
Introduction to Eclipse,
Unit Testing and JUnit

Amit Shabtay

March 3rd, 2004 Object Oriented Design Course 2

Eclipse

� Eclipse is a kind of universal tool platform -
an open extensible IDE for anything and
nothing in particular.

� plugins
• JDT

• CDT

• UML

• Many many more

March 3rd, 2004 Object Oriented Design Course 3

Working with Eclipse – Live
Demonstration

� Project

� Views

� Code Assist

� Errors

� Debugging

� JUnit

� UML

March 3rd, 2004 Object Oriented Design Course 4

Unit Tests

� First level of testing

� Done by the programmer

� Part of the coding process

� Delivered with the code

� Part of the build process

March 3rd, 2004 Object Oriented Design Course 5

What’s a Unit?

� Unit tests should be written in test
classes, that replace ‘drivers’

� For example, class Stack
• Class Stack Has push, pop, count, …
• Class TestStack Has testPush, testPop

� Tests are per-functionality
• Not per method (testPushNull)
• Not per class (testIterators)

� Unit testing can have several levels

March 3rd, 2004 Object Oriented Design Course 6

What’s a Unit Test?

� Call methods, and assert conditions
void testPush() {
s = new Stack();
s.push(new Integer(10));
assertEquals(s.count() == 1); }

� Tests check themselves
• Only output if a test fails

� Write tests after writing interface
� Run all tests after each change

March 3rd, 2004 Object Oriented Design Course 7

Running Unit Tests

� A main() is required to run tests
� There are better options
• JUnit for Java
• CppUnit for C++

� Unit Testing Frameworks
• Graphical user interface
• Easily choose which tests to run
• Elegantly support for test suites

March 3rd, 2004 Object Oriented Design Course 8

Coding with Unit Tests

� Part of the design process
• Design for testability --> Modularity

� Part of the coding process
• Test-first coding
• Run tests after each build

� Part of the build process
• Build = compile + link + pass unit tests
• A.k.a. “smoke tests”

March 3rd, 2004 Object Oriented Design Course 9

Benefits of Unit Tests

� Regression Testing
•For your own code
•Daily build: for others’ work

� Part of the usual work
•Replaces work done anyway
•Causes tests to be written
•Validates the design before impl

March 3rd, 2004 Object Oriented Design Course 10

Top 12 Reasons to Write Unit Tests
Part I

� Tests Reduce Bugs in New Features

� Tests Reduce Bugs in Existing
Features

� Tests Are Good Documentation

� Tests Reduce the Cost of Change

March 3rd, 2004 Object Oriented Design Course 11

Top 12 Reasons to Write Unit Tests
Part II

� Tests Improve Design

� Tests Allow Refactoring

� Tests Constrain Features

� Tests Defend Against Other
Programmers

March 3rd, 2004 Object Oriented Design Course 12

Top 12 Reasons to Write Unit Tests
Part III

� Testing Is Fun

� Testing Forces You to Slow Down and
Think

� Testing Makes Development Faster

� Tests Reduce Fear

March 3rd, 2004 Object Oriented Design Course 13

JUnit

� Unit testing framework for Java

� Open Source

� Integrated into Eclipse

� TestCase
• setUp(), tearDown()
• Test<TestName>()

� TestSuite

� TestRunner

March 3rd, 2004 Object Oriented Design Course 14

Resources

� Eclipse
• http://www.eclipse.org/
• http://www.eclipse-plugins.info/

� Top 12 Reasons to Write Unit Tests
• http://www.onjava.com/pub/a/onjava/2003
/04/02/javaxpckbk.html

� JUnit
• http://www.junit.org/

