
Components

David Talby

This Lecture

� What Components Are
• With Demonstrations in Delphi

� Common Object Model (COM)
• Creating and calling objects

• Distributed COM

� Component-Oriented Software

Components

� The Holy Grail of Software Engineering

Build software by connecting existing 
components in simple ways

� “Beyond Object-Oriented Software”

Small-scale success, large-scale failure

� The three parts of industry-scale reuse
• A widely used object-oriented framework

• Developers building components for it

• Other developers using them to build apps

Using Components in Delphi

� Visual Components
• Visual editors, containers, dialogs

• Use of properties, events, methods

� Database Connectivity
• Non-visual components
• Delegation & Inheritance between components

� Office Automation
• Visual & Non-Visual use

• Whole programs as components

Writing Components in Delphi
� Writing Components

• Inheritance

• Use of properties, events, methods

� 3rd Party Components
• Tens of thousands of components

• Many are freeware or shareware

• www.torry.net and others

� Delphi’s Framework
• Based on Object Pascal

• Can import components from COM, 
CORBA, COM+, EJB, Web Services

TObject

TPersistent

TComponent

TControl

TWinControl

TCustomListControl

TCustomCombo

TCustomComboBox

TComboBox

A Component’s Interface

� A component’s interface has:
• Methods - like draw() and disconnect()

• Properties – like color and name

(wrappers to getter and setter methods)
• Events – like onClick and onNetworkError
(pointer to function or list of such pointers)

� What about implementation?
• Completely unavailable to clients
• Can be one or many classes
• Can be in another language



Defining Components

� Definition: a software component is a 
module with these properties:
• It can be used by other software modules, 
called clients (not just humans)

• Only its specification (interface) is required for 
clients to use it 

• The clients and their authors do not need to be 
known to the component’s authors

Defining Components II

� Usually there’s another property:
• It can be used within a visual designer tool

• To do so, it must be derived from the 
framework the tool supports

� Commercial component frameworks
• COM (Visual Basic, Visual C++)

• JavaBeans (JBuilder, Café, WebSphere)

• Delphi (Delphi)

• .NET (Visual Studio.NET)

Comparison of Reuse Techniques

� Components are less abstract than frameworks
• Frameworks are incomplete applications: They 
compile, but they don’t run

• Components are usually framework-specific
• Frameworks make components possible

� Frameworks are less abstract than patterns
• Include actual code, not just essays
• Specific to one programming language
• Specific to one application domain
• Many patterns came from successful FWs

COM: Common Object Model

� Most widely used component FW on earth

� Microsoft’s goals in the early 90’s
• Attracting developers to Windows

• Combining the speed and power of C++ with the 
ease of use of Visual Basic

• Versioning of Windows UI & Services

• OLE (Object Linking & Embedding) and
Clipboard features in Office

� COM introduced in 1995 as OLE 2.0

A Binary Standard

� COM objects are used via interface pointers

� Use by normal methods calls

� COM is a binary standard for doing this:
• calling methods: calling convention, argument passing

• Common data types, marshalling

• Creating and destroying objects

Supporting Interfaces

� An object can implement many interfaces
• All COM objects implement IUnknown

� IUnknown defines QueryInterface()

• Cast to another interface by giving its ID

• Implementations can be changed dynamically

� IUnknown also defines AddRef() and Release()

• COM manages memory by reference counting



Versioning

� COM interfaces are logically immutable
• Change = New version of interface

• Not enforced, but required from developers

� For example, each Office version is 
backward compatible to old interfaces:
• “Word.Application.7”, “Word.Application.8”, …

• Current (last) version is “Word.Application”

� Windows UI is updated in the same way
• Buttons, Windows, Standard dialogs, …

Creating Objects
� Create objects using the Windows API
� The Registry names a “server” – EXE or DLL –
which contains the implementation

� Object is created in server, and the “client”
receives a pointer to it

Creating Objects II

� An interface must be uniquely identified
• CoCreateInstance() receives a CLSID

• CLSID is a 128-bit globally unique identifier

• PROGID is easier: “Word.Application.10”

� The Windows Registry
\HKEY_CLASSES_ROOT\

CLSID\

{000209FF-0000-0000-C000-000000000046}\

LocalServer32 = C:\Program Files\...\WINWORD.EXE

Word.Application.10\

CLSID = {000209FF-0000-0000-C000-000000000046}

Creating Objects III
� COM “Servers”

• EXE or DLL file, with a server entry function
• DLL can be in-process or out-of-process
• Server can enquire client & context
• Request cannot specify an implementation
• OS manages DLLs and object pools

� Consequences
• Requires operating system support
• A dynamic, very expensive operation
• Works on all versions of Windows since ‘95

Calling Methods

� Simplest case: In-process DLL
• “Client” and “Server” in same process

� Calls are dispatched using virtual tables
• Same as standard C++ (multiple inheritance)
• Calling convention is also same as in C/C++
• Should be as efficient as virtual methods
• In reality slower, due to less optimization

Calling Methods II

� The COM object can be in a different process
• If it’s implemented in an EXE or out-of-process DLL
• Less efficient calls
• Shared data between clients
• Failure of either process won’t terminate the other



Calling Methods III

� The COM object can be in a different machine
• This is DCOM: Distributed COM
• Transparent: Add network location in Registry
• Each method call is very expensive

Language Support

� Any language can use COM objects
• And can be used for writing such objects

� Each language has a syntax for interfaces
• class in C++, interface in Delphi and Java

� Compiler Support Required
• Handle COM method calls transparently
• Replace creation operator by CoCreateInstance()

• Replace casting with QueryInterface()

• Call AddRef() and Release() in = operator code
• Wrap returned error codes with exceptions

Defining COM Interfaces

� Microsoft Interface Definition Language
• Interface names, CLSID and properties

• Method names, argument names and types

• Properties & events have a special syntax

• Data Types: Primitives, arrays, COM objects

• ‘in’ and ‘out’ parameters, and other settings

� MIDL Compiler
• Produces “Type Libraries” (*.TLB Files)

• Used by compilers & tools that support COM

Writing a COM Server

� Start a new “COM Server” project
• Development tool generates code for server 
entry, register and unregister functions

• Development tool generates empty IDL file

� Define interfaces and implement them
• Define interface in IDL (or visual tool)

• Implement in your favorite language

� Build the DLL or EXE
• Then use regsvr32.exe to register it

Calling Methods Summary Distributed COM

� DCOM is COM’s extension to networks
� Location Transparency
� Language Neutrality
� Simple, two-way connection model

• Easier than a custom socket-based protocol

� Connection Management
• Shared connection pool between clients

� Distributed garbage collection
• Efficient ping: per machine, groups all remote object 
IDs, and piggy- backed on messages



Distributed COM II

� Scalability
• Thread pool, multi-processing

� Protocol Neutrality: UDP, TCP, others
� Flexible deployment & redeployment

• No server downtime during redeployment
• Exploits COM’s support for versioning

� Referral: passing remote references
• A directory of waiting remote chess players
• A load-balancing broker component
• DCOM automatically short-circuits middleman

Distributed COM III

� Security
• Transparent: NT’s basis & online admin tool
• Can also be programmatic
• Any NT security provider – supports encryption 
and many authentication protocols

� Distributed Components
• Injecting server code into the client side
• An infrastructure for load balancing and fault 
tolerance (hot failover, recovery cache)

• Used by MTS for distributed transactions

DCOM Design Issues

� Each method call is very expensive
• Violate command-query separation to minimize 
network round-trips (=method calls)

• Also useful for ordinary COM objects

� Stateless components are more scalable
� Transparent proxy & stub model is also 
useful when objects are a different:
• Thread
• Security Context
• Transaction Context

COM Based Technologies

� All ’90s MS technologies for software 
developers are based on COM
• Tied to the Windows platform

• Efficient, scalable, language neutral

� A few examples
• ActiveX: “applications” inside web browsers

• MTS and COM+: Transaction services

• VBA and Windows Scripting

• DirectX, Internet Explorer, ODBC & ADO, ...

The Competition: JavaBeans

� The Java Component Model
• Component = Can be used in a visual designer

• A component is a Java class

• With a default constructor

� Relies heavily on reflection
• Property = defined by getAbc() and setAbc()

• Event = same as Swing’s event model

� With added information in java.beans.*
• Names, version, company, …

The Competition: RMI, EJB

� Remote Method Invocation
• Java-to-Java transparent remote objects

• Generates proxy and stub, like DCOM

• Supports exceptions, unlike (D)COM

• Not protocol neutral, less admin tools

• Easier to learn: Java only

� Enterprise JavaBeans
• Adds distributed transaction services

• An open standard, with multiple vendors

• All non-MS big names support it



Making a Choice

� The COM+/EJB issue is a huge economic 
struggle between giant companies

� The basic criteria:
• COM based: One OS, language independent

• Java based: One language, OS independent

� But there’s much more to it than that

� Microsoft is now upgrading to .NET
• Web services: finding components on the net

• Much improved language inter-operability

Summary: Back to Basics

� What is a component?
• A software module that can be used by
other modules, knowing only its interface

• Written “inside” a framework

• Can usually be inserted into a visual designer

� Components are key to large-scale reuse
• Delphi, COM, JavaBeans reuse is a success

• Object-oriented methods alone aren’t

• A few leading frameworks lead the industry

• Write your software as components!


