Aspect-Oriented
Programming

David Talby

4 N
What is it?

A new addition to the world of programming
New concepts & language constructs
New tools (aspect compiler, browser, debugger)
Many examples & patterns of practical use
A lot of hype

Key advantage: separation of concerns

Cross-cutting concerns: those that are not well
encapsulated in the usual OOD way — classes

K Often appear in the form of ‘code guidelines’ /

4 N

For Example

public class SomeClass extends OtherClass {
// Core data members
// Other data members: Log stream, consistency flag

public void DoSomething(Operationinformation info) {
// Ensure authentication
/I Ensure info satisfies contracts
/I Lock the object in case other threads access it
/I Ensure the cache is up to date
/I Log the start of operation
/| ==== Perform the core operation ====
/I Log the comgletion of operation
//' Unlock the object
/I Do Standard Exception Handling

}
K) /I More operations similar to above /

4 N

Cross-Cutting Concerns
Logging

Debugging

Profiling (Performance)

Security & Authentication
Exception Handling

Design by Contract

Event Handling

Synchronization

Resource Pooling

K Others... /

4 N

Current Solutions

Problems: Code Tangling, Code Scattering
Reduced reuse, speed, quality, ability to change
Design patterns can solve some problems
Proxy, Template Method solve some cases
Visitor, Strategy solve other cases
Frameworks provide domain-specific solutions
But it's not a solution for cases in which:
Polymorphism can’t be used (exceptions, DbC)
Concerns are only used during debug, and change a lot

The designer didn’t plan for a given concern
K The framework wasn’t designed to consider a concern /

4 N

Separation of Concerns

Separate logical concerns should be in separate
modules of code — called aspects

Logging

Tmplementation
Modules

-

OoOoD & AOP

Object-Oriented Programming
Basic concept of modularity : the class
Good for common concerns (inheritance)
A program is a set of classes
Aspect-Oriented Programming
Basic concept of modularity: the aspect
Good for unrelated concerns (pointcuts)
A program is a set of aspects

K AOP complements OOD

AspectJ

~

It includes a language specification
A set of additions to the Java language
A compiler that creates standard Java bytecode
It includes a set of tools
Aspect-aware debugger and documentation tool
Visual aspect browser
K Integration with popular IDEs

Aspectd is the leading AOP implementation,
and the only full, stable and widely used one

-

Hello, World

Let’s start with a simple example

/I HelloWorld.java
public class HelloWorld {
public static void say(String message) {
System.out.printin(message);

}

public static void sayToPerson(
String message, String name) {
System.out.printin(name + ", " + message);

}

K}

-

Polite Hello, World

Guess what the following aspect does

/I MannersAspect.java
public MannersAspect {
callSayMessage() :
(public static void HelloWorld.say*(..));

: callSayMessage() {
System.out.printin("Good day!");

: callSayMessage() {
System.out.printin("Thank you!");

K}

)

-

Running the Example

Just Compile and Run
ajc HelloWorld.java MannersAspect.java (or *.aj)
ajc —argfile PoliteHelloWorld.Ist

What'’s in the example

A defines at which points in the dynamic
execution of the program — at what -
extra code should be inserted

new code runs, and that actual code

K An encapsulates pointcuts and advices /

An defines when, relative to the join point, the

-

Join Points

~

Aspectd makes these join points available:
Method call and execution
Constructor call and execution
Read/write access to a field
Exception throwing or handler execution
Object and class initialization execution

A join point may include other join points
K A join point may have a context

Well-defined points in a program’s execution

)

-

Pointcuts

Definition of a collection of join points

Most common kind — the call pointcut:
(public void MyClass.myMethod(String))
void MyClass.myMethod(..))
* MyClass.myMethod*(..)) // * means wildcard
* MyClass.myMethod*(String,..))

MyClass. (-.)
MyClass+. (-.)) /I + is subclass wildcard

(
(
(
(* *.myMethod(..))
(
(
(

public * com.mycompany.*.*(..)) /

4 N

Example 1: Tracing

Print debug traces of method calls and their
timing for all methods of class MyClass

Note the use of anonymous pointcuts

public MyClassTrace {
() : call(public * MyClass.*(..)) {
System.out.printin("Before: " + +""

System.currentTimeMillis()); }

() : call(public * MyClass.*(..)) {
System.out.printin("After: " + +""
System.currentTimeMillis()); }

\ /

thisJoinPoint

_

A useful reflection-like feature, can provide:

the kind of join point that was matched

the source location of the current join point

normal, short and long string representations of the current
join point

actual argument(s) to the method / field of the join point
signature of the method or field of the current join point

the target object

the currently executing object

a reference to the static portion of the object holding the join

point; also available in /

4 N

Example 2: Tracing Revisited

First solution using an aspect:

TraceEntities {

myClasses():
within(MyClass+);

myConstructors():
myClasses() && call((--);

myMethods():
myClasses() && call(* *(..));

(): myConstructors() {
Trace.traceEntry(“Before Constructor: "+
.getSignature()); }

(): myMethods() {

Trace.traceEntry(“Before Method: " +
K .getSignature()); } /

-

Within and CFlow Pointcuts

Be inside lexical scope of class or method
(MyClass) // of class
(* MyClass.myMethod(..)) // of method
Be inside the control flow of another pointcut
If a() calls b(), then b() is inside a()’s control flow
(call(* MyClass.myMethod(..))
Any pointcut can be used as the base of
Control flow is decided in runtime, unlike

is similar, but ignores join points
that are already in PCut /

4 N

Example 3: Contract Enforcement

Useful to check assertions, use Design by
Contract, or validate framework assumptions

The following checks that only certain factory
methods can put objects in a central Registry

RegistrationProtection {
register():
(void Registry.register(Element));
canRegister():
(static * Element.make*(..));

(): register() && !canRegister() {
throw new lllegalAccessException("lllegal call " +
K thisdoinPoint); } }

~

Example 4: Profiling

_

It's easy to ask very specific questions, and
quickly modify them, all outside the real code

Note that wouldn’t work here

SetsInRotateCounting {
int rotateCount = 0;
int setCount = 0;
(): (void Line.rotate(double)) {
rotateCount++; }

():
(void Point.set*(int)) &&
(call(void Line.rotate(double))) { /

setCount++:} }

4 N

Context-Based Pointcuts

Pointcuts based on dynamic, runtime context
(JComponent+) // ‘this’ object inherits from JComponent
(MyClass) // match target object of current method call
(String,..,int) /I match order & type of arguments
(IOException) // type of argument or exception handler
Dynamic — so these are not equal:
(* Object.equals(String))
(* Object.equals(Object)) && (String))
Always used in conjunction with other pointcuts

-

~

Exposing Context in Pointcuts

A pointcut can define arguments
Each argument must have a type
Each must be bound by a context-based pointcut
The arguments can be passed to the advice

Here’s another custom tracing example:

TracePoint {
setXY(FigureElement fe, int x, int y):
(void Point.setXY(int, int)) && (fe) && (%, ¥);
(FigureElement fe, int x, int y): setXY(fe, X, y) {
System.out.printin(fe + "movedto ("+x+", " +y +").");

! /

4 N

Example 5: Pre- and Post-Conditions

Verify that setX() and setY() in class Point do not
receive out-of-bound arguments
PointBoundsChecking {
setX(int x): call(void Point.setX(int)) && args(x));
setY(int y): call(void Point.setY(int)) && args(y));
(int x): setX(x) {
if (x < MIN_X || x> MAX_X)
throw new lllegalArgumentException("x out of bounds"); }
(inty): setY(y) {
if (y<MIN_Y ||y > MAX_Y)
throw new lllegalArgumentException("y out of bounds"); } }

\ /

-

~

Execution Pointcuts

_

Join point in which a method starts executing
(* MyClass.myMethod*(..));
(MyClass+.new(..))

Behaviors different form pointcuts
In , the and pointcuts will refer to
the text of the called method
In , The dynamic context pointcuts will refer to the

context of the called method
does not catch calls to (non-static) super methods
Use to match calling a signature,
use for actually running a piece of code/

4 N

Advice

Defines the code to run, and when to run it
Advide kinds: , and
Before advice runs before the join point
After advice has three variants
(): register() { registry.update(); }
() move() { screen.update(); }
() (Error e): {log.write(e); }
Around advice surrounds original join point
Can replace it completely, and return a different value
Can run it one or more times with

K Can run it using different arguments /

4 N

Example 6: Resource Pooling

A global connection pool should be used
Original code is oblivious of the pool, so the following code
surrounds Connection.close()
To complete the implementation, the constructor of class
Connection must be surrounded as well

void (Connection conn) :
(Connection.close()) && (conn) {
if (enablePooling) {
connectionPool.put(conn);
}else {

}

N /

4 N

More Pointcut Kinds

Field access
(PrintStream System.out)
(int MyClass.x)
Exception handling (entering catch execution)
(RemoteException)
(IOException+)
(CreditCard*)
Conditional tests
(EventQueue.isDispatchThread())
The Boolean expression can use static methods and fields,

K fields of the enclosing aspect, and /

4 N

Example 7: Error Logging

Log all errors (not exceptions) thrown out of package
com.acme.* t0 a log

Use to prevent logging an error twice, in case
it was raised internally in com.acme.*
PublicErrorLogging {
publicMethodCall():
(public * com.acme.*.*(..));
() (Error e):
publicMethodCall() &&
! (publicMethodCall())
(Logger.traceLevel() > 0) {

K } Logger.write(e); } /

4 N

Aspects

Unit that combines pointcuts and advices
Can contain methods and fields

Can extend classes or implement interfaces
Cannot create an ‘aspect object’ using new
Aspects and pointcuts can be abstract

Classes can define pointcuts too
These must be declared static
This is not recommended practice
Advices can'’t be declared inside classes /

4 N

Fields in Methods in Aspects

Fields can be used to collect data
See

Methods can be used as in any regular class

YetAnotherLoggingAspect {
private static Log log = new Log();
public static void clearLog() { log.clear(); }
publicMethodCall(): (public * com.acme.*.*(..));
(Error e):
publicMethodCall() { log.write(e); } }

Aspects are by default singletons
K But there are other supported association types:/

4 N

Example 7: Authentication

Abstract aspects allow even more reuse

Here’s a generic aspect for authentication
through a singleton Authenticator:

/I AbstratcAuthenticationAspect.java
public AbstractAuthenticationAspect {
public opsNeeddingAuthentication();
before() : opsNeeddingAuthentication() {
// Perform authentication. If not authenticated,

Authenticator.authenticate();

_ 1}

// let the thrown exception propagate.

4 N

Example 7: Authentication Il

A concrete aspect for a database app:

/I DatabaseAuthenticationAspect.java
public DatabaseAuthenticationAspect
AbstractAuthenticationAspect {

-

~

Example 8: Functional Guidelines

public SlowMethodAspect {

“Every time a slow operation is used, the
cursor should turn into a wait cursor”

slowMethods(UIManager ui);
void (UIManager ui) :
slowMethods(ui) {
Cursor originalCursor = ui.getCursor();
Cursor waitCursor = Cursor. WAIT_CURSOR;

public opsNeeddingAuthentication(): ui.setCursor(waitCursor);
(* DatabaseServer.connect()); try { (ui):
} } finally { ’
ui.setCursor(originalCursor);
\ / N /
Functional Guidelines Introductions

Code of aspected classes doesn’t change
Multiple aspects can co-exist

Same pattern is useful for many other cases
Security
Resource Pooling, Caching, Copy on write, ...
Creation by Factory, Lazy Creation, ...
Multi-Thread Synchronization
Transaction Definition
Monitoring System Notification

Add fields to an existing class

Add methods to an existing class

Add Constructors

K Standard Exception Handling /

_

Modify the static form of a class

private boolean Server.disabled = false;
public String Foo.name;

public int Point.getX() { return x; }
public String (Point || Line).getName() { return name; }

public Point. (int x, inty) { this.x = x; this.y = y; } /

4 N

Introductions Il

Extend an existing class with another

: Point GeometricObject;
Implement an interface with an existing class
: Point Comparable;

“Soften” Exception
Convert checked exceptions to unchecked ones

Wraps exceptions in org.aspectj.lang.SoftException
: CloneNotSupportedException:

-

~

Example 9: Adding Mixins

(Object clone());

\ /

\

Given a standard Point class, with private
fields x,y we can make it cloneable:
CloneablePoint {

: Point Cloneable;
: CloneNotSupportedException:
(Object clone());

Object Point.clone() { return super.clone(); }

}
Being Cloneable is an example of a mixin, like
Comparable, Serializable or Persistent /

4 N

Introductions: Compiler Warnings

Add a compile-time warning or error
Issued if there is a chance that code will reach
a given pointcut
Warning / error string can be defined
: Pointcut: String;
: Pointcut: String;
The pointcuts must be statically determinable

Not allowed:
\ %

4 N

Example 10: Flexible Access Control

Control method access beyond private,
protected and public declarations

Violations must be found at compile time
For example, class Product can only be
initialized and configured by specific classes

public Product {
public Product() {
/* constructor implementation */ }
public void configure() {

K /* configuration implementation */ } /

4 N

Example 10: Flexible Access Control Il

Use to define access policy

FlagAccessViolation {
factoryAccessViolation()
(Product.new(..)) && ! (ProductFactory+);
configuratorAccessViolation()
(* Product.configure(..)) &&
! (ProductConfigurator+);

: factoryAccessViolation() ||
configuratorAccessViolation()

: "Access control violation";

\ /

4 N

Summary: The Syntax

Pointcuts

call, execution, within, withincode, cflow, cflowbelow

this, target, args, if

thisJoinPoint, thisJoinPointStaticPart
Advices

before, after (throwing & returning), around (proceed)
Aspects

Fields & methods, Abstract aspects & pointcuts
Introductions

Add fields, methods and constructor

declare parents, declare soft
k declare error, declare warning /

4 N

Summary: The Examples

Development Time Examples

1,2: Tracing - Printing “Debug Messages”

3: Contract enforcement

4: Profiling with fine-grained control

5: Pre- and post-conditions

10: Flexible method access control
Production Time Examples

6: Resource pooling

7: Logging (of errors)

8: Modularizing functional guidelines
K 9: Implementing Mixins: Making classes Cloneable /

4 N

Summary

AOP is a strong complement to OOD
Separation of concerns for unrelated aspects
Less code, more modular, easier to modify
Many practical uses, a lot of hype

Aspectd is the primary implementation today
Many features, good tools and active support
Yet the entire platform is still in ‘beta version’

A good tool, during development for now

_ /

