
David Talby ����������	
����

Design Patterns 


������ ��		�
��

David Talby

��������	
��

� Handle Synchronization & Events
• Observer

� Simplify Complex Interactions
• Mediator

� Change Behavior Dynamically
• Strategy, State

� Undo, Macros and Versions
• Command
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� Define a one-to-many dependency 
between objects, so that changing one 
automatically updates others

� For example, a spreadsheet and several 
charts of it are open

� Changing data in a window should be 
immediately reflected in all
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� Document and Chart classes must not 
know each other, for reuse

� Easily add new kinds of charts or other 
links

� A dynamic number of charts
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� Terminology
• Subject and Observer
• Publisher and Subscriber
• Listeners

� Subjects attach and detach listeners, 
and notify of events

� Clients update themselves after 
receiving a notification
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� Here’s an abstract observer:
class Observer {

void update() = 0;
}

� Concrete observers such as class 
Chart will inherit Observer
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� Here’s the (concrete!) subject:
class Subject {

void attach(Observer *o)
{ observers.add(o); }

void detach(Observer *o)
{ observers.remove(o); }

void notify() {
for i in observers do

o->update();
}

protected:
List observers;

}
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� Both subject and observer will usually 
inherit from other classes as well 

� If multiple inheritance is not available, 
the observer must be a separate class 
that has a reference to the chart object 
and updates it

� Java has a special mechanism – Inner 
classes – to make this easier
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� Observing more than one subject
• Update must include an extra argument to tell 

who is updating

� Observing only certain events
• Attach must include an extra argument to tell 

which events interest this observer

� Observing small changes
• Update includes arguments to tell what 

changed, for efficiency
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� Who calls Notify?
• Greedy – the subjects, on change
• Lazy – the observers, on query

� Common errors
• Forgetting to detach an object when it is 

destroyed
• Calling Notify in an inconsistent state

� Java includes Observer as part of the 
standard libraries
• In package java.util
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� All frameworks of all kinds
• MFC, COM, Java, EJB, MVC, …

� Handle user interface events
� Handle asynchronous messages
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� Encapsulate a complex interaction to 
preserve loose coupling

� Prevent many inter-connections between 
classes, which means that changing 
their behavior requires subclassing all of 
them

� For example, a dialog box includes many 
interactions of its widgets. How do we 
reuse the widgets?
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� A widget is a kind of colleague
� Colleague don’t know about the 

interactions they participate in
• Can be reused for different dialogs

� Colleagues don’t know about others
• Allow only O(n) connections

� Easy to change interactions
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� All colleagues talk with a mediator
� The mediator knows all colleagues
� Whenever a colleague changes, it 

notifies its mediator
� The mediator codes the interaction logic, 

and calls operations on other colleagues
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� An example interaction:
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� Only O(n) connections:
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� The interaction logic (mediator) and 
colleagues can be reused separately and 
subclassed separately

� Protocols are simpler since n-to-1 relations 
replace n-to-m relations

� Abstract mediator class is unnecessary if 
there’s only one mediator

� Observer or mediator?
• One-to-many or many-to-many?
• Should the logic be centralized?
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� Widgets in a user interface
• Delphi and VB “hide” this pattern

� Connectivity constraints in diagrams
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� A program must switch between 
complex algorithms dynamically

� For example, a document editor has 
several rendering algorithms, with 
different time/beauty tradeoffs

� Word is a common example
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� Algorithms are complex, would be havoc 
to have them inside the one Document
class

� Switch algorithms dynamically
� Easy to add new algorithms
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� Define an abstract class that represents 
an algorithm:
class Renderer {

void render(Document *d) = 0;
}

� Each specific algorithm will be a 
descendant class
FastRenderer, TexRenderer, …
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� The document itself chooses the rendering 
algorithm:
class Document {

render() {

renderer->render(this);

}

setFastRendering() {

renderer = new FastRenderer();

}

private: Renderer *renderer;

}
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� Inheriting a strategy would deny a 
dynamic switch

� Some strategies may not use all 
information passed from Context

� Strategies can be stateless, and then 
they can be shared

� In some cases strategy objects are 
optional
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� Document rendering programs
� Compiler code optimizations
� Different heuristic algorithms (games, 

portfolio selection)
� Different memory management schemes 

(Booch components)
� Validation of dialog boxes (optional 

strategies, Borland ObjectWindows)
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� Allow an object to alter its behavior when 
its internal state changes

� For example, most methods of a 
TCPConnection object behave in different 
ways when the connection is closed, 
established or listening

� How do we encapsulate the logic and 
data of every state?
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� A class has a state diagram, and many 
methods behave in wildly different ways 
in different states

� When in a state, only allocate memory 
for data of that state

� The logic of a specific state should be 
encapsulated
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� Encapsulate the varying aspect
• State of an object

� Interfaces
• Let’s have a TCPState interface that has all 

the state-sensitive methods

� Inheritance describes variants
• TCPEstablished, TCPListen and TCPClosed

implement the interface

� Composition allows a dynamic choice 
between variants
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� A TCPConnection codes state transitions 
and refers to a TCPState
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� In complex cases it is better to let states define 
transitions, by adding a SetState method to 
Context

� States may be created on-demand or on 
Context’s creation

� This pattern is really a workaround for the lack 
of dynamic inheritance

� State is very much like Strategy
• State = Many (small) actions
• Strategy = One (complex) action
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� Streams and connections
� Different tools on a drawing 

program
• Select, Erase, Crop, Rotate, Add, …
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� Encapsulate commands as objects
� We’ll take the the uses one by one:

• Undo/Redo
• Macros
• Queues and logs
• Version control
• Crash recovery
• Message Grouping
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� Undo / redo at unlimited depth
� Only store relevant data for undo
� Easy to add commands
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� Repesent a command as a class:

class Command
{
public:
virtual void execute() = 0;
virtual void undo() = 0;

}
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� Concrete commands hold undo data:
class DeleteLine : public Command {

void execute() {
line = document->getLine();
document->removeLine();

}
void undo() {
document->addLine(line);

}  
private:

Line line;
}
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� Keep a list of executed commands:
Array<Command*> commands;

int i;

� When you click the ‘Undo’ button:
commands(i)->undo();

i--;

� When you click the ‘Redo’ button:
commands(i)->execute();

i++;
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� Whenever a command is activated:
commands.add(new_command);

i = commands.count();

� When you save a document:
document->save();
commands.clear();

i = 0;

� The commands list may or may not be 
limited in size

� Only relevant undo data is kept
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� Macros are a series of commands
� Any command with any of its options 

may be used
� There are also for and while loops, if

statements, calls to other macros...
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� A macro is a Composite 
Command

� if, for, while are Decorator 
Commands
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� Commands are accessible from menus 
as well as toolbars

� A command may be available from more 
than one place

� We’d like to configure the menus and 
toolbars at runtime
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� Each MenuItem or ToolbarItem
refers to its command object

� Just as it refers to an image
� The command can be configured

• Less command classes

� Macros fit in the picture as well!
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� Keep multiple versions of a document
� When saving, only store the changes 

from the previous version

�������
	���

� The changes are exactly the list of 
commands since the last version was 
loaded

� In addition, a compaction algorithm is 
needed for commands that cancel each 
other

� Save = Serialize the compacted list
� Load = Read early version and call

execute on command lists
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� Programs log commands to disk so they 
can be used in case of a crash
• Works, since commands are small
• Usually in a background thread

� Commands can be grouped and sent as 
one command to a server
• Grouping for efficient communication
• Grouping to define a transaction
• Works even for user defined macros!
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� Pattern of patterns
• Encapsulate the varying aspect
• Interfaces
• Inheritance describes variants
• Composition allows a dynamic choice 

between variants
� Design patterns are old, well known and 

thoroughly tested ideas
• Over twenty years!


