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Typing

� Static typing
• Readability (Java vs. Pearl)
• Catching errors early
• Reliability
• Efficiency

� Dynamic typing
• Flexibility
• Speed
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Weak Typing Flexibility (Python)

class Cat:
def speak(self): print "meow!" 

class Dog:
def speak(self): print "woof!“

class Bob:
def speak(self): print "hello, world!“

def command(pet): 
pet.speak() 

pets = [ Cat(), Dog(), Bob() ] 
for pet in pets: command(pet) 
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Typing

� “Programmer cycles are expensive, 
CPU cycles are cheap” (Bruce Eckel) 

Pro or Con static typing?

� How do we add flexibility to static 
typing?
• Genericity – C++ templates, Java Generics

• Inheritance (including multiple 
inheritance)
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Covariance, Contravariance and 
NoVariance

� Covariance: The policy allowing a feature 
redeclaration to change the signature so that 
the new types of both arguments and result 
conform to the originals (inherited).

� Contravariance: The policy allowing a feature 
redeclaration to change the signature so that 
a new result type will conform to the original 
but the original argument types conform to 
the new.

� Novariance: The policy prohibiting feature 
redeclaration from changing the signature.
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Covariance, Contravariance and 
NoVariance

� Covariance in method arguments: the ability 
to strengthen the type of an argument of a 
method. 

� Contravariance: the ability to weakening the 
type of an argument. 

� Novariance: the type can neither be 
strengthened nor weakened.
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� class Parent { 
void test (covar : Mammal, contravar : 

Mammal) : boolean
}

� class Child extends Parent { 
void test (covar : Cat, contravar : Animal) : 

boolean } 
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Covariance

Class Skier {

Skier roommate;

void share(Skier s);

} 

Class Girl {

Girl roommate;

void share(Girl g);

}

Class RankedGirl {

RankedGirl roommate;

void share(RankedGirl rg);

}

Skier

BoyGirl

RankedBoyRankedGirl
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Covariance

� What happens when we do the 
following

Skier s; Boy b; Girl g;

b = new Boy(); g = new Girl();

s = b;

s.share(g);

g.share(b);
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Covariance

� What about multiple 
hierarchies? 

� Does it solve the 
problem?

Skier

Girl

RankedGirl

Room

GirlRoom

RGRoom
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Descendant Hiding

� How can a class hide its parent’s 
method?

Polygon

+ addVertex()

Rectangle

- VERTICES=4

- addVertex()

Bird

+ fly()

Ostrich

- fly()
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Solutions

� Some languages allow you to redeclare
methods (Eiffel)
• No Girl.share(Skier)

� Java and C++ do not allow this
• Need to check the validity at runtime 
• if(skier instnaceof Girl) {…} 
• if(skier instnaceof Girl) {…} else throw…
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The Liskov Substitution Principle

If for each object o1 of type S there is 
an object o2 of type T such that for all 
programs P defined in terms of T, the 
behavior of P is unchanged when o1 is 
substituted for o2 then S is a subtype 
of T. 

Barbara Liskov, 1988
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LSP in plain English

Functions that use pointers or 
references to base classes must be able 
to use objects of derived classes 
without knowing it
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What’s wrong with this?

void DrawShape(const Shape& s) {
if (typeid(s) == typeid(Square))

DrawSquare(static_cast<Square&>(s));
else if (typeid(s) == typeid(Circle))

DrawCircle(static_cast<Circle&>(s));
}
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Things Are Not Always That Simple

Consider the following class:
class Rectangle{
public:
void SetWidth(double w) {_width=w;}
void SetHeight(double h) {_height=w;}
double GetHeight() const {return _height;}
double GetWidth() const {return _width;}

private:
double _width;
double _height;

};
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Square 

� We want to add a Square object
• Naturally derives Rectangle

� And the trivial implementation is:
void Square::SetWidth(double w) {
Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}
void Square::SetHeight(double h) {
Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}

� Do you see any problem ?
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LSP is broken!

void g(Rectangle& r) {
r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth()*r.GetHeight())==20);

}

� A Square object is not Rectangle
object!
•Their behavior is different
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The Liskov Substitution Principle

� Functions that use pointers or 
references to base classes must be 
able to use objects of derived classes 
without knowing it

� Use inheritance carefully!
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Design By Contract

� A way to define the behavior of 
classes in hierarchy
• A derived class must obey the contract of 
it’s parent class

• A contract can be “among gentlemen” or can 
be enforced using assertions and 
reflection.


