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Eclipse

� Eclipse is a kind of universal tool platform -
an open extensible IDE for anything and 
nothing in particular.

� plugins
• JDT

• CDT

• UML

• Many many more
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Working with Eclipse – Live 
Demonstration 

� Project

� Views

� Code Assist

� Errors

� Debugging

� JUnit

� UML
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Unit Tests

� First level of testing

� Done by the programmer

� Part of the coding process

� Delivered with the code

� Part of the build process
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What’s a Unit?

� Unit tests should be written in test 
classes, that replace ‘drivers’

� For example, class Stack
• Class Stack Has push, pop, count, …
• Class TestStack Has testPush, testPop

� Tests are per-functionality
• Not per method (testPushNull)
• Not per class (testIterators)

� Unit testing can have several levels

March 3rd, 2004 Object Oriented Design Course 6

What’s a Unit Test?

� Call methods, and assert conditions
void testPush() {
s = new Stack();
s.push(new Integer(10));
assertEquals(s.count() == 1); }

� Tests check themselves
• Only output if a test fails

� Write tests after writing interface
� Run all tests after each change
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Running Unit Tests

� A main() is required to run tests
� There are better options
• JUnit for Java
• CppUnit for C++

� Unit Testing Frameworks
• Graphical user interface
• Easily choose which tests to run
• Elegantly support for test suites
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Coding with Unit Tests

� Part of the design process
• Design for testability  --> Modularity

� Part of the coding process
• Test-first coding
• Run tests after each build

� Part of the build process
• Build = compile + link + pass unit tests
• A.k.a. “smoke tests”
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Benefits of Unit Tests

� Regression Testing
•For your own code
•Daily build: for others’ work

� Part of the usual work
•Replaces work done anyway
•Causes tests to be written
•Validates the design before impl
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Top 12 Reasons to Write Unit Tests 
Part I

� Tests Reduce Bugs in New Features

� Tests Reduce Bugs in Existing 
Features

� Tests Are Good Documentation

� Tests Reduce the Cost of Change
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Top 12 Reasons to Write Unit Tests 
Part II

� Tests Improve Design

� Tests Allow Refactoring

� Tests Constrain Features

� Tests Defend Against Other 
Programmers
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Top 12 Reasons to Write Unit Tests 
Part III

� Testing Is Fun

� Testing Forces You to Slow Down and 
Think

� Testing Makes Development Faster

� Tests Reduce Fear
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JUnit

� Unit testing framework for Java

� Open Source

� Integrated into Eclipse

� TestCase
• setUp(), tearDown()
• Test<TestName>()

� TestSuite

� TestRunner
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Resources

� Eclipse
• http://www.eclipse.org/
• http://www.eclipse-plugins.info/

� Top 12 Reasons to Write Unit Tests
• http://www.onjava.com/pub/a/onjava/2003
/04/02/javaxpckbk.html

� JUnit
• http://www.junit.org/


