
Typing Issues and LSP

Amit Shabtay

March 3rd, 2004 Object Oriented Design Course 2

Typing

� Static typing
• Readability (Java vs. Pearl)
• Catching errors early
• Reliability
• Efficiency

� Dynamic typing
• Flexibility
• Speed

March 3rd, 2004 Object Oriented Design Course 3

Weak Typing Flexibility (Python)

class Cat:
def speak(self): print "meow!"

class Dog:
def speak(self): print "woof!“

class Bob:
def speak(self): print "hello, world!“

def command(pet):
pet.speak()

pets = [Cat(), Dog(), Bob()]
for pet in pets: command(pet)

March 3rd, 2004 Object Oriented Design Course 4

Typing

� “Programmer cycles are expensive,
CPU cycles are cheap” (Bruce Eckel)

Pro or Con static typing?

� How do we add flexibility to static
typing?
• Genericity – C++ templates, Java Generics

• Inheritance (including multiple
inheritance)

March 3rd, 2004 Object Oriented Design Course 5

Covariance, Contravariance and
NoVariance

� Covariance: The policy allowing a feature
redeclaration to change the signature so that
the new types of both arguments and result
conform to the originals (inherited).

� Contravariance: The policy allowing a feature
redeclaration to change the signature so that
a new result type will conform to the original
but the original argument types conform to
the new.

� Novariance: The policy prohibiting feature
redeclaration from changing the signature.

March 3rd, 2004 Object Oriented Design Course 6

Covariance, Contravariance and
NoVariance

� Covariance in method arguments: the ability
to strengthen the type of an argument of a
method.

� Contravariance: the ability to weakening the
type of an argument.

� Novariance: the type can neither be
strengthened nor weakened.

March 3rd, 2004 Object Oriented Design Course 7

� class Parent {
void test (covar : Mammal, contravar :

Mammal) : boolean
}

� class Child extends Parent {
void test (covar : Cat, contravar : Animal) :

boolean }

March 3rd, 2004 Object Oriented Design Course 8

Covariance

Class Skier {

Skier roommate;

void share(Skier s);

}

Class Girl {

Girl roommate;

void share(Girl g);

}

Class RankedGirl {

RankedGirl roommate;

void share(RankedGirl rg);

}

Skier

BoyGirl

RankedBoyRankedGirl

March 3rd, 2004 Object Oriented Design Course 9

Covariance

� What happens when we do the
following

Skier s; Boy b; Girl g;

b = new Boy(); g = new Girl();

s = b;

s.share(g);

g.share(b);

March 3rd, 2004 Object Oriented Design Course 10

Covariance

� What about multiple
hierarchies?

� Does it solve the
problem?

Skier

Girl

RankedGirl

Room

GirlRoom

RGRoom

March 3rd, 2004 Object Oriented Design Course 11

Descendant Hiding

� How can a class hide its parent’s
method?

Polygon

+ addVertex()

Rectangle

- VERTICES=4

- addVertex()

Bird

+ fly()

Ostrich

- fly()

March 3rd, 2004 Object Oriented Design Course 12

Solutions

� Some languages allow you to redeclare
methods (Eiffel)
• No Girl.share(Skier)

� Java and C++ do not allow this
• Need to check the validity at runtime
• if(skier instnaceof Girl) {…}
• if(skier instnaceof Girl) {…} else throw…

March 3rd, 2004 Object Oriented Design Course 13

The Liskov Substitution Principle

If for each object o1 of type S there is
an object o2 of type T such that for all
programs P defined in terms of T, the
behavior of P is unchanged when o1 is
substituted for o2 then S is a subtype
of T.

Barbara Liskov, 1988

March 3rd, 2004 Object Oriented Design Course 14

LSP in plain English

Functions that use pointers or
references to base classes must be able
to use objects of derived classes
without knowing it

March 3rd, 2004 Object Oriented Design Course 15

What’s wrong with this?

void DrawShape(const Shape& s) {
if (typeid(s) == typeid(Square))

DrawSquare(static_cast<Square&>(s));
else if (typeid(s) == typeid(Circle))

DrawCircle(static_cast<Circle&>(s));
}

March 3rd, 2004 Object Oriented Design Course 16

Things Are Not Always That Simple

Consider the following class:
class Rectangle{
public:
void SetWidth(double w) {_width=w;}
void SetHeight(double h) {_height=w;}
double GetHeight() const {return _height;}
double GetWidth() const {return _width;}

private:
double _width;
double _height;

};

March 3rd, 2004 Object Oriented Design Course 17

Square

� We want to add a Square object
• Naturally derives Rectangle

� And the trivial implementation is:
void Square::SetWidth(double w) {
Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}
void Square::SetHeight(double h) {
Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}

� Do you see any problem ?

March 3rd, 2004 Object Oriented Design Course 18

LSP is broken!

void g(Rectangle& r) {
r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth()*r.GetHeight())==20);

}

� A Square object is not Rectangle
object!
•Their behavior is different

March 3rd, 2004 Object Oriented Design Course 19

The Liskov Substitution Principle

� Functions that use pointers or
references to base classes must be
able to use objects of derived classes
without knowing it

� Use inheritance carefully!

March 3rd, 2004 Object Oriented Design Course 20

Design By Contract

� A way to define the behavior of
classes in hierarchy
• A derived class must obey the contract of
it’s parent class

• A contract can be “among gentlemen” or can
be enforced using assertions and
reflection.

