Typing Issues and LSP

-

Typing

Static typing
Readability (Java vs. Pearl)
Catching errors early

Reliability -
) Efficiency
Amit Shabtay Dynamic typing .,
Flexibility o
k 5 peed ZIC SMALL PR()‘I:’:‘(‘I
March 3rd, 2004 Object Oriented Design Course 2
Weak Typing Flexibility (Python) Typing
class Cat: " .
def speak(self): print "meow!" Programmer cycles are expensive,
class Dog: CPU cycles are cheap)
def speak(self): print "woof!" Pro or Con static typing?
class Bob:)

def speak(self): print "hello, world!"

def command(pet):
pet.speak()

pets = [Cat(), Dog(), Bob()]
for pet in pets: command(pet)

March 3rd, 2004 Object Oriented Design Course 3

_

How do we add flexibility to static
typing?
Genericity - C++ templates, Java Generics

Inheritance (including multiple
inheritance)

)

March 3rd, 2004 Object Oriented Design Course 4

4 N

Covariance, Contravariance and
NoVariance

Covariance: The policy allowing a feature
redeclaration to change the signature so that
the new types of both arguments and result
conform to the originals (inherited).

Contravariance: The policy allowing a feature
redeclaration to change Tr\e signature so that
a new result Tyre will conform to the original
but the original argument types conform to
the new.

Novariance: The policy prohibiting feature

redeclaration from changing the signature.

)

March 3rd, 2004 Object Oriented Design Course 5

-

Covariance, Contravariance and
NoVariance

~

Covariance in method arguments: the ability
to strengthen the type of an argument of a
method.

Contravariance: the ability to weakening the
type of an argument.

Novariance: the type can neither be
strengthened nor weakened.

/

March 3rd, 2004 Object Oriented Design Course 6

_

class Parent {

void test (covar : Mammal, contravar :
Mammal) : boolean
}
class Child extends Parent {

void test (covar : Cat, contravar : Animal) :
boolean }

4 N

Covariance

Class Skier {
Skier roommate;
void share(Skier s);
}
Class Girl {
Girl roommate;
void share(Girl g);
} RankedGirl ‘ ‘ RankedBoy‘
Class RankedGirl {
RankedGirl roommate;

March 3rd, 2004 Object Oriented Design Course 7

k void share(RankedGirl rg):
} /

March 3rd, 2004 Object Oriented Design Course 8

-

Covariance

_

What happens when we do the
following

Skier s; Boy b; Girl g;

b = new Boy(): g = new Girl();
s=b;

s.share(g);

g.share(b);

4 N

Covariance

What about multiple | gkiep!

hierarchies?
GirlRoom

Does it solve the
problem?

[RankedGirl|-{ R6Room |

March 3rd, 2004 Object Oriented Design Course 9

o J

March 3rd, 2004 Object Oriented Design Course 10

-

Descendant Hiding

_

How can a class hide its parent's
method?

Polygon
+ addVertex() Bird
T +fly()
Rectangle T
- VERTICES=4 Ostrich
- addVertex() - fiyQ

March 3rd, 2004 Object Oriented Design Course 1"

4 N

Solutions

Some languages allow you to redeclare
methods (Eiffel)

No Girl.share(Skier)
Java and C++ do not allow this

Need to check the validity at runtime

if (skier instnaceof Girl) {..}

if (skier insthaceof Girl) {..} else throw...

March 3rd, 2004 Object Oriented Design Course 12

~

The Liskov Substitution Principle

If for each object o, of type S there is
an object o, of type T such that for all
programs P defined in terms of T, the
behavior of P is unchanged when o, is
SL;bsﬁfufea’ for o, then S is a subtype
of T.

Barbara Liskov, 1988/

Object Oriented Design Course 13

_

March 3rd, 2004

LSP in plain English

~

_

Functions that use pointers or
references to base classes must be able
to use objects of derived classes
without knowing it

)

March 3rd, 2004 Object Oriented Design Course 14

4 N

What's wrong with this?

void DrawShape(const Shape& s) {
if (typeid(s) == typeid(Square))
DrawSquare(static_cast<Squared>(s));
else if (typeid(s) == typeid(Circle))
DrawCircle(static_cast<Circle&s(s)):;

_

March 3rd, 2004 Object Oriented Design Course 15

-

Things Are Not Always That Simple

~

_

Consider the following class:
class Rectangle{
public:
void SetWidth(double w) {_width=w;}
void SetHeight(double h) {_height=w;}
double GetHeight() const {return _height;}
double GetWidth() const {return _width;}
private:
double _width;
double _height;
Y

March 3rd, 2004 Object Oriented Design Course 16

-

Square

We want to add a Square object
Naturally derives Rectangle

And the trivial implementation is:

void Square::SetWidth(double w) {
Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}

void Square::SetHeight(double h) {
Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}
K Do you see any problem ?

March 3rd, 2004 Object Oriented Design Course 17

-

LSP is broken!

_

void g(Rectangle& r) {
r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth()*r.GetHeight())==20);
}

A Square object is not Rectangle
object!
Their behavior is different

/

March 3rd, 2004 Object Oriented Design Course 18

4 N O N

The Liskov Substitution Principle Design By Contract
Functions that use pointers or A way to define the behavior of
references to base classes must be classes in hierarchy
able to use objects of derived classes A derived class must obey the contract of
without knowing it it's parent class

A contract can be "among gentlemen” or can
be enforced using assertions and
reflection.

o AN)

March 3rd, 2004 Object Oriented Design Course 20

Use inheritance carefully!

March 3rd, 2004 Object Oriented Design Course 19

