
Common mistakes
Basic Design Principles 

Amit Shabtay

March 3rd, 2004 Object Oriented Design Course 2

Tirgul Summery

� Basic design principles

� Advanced design principles (LSP, …)

� Intro to eclipse, unit testing, JUnit

� Generic programming (STL, Java generics)

� AspectWerkz- AOP framework

� ODBC,JDBC

� Exercise previews and reviews

March 3rd, 2004 Object Oriented Design Course 3

Course Requirement

� Basic understanding of OOD

� Basic knowledge of C++, Java

� 3 programming exercises

� 2 theoretical exercises

� Exam

Basic Design Principles

March 3rd, 2004 Object Oriented Design Course 5

Common Mistakes

� Repeated often
• Especially with the inexperienced 

� Don’t you make them!

� How to recognize the danger signals?

March 3rd, 2004 Object Oriented Design Course 6

Danger Signals (1)

public class Counter {

public int howManyA(String s) {

int conut = 0;

for(int i = 0; i < s.length(); ++i)

if(s.charAt(i) == 'a')

++count;

return count;

}  

}

Is this a class? Too simple to be called an object.



March 3rd, 2004 Object Oriented Design Course 7

Danger Signals (2)

Class City extends Place { … }

Class Jerusalem extends City 

implements Capital { … }

Class TelAviv extends City { … }

� What is wrong here?
There can only one capital, so usually this is a bad design 
to have an interface for that (Not always the case)

March 3rd, 2004 Object Oriented Design Course 8

Danger Signals (3)

Class Person {

String getName(); void setName(String

name);

int getAge(); void setAge(int age);

Car getCar(); void setCar(Car car);

}

� What do we see ?
An Object that is strictly composed of getter and setter 
methods with no other functionaliry is also considered bad 
design usualy.

March 3rd, 2004 Object Oriented Design Course 9

Basic Design Principles

� The Open Closed Principle
� The Dependency Inversion Principle
� The Interface Segregation Principle
� The Acyclic Dependencies Principle

� These principles and more:
http://www.codeguru.com/forum/show
post.php?p=1092794&postcount=1

March 3rd, 2004 Object Oriented Design Course 10

The Open Closed Principle

� Software entities (classes, modules, 
functions, etc.) should be open for 
extension, but closed for modification. 

� Existing code should not be changed –
new features can be added using 
inheritance or composition.

� Which is preferred? Composition.

March 3rd, 2004 Object Oriented Design Course 11

Example

enum ShapeType

{circle, square};

struct Shape {

ShapeType _type;

};

struct Circle {

ShapeType _type;

double _radius;

Point _center;

};

struct Square {

ShapeType _type;

double _side;

Point _topLeft;

};

void DrawSquare(struct

Square*)

void DrawCircle(struct

Circle*);

March 3rd, 2004 Object Oriented Design Course 12

Example (cont.)

void DrawAllShapes(struct Shape* list[], int n) {

int i;

for (i=0; i<n; i++) {

struct Shape* s = list[i];

switch (s->_type) {

case square:

DrawSquare((struct Square*)s);

break;

case circle:

DrawCircle((struct Circle*)s);

break;

}

}

}

Where is the violation?
If we want to add another shape.



March 3rd, 2004 Object Oriented Design Course 13

Correct Form

class Shape {

public:

virtual void Draw() const = 0;

};

class Square : public Shape {

public:

virtual void Draw() const;

};

class Circle : public Shape {

public:

virtual void Draw() const;

};

void DrawAllShapes(Set<Shape*>& list) {

for (Iterator<Shape*>i(list); i; i++)

(*i)->Draw();

March 3rd, 2004 Object Oriented Design Course 14

The Dependency Inversion Principle

A. High level modules should not depend 
upon low level modules. Both should 
depend upon abstractions. 

B. Abstractions should not depend upon 
details. Details should depend upon 
abstractions. 

March 3rd, 2004 Object Oriented Design Course 15

Example

void Copy() {

int c;

while ((c = ReadKeyboard()) != EOF)

WritePrinter(c);

}

Where is the violation?
Adding another writing or
reading device- there is 
a strong dependency on 
the implementation details.

March 3rd, 2004 Object Oriented Design Course 16

Example (cont.)

� Now we have a second writing device – disk

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {

int c;

while ((c = ReadKeyboard()) != EOF)

if (dev == printer)

WritePrinter(c);

else

WriteDisk(c);

}

March 3rd, 2004 Object Oriented Design Course 17

Correct form
class Reader {

public:

virtual int Read() = 0;

};

class Writer {

public:

virtual void Write(char)=0;

};

void Copy(Reader& r, 

Writer& w) {

int c;

while((c=r.Read()) != EOF)

w.Write(c);

}

March 3rd, 2004 Object Oriented Design Course 18

The Interface Segregation Principle

� The dependency of one class to 
another one should depend on the 
smallest possible interface. 

� Avoid “fat” interfaces

� Example: Word toolbars 
(You can add or remove them as you like for 
simpler interface)



March 3rd, 2004 Object Oriented Design Course 19

The Interface Segregation Principle

ClientA

ClientB

ClientC

Service

clientAMethods()

clientBMethods()

clientCMethods()

<<Interface>>

March 3rd, 2004 Object Oriented Design Course 20

The Interface Segregation Principle

ClientA

ClientB

ClientC

ClientAService

clientAMethods()

<<Interface>>

ClientBService

clientBMethods()

<<Interface>>

ClientCService

clientCMethods()

<<Interface>>

ServiceImpl

clientAMethods()

clientBMethods()

clientCMethods()

March 3rd, 2004 Object Oriented Design Course 21

Example

class Door {

public:

virtual void Lock() = 0;

virtual void Unlock() = 0;

virtual bool IsDoorOpen() = 0;

};

class Timer {

public:

void Regsiter(int timeout,

TimerClient* client);

};

class TimerClient {

public:

virtual void TimeOut() = 0;

};

March 3rd, 2004 Object Oriented Design Course 22

A Timed Door

A violation?
A door shouldn’t 
always be of type 
TimerClient

March 3rd, 2004 Object Oriented Design Course 23

Correct Form

� Two options:

Adapter Multiple Inheiritence

?
Aggregation

In which 
language? C++

March 3rd, 2004 Object Oriented Design Course 24

The Acyclic Dependencies Principle

� The dependency structure between 
packages must not contain cyclic 
dependencies. 



March 3rd, 2004 Object Oriented Design Course 25

Example

gui

comm

modem protocol

comm_error

process

file

March 3rd, 2004 Object Oriented Design Course 26

Correct Form

gui

comm

modem protocol

comm_error

process

fi le

March 3rd, 2004 Object Oriented Design Course 27

The Law Of Demeter

� Only talk to your immediate friends. 

� In other words:
• You can play with yourself. (this.method())
• You can play with your own toys (but you can't take 
them apart). (field.method(), field.getX())

• You can play with toys that were given to you. 
(arg.method())

• And you can play with toys you've made yourself.  
(A a = new A(); a.method())

March 3rd, 2004 Object Oriented Design Course 28

Example

March 3rd, 2004 Object Oriented Design Course 29

How to correct

March 3rd, 2004 Object Oriented Design Course 30

Example Code



March 3rd, 2004 Object Oriented Design Course 31

Resources

� A nice resources page for OOD:

� http://www.objectmentor.com

� About the principles (same site):

http://www.objectmentor.com/mentorin
g/OOPrinciples

March 3rd, 2004 Object Oriented Design Course 32

Package cohesion

� The Common Closure Principle
• Classes within a released component should 
share common closure. That is, if one needs 
to be changed, they all are likely to need to 
be changed. 

� The Common Reuse Principle
• The classes in a package are reused together. 
If you reuse one of the classes in a package, 
you reuse them all.


