
.NET and J2EE
Intro to Software Engineering

David Talby

This Lecture

� .NET Platform
• The Framework
• CLR and C#

� J2EE Platform
• And Web Services

� Introduction to Software Engineering
• The Software Crisis
• Methodologies

� Course Summary

.NET Compilation & Execution Model

Source Source

CodeCode

CompilationCompilation

Language Language

CompilerCompiler
AssemblyAssembly

ExecutionExecution

JIT JIT

CompilerCompiler

NativeNative

CodeCode

Code (IL)Code (IL)Code (IL)Code (IL)Code (IL)Code (IL)Code (IL)Code (IL)

MetadataMetadataMetadataMetadataMetadataMetadataMetadataMetadata

.NET Compilation Model

� 30+ languages compile to IL
• Can be done in Java (Python, Eiffel)
• IL defines which language features can run
• C++, Eiffel, ML and others lose some features,
and extend the language for other features

� Metadata
• Reflection
• Identification
• Attributes
• …

.NET Execution Model

� JIT Compilation
• Compared to HotSpot in Java
• Enables safe yet native code

� 10%-15% Slower than native
• Also wastes more memory
• Same in Java
• Developers & Time cost more than hardware

.NET Language Interoperability

� Language doesn’t matter
• Single stack trace, heap, threads, …
• Polymorphism, exceptions, thread locks,
garbage collection, singletons, …

• Development tool – Cross-language debugging
� Shared libraries

• Huge impact for “esoteric” languages
• Same performance for all languages
• Much easier reuse of older code

CLR compared to JVM
� Class loader
• Dynamic loading, can be controlled
• Security Manager + Code Signing

� Garbage collection
• Can be deterministic in CLR

� Disassemblers
• Can be done easily in IL or Java, also in C/C++/etc.
• Obfuscation – partial solution, hinders reflection
• Only real solution – hide the code

� Exceptions

CLR Compared to JVM II

� Managed vs. unmanaged code
• C# has an unsafe keyword for “unsafe” sections
• Pointers and direct access to OS are allowed
• Enables both power and safety

� COM Inter-Op
• Transparent use of gigantic COM code base

� Generics
• Designed in advance for CLR, libraries and C#

� .NET is not forward-compatible

C# Language Highlights

� Unified type system
� Value and reference types
� Explicit Polymorphism

• virtual, override, new, class::method syntax
� Component Programming

• Properties, events (delegates), indexers
� A lot of syntactic sugar

• Boxing, Operator Overloading, Enums, Iterators

C# Language Highlights II

� Reflection
• Including generics, dynamic proxies, attributes

� Attributes
• Added to Java in 1.5, but not to libraries
• For the Compiler: Debug info, obfuscate, …
• For Libraries, by Reflection: Serialization,
Security, GUI properties, Documentation, …

• For Aspect-Oriented Programming: XCSharp
defines interfaces for code injection

Enterprise Computing Basics

Enterprise: Business Critical

Basic Concepts:

• Enterprise Application

• Presentation Logic

• Business Logic

• EIS (Database)

• Multi- Tier Application

• Client, Web, Business, EIS Tiers

J2EE Basics

� Three Editions to the Java Platform:

• Java 2 Micro Edition (Cell Phones, PDAs, …)

• Java 2 Standard Edition (Desktops)

• Java 2 Enterprise Edition (Enterprise Apps)

� Same language, different libraries

� Goal of J2EE: Reduce time, cost and

complexity of developing enterprise apps

• Developers should focus on business logic

• They should buy all other services

J2EE Components & Services

� EJB: Enterprise Java Beans

• Server-side components / services

• Run on an EJB Application Server

� Application Server services

• Thread management, logging, security, failover,
clustering, load balancing, multiple applications,

naming service, connection management,
scheduling, transactions, hot deployment,

remote administration, ...

The J2EE Standard

� For Developers

• APIs for writing beans and accessing services

• Configuration & other file formats

� For Servers

• Protocols, required services, inter-operability

� The app servers market

• IBM WebWphere, BEA WebLogic, JBoss, ...

• Microsoft provides similar services in Windows

Evolution: Web Services

� Web Services (.NET / Java)
• New standard protocols for interfaces,
method calls, and object creation

• Based on HTTP and XML
� “Share schema, not class”

• Independent deployment and versioning
• Heterogeneous platforms

� Strong security facilities in the standard
• Authentication, Single sign-on, Encryption, …

Developing Web Services

� This (mostly) applies to both .NET and Java
� Developing a service

• Write a normal class in your favorite language
• Use attributes to define web methods / classes
• Create a deployment file, and publish it to a server

� Developing a client
• Choose “Add Web Reference” and write a URL
• An interface in your favorite language is generated
• Full debugging, type safety, metadata, intellisense, …

� All “plumbing” is transparent in both ways

Why Web Services are Important

� New WWW applications
• Software and not humans navigate the web
• Strong security -> economic transactions

� Simplifies integration between apps
• Major issue facing large organizations today
• Many systems, platforms, formats, upgrades, …

� A Real heterogeneous platform

Intro to Software Engineering

David Talby

The Software Crisis

� In Numbers
• 84% of software projects are not on time
• 31% of software projects never complete
• ~60% of completed code is never used
• ~200 Billion $ a year lost to software bugs

� In Words
• Most software is buggy, unstable and insecure
• A lot of software is totally unusable
• Yet, software runs the world

What is Engineering
� Repeatability

• Ability to do a similar project again well
• Same time, budget, quality are expected

� Methodology
• Well-defined roles: Architect, Engineer, …
• Well-defined products: Designs, Specs, Code, ...
• Standard workflow of how things are done

� Legal Liability
• Both Civil and Criminal
• Certification required for life-critical issues
• Methodology & Notation are laws

State of the Software World
� Large Scale

• Lack of repeatability, even for small projects
• Inability to provide quality software
• No standard definition of roles & products
• No standard for requirements, design, tests, …
• It’s a “wild west” profession

� Small Scale
• Developers don’t produce working software
• Developer tools are also far from perfect

Development Methodologies
� A methodology describes
• An entire life cycle of a software product
• Roles, Products, Workflow
• Best Practices

� eXtreme Programming
• For small projects: up to 12 people, 100 stories

� Rational Unified Process
• For large projects: a “heavy-weight” process
• A commercial product

Rational Unified Process

� By Rational, see rational.com/rup

� Decompose large system to sub-systems
• A team and development effort per system
• Architects Team does overall design, sharing

� Five stages of each system’s life cycle
• Business modeling, Requirements, Analysis & Design,
Implementation, Test

• Many artifacts are not code or tests
� Iterative Development

� Highly managed, highly automated process

eXtreme Programming

� By Kent Beck, see XProgramming.com

� Embrace change

� Simplicity

� User involvement & rapid feedback

� Incremental pay-as-you-go design

� Test-first programming

The XP Principles

� Develop by iterations of 1-3 weeks each:
Plan (user stories) -> design (simplest!) ->
test (unit tests) -> code (and refactor)

� Testing
• Functional tests: in design phase
• Unit tests as part of coding

� Continuous Integration
� Quality Work
• Refactoring, 40-Hour Week

The 12 XP Principles

� Planning Game

� Small Releases

� On-Site Customer

� Metaphor

� Simple Design

� 40-Hour Week

� Pair Programming

� Collective Ownership

� Testing

� Refactoring

� Continuous Integration

� Coding Standard

Summary

� Writing Software ≠ Delivering Products
• Requirements, Architecture, Design, Code,
Integrate, Test, Deploy, Maintain, Update

� The Software Crisis
� Software Today

• < 20% of existing code is Object-Oriented
• > 90% of new code is Object-Oriented
• Reuse: Libraries, Components, Web Services
• Major Frameworks/Platforms: Java and .NET

Course Summary

