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Tirgul Summery

� Basic design principles

� Advanced design principles (LSP, …)

� Intro to eclipse, unit testing, JUnit

� Generic programming (STL, Java generics)

� AspectWerkz- AOP framework

� ODBC,JDBC

� Exercise previews and reviews
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Course Requirement

� Basic understanding of OOD

� Basic knowledge of C++, Java

� 3 programming exercises

� 2 theoretical exercises

� Exam

Basic Design Principles
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Common Mistakes

� Repeated often
• Especially with the inexperienced 

� Don’t you make them!

� How to recognize the danger signals?
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Danger Signals (1)

public class Counter {

public int howManyA(String s) {

int conut = 0;

for(int i = 0; i < s.length(); ++i)

if(s.charAt(i) == 'a')

++count;

return count;

}  

}

Is this a class? Too simple to be called an object.
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Danger Signals (2)

Class City extends Place { … }

Class Jerusalem extends City 

implements Capital { … }

Class TelAviv extends City { … }

� What is wrong here?
There can only one capital, so usually this is a bad design 
to have an interface for that (Not always the case)
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Danger Signals (3)

Class Person {

String getName(); void setName(String

name);

int getAge(); void setAge(int age);

Car getCar(); void setCar(Car car);

}

� What do we see ?
An Object that is strictly composed of getter and setter 
methods with no other functionaliry is also considered bad 
design usualy.
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Basic Design Principles

� The Open Closed Principle
� The Dependency Inversion Principle
� The Interface Segregation Principle
� The Acyclic Dependencies Principle

� These principles and more:
http://www.codeguru.com/forum/show
post.php?p=1092794&postcount=1
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The Open Closed Principle

� Software entities (classes, modules, 
functions, etc.) should be open for 
extension, but closed for modification. 

� Existing code should not be changed –
new features can be added using 
inheritance or composition.

� Which is preferred? Composition.
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Example

enum ShapeType

{circle, square};

struct Shape {

ShapeType _type;

};

struct Circle {

ShapeType _type;

double _radius;

Point _center;

};

struct Square {

ShapeType _type;

double _side;

Point _topLeft;

};

void DrawSquare(struct

Square*)

void DrawCircle(struct

Circle*);
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Example (cont.)

void DrawAllShapes(struct Shape* list[], int n) {

int i;

for (i=0; i<n; i++) {

struct Shape* s = list[i];

switch (s->_type) {

case square:

DrawSquare((struct Square*)s);

break;

case circle:

DrawCircle((struct Circle*)s);

break;

}

}

}

Where is the violation?
If we want to add another shape.
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Correct Form

class Shape {

public:

virtual void Draw() const = 0;

};

class Square : public Shape {

public:

virtual void Draw() const;

};

class Circle : public Shape {

public:

virtual void Draw() const;

};

void DrawAllShapes(Set<Shape*>& list) {

for (Iterator<Shape*>i(list); i; i++)

(*i)->Draw();
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The Dependency Inversion Principle

A. High level modules should not depend 
upon low level modules. Both should 
depend upon abstractions. 

B. Abstractions should not depend upon 
details. Details should depend upon 
abstractions. 
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Example

void Copy() {

int c;

while ((c = ReadKeyboard()) != EOF)

WritePrinter(c);

}

Where is the violation?
Adding another writing or
reading device- there is 
a strong dependency on 
the implementation details.
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Example (cont.)

� Now we have a second writing device – disk

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {

int c;

while ((c = ReadKeyboard()) != EOF)

if (dev == printer)

WritePrinter(c);

else

WriteDisk(c);

}
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Correct form
class Reader {

public:

virtual int Read() = 0;

};

class Writer {

public:

virtual void Write(char)=0;

};

void Copy(Reader& r, 

Writer& w) {

int c;

while((c=r.Read()) != EOF)

w.Write(c);

}
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The Interface Segregation Principle

� The dependency of one class to 
another one should depend on the 
smallest possible interface. 

� Avoid “fat” interfaces

� Example: Word toolbars 
(You can add or remove them as you like for 
simpler interface)
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The Interface Segregation Principle

ClientA

ClientB

ClientC

Service

clientAMethods()

clientBMethods()

clientCMethods()

<<Interface>>
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The Interface Segregation Principle

ClientA

ClientB

ClientC

ClientAService

clientAMethods()

<<Interface>>

ClientBService

clientBMethods()

<<Interface>>

ClientCService

clientCMethods()

<<Interface>>

ServiceImpl

clientAMethods()

clientBMethods()

clientCMethods()
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Example

class Door {

public:

virtual void Lock() = 0;

virtual void Unlock() = 0;

virtual bool IsDoorOpen() = 0;

};

class Timer {

public:

void Regsiter(int timeout,

TimerClient* client);

};

class TimerClient {

public:

virtual void TimeOut() = 0;

};
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A Timed Door

A violation?
A door shouldn’t 
always be of type 
TimerClient
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Correct Form

� Two options:

Adapter Multiple Inheiritence

?
Aggregation

In which 
language? C++
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The Acyclic Dependencies Principle

� The dependency structure between 
packages must not contain cyclic 
dependencies. 
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Example

gui

comm

modem protocol

comm_error

process

file
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Correct Form

gui

comm

modem protocol

comm_error

process

fi le
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The Law Of Demeter

� Only talk to your immediate friends. 

� In other words:
• You can play with yourself. (this.method())
• You can play with your own toys (but you can't take 
them apart). (field.method(), field.getX())

• You can play with toys that were given to you. 
(arg.method())

• And you can play with toys you've made yourself.  
(A a = new A(); a.method())
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Example
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How to correct
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Example Code
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Resources

� A nice resources page for OOD:

� http://www.objectmentor.com

� About the principles (same site):

http://www.objectmentor.com/mentorin
g/OOPrinciples
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Package cohesion

� The Common Closure Principle
• Classes within a released component should 
share common closure. That is, if one needs 
to be changed, they all are likely to need to 
be changed. 

� The Common Reuse Principle
• The classes in a package are reused together. 
If you reuse one of the classes in a package, 
you reuse them all.


