
David Talby ����������	
����

Design Patterns

������ ��		�
��

David Talby

��������	
��

� Handle Synchronization & Events
• Observer

� Simplify Complex Interactions
• Mediator

� Change Behavior Dynamically
• Strategy, State

� Undo, Macros and Versions
• Command

�
����������

� Define a one-to-many dependency
between objects, so that changing one
automatically updates others

� For example, a spreadsheet and several
charts of it are open

� Changing data in a window should be
immediately reflected in all

�������
���� ��	�

� Document and Chart classes must not
know each other, for reuse

� Easily add new kinds of charts or other
links

� A dynamic number of charts

�������
	���

� Terminology
• Subject and Observer
• Publisher and Subscriber
• Listeners

� Subjects attach and detach listeners,
and notify of events

� Clients update themselves after
receiving a notification

�������
	������

� Here’s an abstract observer:
class Observer {

void update() = 0;
}

� Concrete observers such as class
Chart will inherit Observer

David Talby ����������	
����

Design Patterns �

�������
	�������

� Here’s the (concrete!) subject:
class Subject {

void attach(Observer *o)
{ observers.add(o); }

void detach(Observer *o)
{ observers.remove(o); }

void notify() {
for i in observers do

o->update();
}

protected:
List observers;

}

�������
	������

� Both subject and observer will usually
inherit from other classes as well

� If multiple inheritance is not available,
the observer must be a separate class
that has a reference to the chart object
and updates it

� Java has a special mechanism – Inner
classes – to make this easier

��������������������	

� Observing more than one subject
• Update must include an extra argument to tell

who is updating

� Observing only certain events
• Attach must include an extra argument to tell

which events interest this observer

� Observing small changes
• Update includes arguments to tell what

changed, for efficiency

�������������	���

� Who calls Notify?
• Greedy – the subjects, on change
• Lazy – the observers, on query

� Common errors
• Forgetting to detach an object when it is

destroyed
• Calling Notify in an inconsistent state

� Java includes Observer as part of the
standard libraries
• In package java.util

��� ������

� All frameworks of all kinds
• MFC, COM, Java, EJB, MVC, …

� Handle user interface events
� Handle asynchronous messages

David Talby ����������	
����

Design Patterns �

������!�"	��

� Encapsulate a complex interaction to
preserve loose coupling

� Prevent many inter-connections between
classes, which means that changing
their behavior requires subclassing all of
them

� For example, a dialog box includes many
interactions of its widgets. How do we
reuse the widgets?

�������
���� ��	�

� A widget is a kind of colleague
� Colleague don’t know about the

interactions they participate in
• Can be reused for different dialogs

� Colleagues don’t know about others
• Allow only O(n) connections

� Easy to change interactions

�������
	���

� All colleagues talk with a mediator
� The mediator knows all colleagues
� Whenever a colleague changes, it

notifies its mediator
� The mediator codes the interaction logic,

and calls operations on other colleagues

�������
	������

� An example interaction:

�������
	�������

� Only O(n) connections:

�������

David Talby ����������	
����

Design Patterns �

�������������	

� The interaction logic (mediator) and
colleagues can be reused separately and
subclassed separately

� Protocols are simpler since n-to-1 relations
replace n-to-m relations

� Abstract mediator class is unnecessary if
there’s only one mediator

� Observer or mediator?
• One-to-many or many-to-many?
• Should the logic be centralized?

��� ������

� Widgets in a user interface
• Delphi and VB “hide” this pattern

� Connectivity constraints in diagrams

�#���	�"	�$%

� A program must switch between
complex algorithms dynamically

� For example, a document editor has
several rendering algorithms, with
different time/beauty tradeoffs

� Word is a common example

�������
���� ��	�

� Algorithms are complex, would be havoc
to have them inside the one Document
class

� Switch algorithms dynamically
� Easy to add new algorithms

�������
	���

� Define an abstract class that represents
an algorithm:
class Renderer {

void render(Document *d) = 0;
}

� Each specific algorithm will be a
descendant class
FastRenderer, TexRenderer, …

�������
	������

� The document itself chooses the rendering
algorithm:
class Document {

render() {

renderer->render(this);

}

setFastRendering() {

renderer = new FastRenderer();

}

private: Renderer *renderer;

}

David Talby ����������	
����

Design Patterns �

����&�� ����������������	

� Inheriting a strategy would deny a
dynamic switch

� Some strategies may not use all
information passed from Context

� Strategies can be stateless, and then
they can be shared

� In some cases strategy objects are
optional

��� ������

� Document rendering programs
� Compiler code optimizations
� Different heuristic algorithms (games,

portfolio selection)
� Different memory management schemes

(Booch components)
� Validation of dialog boxes (optional

strategies, Borland ObjectWindows)

�'���	"	�

� Allow an object to alter its behavior when
its internal state changes

� For example, most methods of a
TCPConnection object behave in different
ways when the connection is closed,
established or listening

� How do we encapsulate the logic and
data of every state?

�������
���� ��	�

� A class has a state diagram, and many
methods behave in wildly different ways
in different states

� When in a state, only allocate memory
for data of that state

� The logic of a specific state should be
encapsulated

�"		�����(��"		����

� Encapsulate the varying aspect
• State of an object

� Interfaces
• Let’s have a TCPState interface that has all

the state-sensitive methods

� Inheritance describes variants
• TCPEstablished, TCPListen and TCPClosed

implement the interface

� Composition allows a dynamic choice
between variants

David Talby ����������	
����

Design Patterns �

�������
	������

� A TCPConnection codes state transitions
and refers to a TCPState

�������

�������������	

� In complex cases it is better to let states define
transitions, by adding a SetState method to
Context

� States may be created on-demand or on
Context’s creation

� This pattern is really a workaround for the lack
of dynamic inheritance

� State is very much like Strategy
• State = Many (small) actions
• Strategy = One (complex) action

��� ������

� Streams and connections
� Different tools on a drawing

program
• Select, Erase, Crop, Rotate, Add, …

�)��*�� � "�!

� Encapsulate commands as objects
� We’ll take the the uses one by one:

• Undo/Redo
• Macros
• Queues and logs
• Version control
• Crash recovery
• Message Grouping

�������
���� ��	���

� Undo / redo at unlimited depth
� Only store relevant data for undo
� Easy to add commands

David Talby ����������	
����

Design Patterns �

�������
	���

� Repesent a command as a class:

class Command
{
public:
virtual void execute() = 0;
virtual void undo() = 0;

}

�������
	������

� Concrete commands hold undo data:
class DeleteLine : public Command {

void execute() {
line = document->getLine();
document->removeLine();

}
void undo() {
document->addLine(line);

}
private:

Line line;
}

�������
	�������

� Keep a list of executed commands:
Array<Command*> commands;

int i;

� When you click the ‘Undo’ button:
commands(i)->undo();

i--;

� When you click the ‘Redo’ button:
commands(i)->execute();

i++;

�������
	������

� Whenever a command is activated:
commands.add(new_command);

i = commands.count();

� When you save a document:
document->save();
commands.clear();

i = 0;

� The commands list may or may not be
limited in size

� Only relevant undo data is kept

�������
���� ��	����

� Macros are a series of commands
� Any command with any of its options

may be used
� There are also for and while loops, if

statements, calls to other macros...

�������
	���

� A macro is a Composite
Command

� if, for, while are Decorator
Commands

David Talby ����������	
����

Design Patterns �

�������
���� ��	�����

� Commands are accessible from menus
as well as toolbars

� A command may be available from more
than one place

� We’d like to configure the menus and
toolbars at runtime

�������
	���

� Each MenuItem or ToolbarItem
refers to its command object

� Just as it refers to an image
� The command can be configured

• Less command classes

� Macros fit in the picture as well!

�������
���� ��	����

� Keep multiple versions of a document
� When saving, only store the changes

from the previous version

�������
	���

� The changes are exactly the list of
commands since the last version was
loaded

� In addition, a compaction algorithm is
needed for commands that cancel each
other

� Save = Serialize the compacted list
� Load = Read early version and call

execute on command lists

+����,-���� ������

� Programs log commands to disk so they
can be used in case of a crash
• Works, since commands are small
• Usually in a background thread

� Commands can be grouped and sent as
one command to a server
• Grouping for efficient communication
• Grouping to define a transaction
• Works even for user defined macros!

�
� � "�%

� Pattern of patterns
• Encapsulate the varying aspect
• Interfaces
• Inheritance describes variants
• Composition allows a dynamic choice

between variants
� Design patterns are old, well known and

thoroughly tested ideas
• Over twenty years!

