.NET and J2EE
Intro to Software Engineering

David Talby

4 N

This Lecture

NET Platform
The Framework
CLR and C#

J2EE Platform
And Web Services

Introduction to Software Engineering
The Software Crisis
Methodologies

K Course Summary j

NET Compilation & Execution Model

Compilation

Language Code (IL)
Compiler

JIiy

Compiler:

K Execution /

NET Compilation Model

30+ languages compile to IL
Can be done in Java (Python, Eiffel)
IL defines which language features can run

C++, Eiffel, ML and others lose some features,
and extend the language for other features

Metadata
Reflection
Identification
Attributes

)

4 N

NET Execution Model

JIT Compilation
Compared o HotSpot in Java
Enables safe yet native code
10%-15% Slower than native
Also wastes more memory
Same in Java
Developers & Time cost more than hardware

- /

4 N

NET Language Interoperability

Language doesn’t matter
Single stack trace, heap, threads, ...

Polymorphism, exceptions, thread locks,
garbage collection, singletons, ...

Development tool — Cross-language debugging
Shared libraries

Huge impact for “esoteric” languages

Same performance for all languages

K Much easier reuse of older code j

4 N

CLR compared to JVM

Class loader
Dynamic loading, can be controlled
Security Manager + Code Sighing
Garbage collection
Can be deterministic in CLR
Disassemblers
Can be done easily in IL or Java, also in C/C++/etc.
Obfuscation - partial solution, hinders reflection

Only real solution - hide the code

k Exceptions j

-

~

CLR Compared to JVM II

_

Managed vs. unmanaged code
C# has an unsafe keyword for “unsafe” sections
Pointers and direct access to OS are allowed
Enables both power and safety
COM Inter-Op
Transparent use of gigantic COM code base
Generics
Designed in advance for CLR, libraries and C#

NET is not forward-compatible j

4 N

C# Language Highlights

Unified type system
Value and reference types
Explicit Polymorphism
virtual, override, new, class::method syntax
Component Programming
Properties, events (delegates), indexers
A lot of syntactic sugar

Boxing, Operator Overloading, Enums, Iterators

o

-

~

C# Language Highlights IT

o

Reflection
Including generics, dynamic proxies, attributes
Attributes
Added to Java in 1.5, but not to libraries
For the Compiler: Debug info, obfuscate, ...
For Libraries, by Reflection: Serialization,
Security, GUI properties, Documentation, ...
For Aspect-Oriented Programming: XCSharp
defines interfaces for code injection /

4 N

Enterprise Computing Basics

Enterprise: Business Critical apissiont appisation2

Basic Concepts: g | HI Poges °T":2?':| Facnine

« Enterprise Application -

" ISP Pages Web
Tier

* Presentation Logic J2EE

e o aar\r;r
* Business LOgiC Entorprico Bu.!i_ii;:si achine
+ EIS (Database) . :I pusien
» Multi Ter Application Tier Machine

KCIient, Web, Business, EIS Tiers j

0001

-

~

J2EE Basics

Three Editions to the Java Platform:
Java 2 Micro Edition (Cell Phones, PDAs, ...)
Java 2 Standard Edition (Desktops)
Java 2 Enterprise Edition (Enterprise Apps)
Same language, different libraries
Goal of J2EE: Reduce time, cost and
complexity of developing enterprise apps
Developers should focus on business logic
They should buy all other services

4 N

J2EE Components & Services

EJB: Enterprise Java Beans
Server-side components / services
Run on an EJB Application Server

Application Server services

Thread management, logging, security, failover,
clustering, load balancing, multiple applications,
naming service, connection management,
scheduling, transactions, hot deployment,

remote administration, ...

- /

4 N

The J2EE Standard

For Developers
APIs for writing beans and accessing services
Configuration & other file formats
For Servers
Protocols, required services, inter-operability
The app servers market
IBM WebWphere, BEA WebLogic, JBoss, ...

Microsoft provides similar services in Windows

-

4 N

Evolution: Web Services
Web Services (NET / Java)

New standard protocols for interfaces,
method calls, and object creation

Based on HTTP and XML

“Share schema, not class”
Independent deployment and versioning
Heterogeneous platforms

Strong security facilities in the standard
K Authentication, Single sign-on, Encryption, /

4 N

Developing Web Services

This (mostly) applies to both .NET and Java

Developing a service
Werite a normal class in your favorite language
Use attributes to define web methods / classes
Create a deployment file, and publish it to a server
Developing a client
Choose “Add Web Reference” and write a URL
An interface in your favorite language is generated
Full debugging, type safety, metadata, intellisense, ...

k All “plumbing” is transparent in both ways /

4 N

Why Web Services are Important
New WWW applications

Software and not humans navigate the web

Strong security -> economic transactions
Simplifies integration between apps

Major issue facing large organizations today

Many systems, platforms, formats, upgrades, ...
A Real heterogeneous platform

- /

Intro to Software Engineering

David Talby

4 N

The Software Crisis

In Numbers
84% of software projects are not on time
31% of software projects never complete
~60% of completed code is never used
~200 Billion $ a year lost to software bugs
In Words

Most software is buggy, unstable and insecure

A lot of software is totally unusable

k Yet, software runs the world j

-

What is Engineering

Repeatability
Ability to do a similar project again well
Same time, budget, quality are expected
Methodology
Well-defined roles: Architect, Engineer, ...
Well-defined products: Designs, Specs, Code, ...
Standard workflow of how things are done
Legal Liability
Both Civil and Criminal
Certification required for life-critical issues
Methodology & Notation are laws

4 N

State of the Software World

Large Scale
Lack of repeatability, even for small projects
Inability to provide quality software
No standard definition of roles & products
No standard for requirements, design, tests, ...
It’s a “wild west” profession

Small Scale
Developers don’t produce working software

K Developer tools are also far from perfect /

-

~

Development Methodologies

o

A methodology describes
An entire life cycle of a software product
Roles, Products, Workflow
Best Practices
eXtreme Programming
For small projects: up to 12 people, 100 stories
Rational Unified Process
For large projects: a “heavy-weight" process
A commercial product

)

4 N

Rational Unified Process

By Rational, see

Decompose large system to sub-systems
A team and development effort per system
Architects Team does overall design, sharing

Five stages of each system's life cycle

Business modeling, Requirements, Analysis & Design,
Implementation, Test

Many artifacts are not code or tests
Tterative Development

k Highly managed, highly automated process j

-

~

eXtreme Programming

By Kent Beck, see

Embrace change

Simplicity

User involvement & rapid feedback
Incremental pay-as-you-go design
Test-first programming

-

~

The XP Principles

Develop by iterations of 1-3 weeks each:

Plan (user stories) -> design (simplest!) ->
test (unit tests) -> code (and refactor)

Testing
Functional tests: in design phase
Unit tests as part of coding
Continuous Integration

-

The 12 XP Principles

~

Planning Game
Small Releases

Pair Programming

Collective Ownership

On-Site Customer - Testing
Metaphor Refactoring
Simple Design Continuous Integration

40-Hour Week

Coding Standard

Quality Work
Ref ing, 40-Hour Week
k efactoring our Wee j K j
4 N e
Summary

o

Writing Software # Delivering Products

Requirements, Architecture, Design, Code,
Integrate, Test, Deploy, Maintain, Update

The Software Crisis

Software Today
< 20% of existing code is Object-Oriented
>90% of new code is Object-Oriented
Reuse: Libraries, Components, Web Services

Major Frameworks/Platforms: Java and .NET

)

Course Summary

