelems]

If T's default constructor throws, then
v is undefined

This can lead to double delete:
{ stack x, y.
y=x' // exception thrown - y.v is deleted
} // end of scope - y.v is re-deleted

March 3rd, 2004 Object Oriented Design Course 17

-

Case Study: Conclusions

~

_

Paper’s title: "a false sense of security”
Combining exceptions and genericity is
extremely difficult - STL handles this
Java has many of the same problems
Changing an object and querying about it.

Java Generics will face some of the C++
problems.

March 3rd, 2004 Object Oriented Design Course 18

-

Guidelines for Exceptions

~

_

When propagating an exception, try to leave
the object in the'same state it had in
method entry

Make sure const functions are really const

Perform exception-prone actions early

Perform them through temporaries

Watch for side effects in expression that might

throw
If you can't leave the object in the same
state, try to leave it in a'stable state

Either re-initialize it, or mark it internally as invalid

Do not leave dangling pointers in the object - delete
pointers and free resources through temporaries

)

March 3rd, 2004 Object Oriented Design Course 19

Guidelines for Exceptions IT

_

Avoid resource leaks

In constructors, initialize raw pointers or resource
handles to null first and initialize them inside a
try..catch block in the constructor body

Don't throw exceptions from a destructor / finalize()

Don't catch any exceptions you don't have to
Rewrite functions to preserve state if possible
push() {v._[top_] = element.’ top_++ }
Use catch(..) Yo deal with propagating exceptions
Restore state and re-throw exception

)

March 3rd, 2004 Object Oriented Design Course 20

-

Guidelines for Exceptions IIT

~

_

Don't hide exceptions from your clients
Always re-throw an exception caught with cafch(..)
Throw a different exception only to add information
Make sure one catch block doesn't hide another

Use exception hierarchies
Define base exception classes for each library
Don't be afraid of a deep hierarchy
Consider inheriting a standard exception

Don't get too paranoid

March 3rd, 2004 Object Oriented Design Course 21

-

~

Summary

_

Software Correctness & Fault Tolerance
Design by Contract

When is a class correct?

Speed, Testing, Reliability, Documentation,

Reusability, Improving Prog. Languages
Exceptions

What happens when the contract is broken?

Neutrality, Weak Safety, Strong Safety J

March 3rd, 2004 Object Oriented Design Course 22

