
Exceptions

Amit Shabtay

March 3rd, 2004 Object Oriented Design Course 2

Covariance\Contravariance Reminder

� class Parent {
void test (covar : Mammal, contravar :

Mammal) : boolean
}

� class Child extends Parent {
void test (covar : Cat, contravar :

Animal) : boolean }

March 3rd, 2004 Object Oriented Design Course 3

LSP Reminder

� Functions that use pointers or
references to base classes must be
able to use objects of derived classes
without knowing it

March 3rd, 2004 Object Oriented Design Course 4

Covariance and LSPCovariance

Class Skier {

Skier roommate;

void share(Skier s);

}

Class Girl {

Girl roommate;

void share(Girl g);

}

Class RankedGirl {

RankedGirl roommate;

void share(RankedGirl rg);

}

Skier

BoyGirl

RankedBoyRankedGirl

March 3rd, 2004 Object Oriented Design Course 5

� What happens when we do the following

Skier s; Boy b; Girl g;

b = new Boy(); g = new Girl();

s = b;

s.share(g);

g.share(b);
Does Covariance agree with
LSP?
Contravariance?

March 3rd, 2004 Object Oriented Design Course 6

The Role of Exceptions

� Definition: a method succeeds if it
terminates in a state satisfying its contract.
It fails if it does not succeed.

� Definition: An exception is a runtime event
that may cause a routine to fail.

� Exception cases
• An assertion violation (pre-, post-, invariant, loop)
• A hardware or operating system problem
• Intentional call to throw
• A failure in a method causes an exception in its caller

March 3rd, 2004 Object Oriented Design Course 7

Disciplined Exception Handling

� Mistake 1: Handler doesn’t restore stable state

� Mistake 2: Handler silently fails its own
contract

� There are two correct approaches
• Resumption: Change conditions, and retry method

• Termination: Clean up and fail (re-throw exception)

� Correctness of a catch clause
• Resumption: { True } Catch { Inv ∧ Pre }

• Termination: { True } Catch { Inv }

March 3rd, 2004 Object Oriented Design Course 8

Improper Flow of Control

� Mistake 3: Using exceptions for control flow
try { value = hashtable.find(key); }
catch (NotFoundException e) { value = null; }

� It’s bad design
• The contract should never include exceptions

� It’s extremely inefficient
• Global per-class data is initialized and stored

• Each try, catch, or exception specification cost time
• Throwing an exception is orders of magnitude slower
than returning from a function call

March 3rd, 2004 Object Oriented Design Course 9

Constructors & Destructors
� Never let an exception leave a destructor

• In C++: Throwing an exception while destroying due to
another exception causes terminate()

• In finalize(): The finalize() method is stopped

• The result is resource leaks (yes, in Java too)

� C++ doesn’t destroy partially built objects
• Throwing an exception in a constructor after resources
were allocated leads to resource leaks

• Either split initialization to a method, or avoid pointers

• Use auto_ptr<T> members instead of T* pointers for const
members or members initialized in constructor

March 3rd, 2004 Object Oriented Design Course 10

Case Study: Genericity
� It’s very difficult to write generic, reusable
classes that handle exceptions well
• Genericity requires considering exceptions from the
template parameters as well

• Both default and copy constructors may throw

• Assignment and equality operators may throw

• In Java: constructors, equals() and clone() may throw

� See Tom Cargill paper’s Stack<T> class code

March 3rd, 2004 Object Oriented Design Course 11

“Warm-up” bugs not related to
exceptions:

� Lets consider the code:
Stack y;
Stack x=y;
assert(y.count() == 0);

� Copy and assignment do not set top in
empty stacks

� Assignment does not protect against
self-assignment

March 3rd, 2004 Object Oriented Design Course 12

Goals
� Exception Neutrality
• Exceptions raised from inner code (called
functions or class T) are propagated well

� Weak Exception Safety
• Exceptions (either from class itself or from
inner code) do not cause resource leaks
(This doesn’t mean that the object can be reused)

� Strong Exception Safety
• If a method terminates due to an exception,
the object’s state remains unchanged

March 3rd, 2004 Object Oriented Design Course 13

Case Study: Throwing from the
constructor

� Is there a problem with the “throw” in
the constructor or copy constructor?

� What will happen?

March 3rd, 2004 Object Oriented Design Course 14

Case Study: Restoring State
� Bug: Throwing OutOfMemory in push()
• top has already been incremented
• count(), push(), pop() can no longer be used
• Fix: restore top when throwing the exception,
or can be declared in API (not recommended)

� Bug: Throwing OutOfMemoty in
operator=()
• Old array is freed before new one allocated
• In x=y, x would be inconsistent after failure
• Fix: Allocate new array into a temporary first

March 3rd, 2004 Object Oriented Design Course 15

Case Study: Memory Leaks
� Bug: What if T.operator=() throws?

• It can happen: stack<stack<int>>

• See assignment in for loop of copy constructor

• If T throws here, no stack destructor is called

• The array allocated in the first line is leaked

� Bug: Same problem in push()
• Again, assignment in for loop may throw

• Only new_buffer points to allocated array
• In case of exception, this array will be leaked

March 3rd, 2004 Object Oriented Design Course 16

Case Study: More on State

� Bug: pop() ends with return v[top--];
• This involves copying the returned object
•What if its copy constructor throws?

• top has already been decremented

• State of the stack has changed, and the
client cannot retry to pop the same element

March 3rd, 2004 Object Oriented Design Course 17

Case Study: More on Memory
� Bug: operator=() assumes T constructs well.
What happens if this is not the case?
• First line: delete []v;
• Second line: v = new T[nelems = s.nelems];

• If T’s default constructor throws, then
v is undefined

• This can lead to double delete:

{ stack x, y;

y = x; // exception thrown – y.v is deleted

} // end of scope – y.v is re-deleted

March 3rd, 2004 Object Oriented Design Course 18

Case Study: Conclusions

� Paper’s title: “a false sense of security”

� Combining exceptions and genericity is
extremely difficult – STL handles this

� Java has many of the same problems
• Changing an object and querying about it.
• Java Generics will face some of the C++
problems.

March 3rd, 2004 Object Oriented Design Course 19

Guidelines for Exceptions
� When propagating an exception, try to leave
the object in the same state it had in
method entry
• Make sure const functions are really const
• Perform exception-prone actions early
• Perform them through temporaries
• Watch for side effects in expression that might
throw

� If you can’t leave the object in the same
state, try to leave it in a stable state
• Either re-initialize it, or mark it internally as invalid
• Do not leave dangling pointers in the object – delete
pointers and free resources through temporaries

March 3rd, 2004 Object Oriented Design Course 20

Guidelines for Exceptions II
� Avoid resource leaks

• In constructors, initialize raw pointers or resource
handles to null first and initialize them inside a
try..catch block in the constructor body

• Don’t throw exceptions from a destructor / finalize()

� Don’t catch any exceptions you don’t have to
• Rewrite functions to preserve state if possible

push() {v_[top_] = element; top_++; }

• Use catch(…) to deal with propagating exceptions
Restore state and re-throw exception

March 3rd, 2004 Object Oriented Design Course 21

Guidelines for Exceptions III
� Don’t hide exceptions from your clients

• Always re-throw an exception caught with catch(…)

• Throw a different exception only to add information

• Make sure one catch block doesn’t hide another

� Use exception hierarchies
• Define base exception classes for each library

• Don’t be afraid of a deep hierarchy

• Consider inheriting a standard exception

� Don’t get too paranoid

March 3rd, 2004 Object Oriented Design Course 22

Summary

� Software Correctness & Fault Tolerance

� Design by Contract
•When is a class correct?

• Speed, Testing, Reliability, Documentation,
Reusability, Improving Prog. Languages

� Exceptions
•What happens when the contract is broken?

• Neutrality, Weak Safety, Strong Safety

