
Aspect-Oriented

Programming

David Talby

What is it?

� A new addition to the world of programming

• New concepts & language constructs

• New tools (aspect compiler, browser, debugger)

• Many examples & patterns of practical use

• A lot of hype

� Key advantage: separation of concerns

• Cross-cutting concerns: those that are not well
encapsulated in the usual OOD way – classes

• Often appear in the form of ‘code guidelines’

For Example
public class SomeClass extends OtherClass {

// Core data members
// Other data members: Log stream, consistency flag

public void DoSomething(OperationInformation info) {
// Ensure authentication
// Ensure info satisfies contracts
// Lock the object in case other threads access it
// Ensure the cache is up to date
// Log the start of operation
// ==== Perform the core operation ====
// Log the completion of operation
// Unlock the object
// Do Standard Exception Handling

}
// More operations similar to above

}

Cross-Cutting Concerns

� Logging

� Debugging

� Profiling (Performance)

� Security & Authentication

� Exception Handling

� Design by Contract

� Event Handling

� Synchronization

� Resource Pooling

� Others…

Current Solutions

� Problems: Code Tangling, Code Scattering

• Reduced reuse, speed, quality, ability to change

� Design patterns can solve some problems

• Proxy, Template Method solve some cases

• Visitor, Strategy solve other cases

� Frameworks provide domain-specific solutions

� But it’s not a solution for cases in which:

• Polymorphism can’t be used (exceptions, DbC)

• Concerns are only used during debug, and change a lot

• The designer didn’t plan for a given concern

• The framework wasn’t designed to consider a concern

Separation of Concerns

� Separate logical concerns should be in separate
modules of code – called aspects

OOD & AOP

� Object-Oriented Programming

• Basic concept of modularity : the class

• Good for common concerns (inheritance)

• A program is a set of classes

� Aspect-Oriented Programming

• Basic concept of modularity: the aspect

• Good for unrelated concerns (pointcuts)

• A program is a set of aspects

� AOP complements OOD

AspectJ

� AspectJ is the leading AOP implementation,

and the only full, stable and widely used one

� It includes a language specification

• A set of additions to the Java language

• A compiler that creates standard Java bytecode

� It includes a set of tools

• Aspect-aware debugger and documentation tool

• Visual aspect browser

• Integration with popular IDEs

Hello, World

� Let’s start with a simple example

// HelloWorld.java
public class HelloWorld {

public static void say(String message) {
System.out.println(message);

}

public static void sayToPerson(
String message, String name) {

System.out.println(name + ", " + message);
}

}

Polite Hello, World

� Guess what the following aspect does

// MannersAspect.java
public aspect MannersAspect {

pointcut callSayMessage() :
call(public static void HelloWorld.say*(..));

before() : callSayMessage() {
System.out.println("Good day!");

}

after() : callSayMessage() {
System.out.println("Thank you!");

}
}

Running the Example

� Just Compile and Run

• ajc HelloWorld.java MannersAspect.java (or *.aj)

• ajc –argfile PoliteHelloWorld.lst

� What’s in the example

• A Pointcut defines at which points in the dynamic
execution of the program – at what Join Points –

extra code should be inserted

• An Advice defines when, relative to the join point, the

new code runs, and that actual code

• An Aspect encapsulates pointcuts and advices

Join Points

� Well-defined points in a program’s execution

� AspectJ makes these join points available:

• Method call and execution

• Constructor call and execution

• Read/write access to a field

• Exception throwing or handler execution

• Object and class initialization execution

� A join point may include other join points

� A join point may have a context

Pointcuts

� Definition of a collection of join points

� Most common kind – the call pointcut:
• call(public void MyClass.myMethod(String))

• call(void MyClass.myMethod(..))

• call(* MyClass.myMethod*(..)) // * means wildcard

• call(* MyClass.myMethod*(String,..))

• call(* *.myMethod(..))

• call(MyClass.new(..))

• call(MyClass+.new(..)) // + is subclass wildcard

• call(public * com.mycompany.*.*(..))

Example 1: Tracing

� Print debug traces of method calls and their
timing for all methods of class MyClass

� Note the use of anonymous pointcuts

public aspect MyClassTrace {

before() : call(public * MyClass.*(..)) {
System.out.println("Before: " + thisJoinPoint + " " +

System.currentTimeMillis()); }

after() : call(public * MyClass.*(..)) {
System.out.println("After: " + thisJoinPoint + " " +

System.currentTimeMillis()); }
}

thisJoinPoint

� A useful reflection-like feature, can provide:

� the kind of join point that was matched

� the source location of the current join point

� normal, short and long string representations of the current
join point

� actual argument(s) to the method / field of the join point

� signature of the method or field of the current join point

� the target object

� the currently executing object

� a reference to the static portion of the object holding the join
point; also available in thisJoinPointStaticPart

Example 2: Tracing Revisited

� First solution using an aspect:
aspect TraceEntities {

pointcut myClasses():
within(MyClass+);

pointcut myConstructors():
myClasses() && call(new(..));

pointcut myMethods():
myClasses() && call(* *(..));

before (): myConstructors() {
Trace.traceEntry(“Before Constructor: "+

thisJoinPointStaticPart.getSignature()); }
before (): myMethods() {

Trace.traceEntry(“Before Method: " +
thisJoinPointStaticPart.getSignature()); }

Within and CFlow Pointcuts

� Be inside lexical scope of class or method
• within(MyClass) // of class

• withincode(* MyClass.myMethod(..)) // of method

� Be inside the control flow of another pointcut
• If a() calls b(), then b() is inside a()’s control flow

• cflow (call(* MyClass.myMethod(..))

• Any pointcut can be used as the base of cflow

• Control flow is decided in runtime, unlike within

• cflowbelow(Pcut) is similar, but ignores join points
that are already in PCut

Example 3: Contract Enforcement

� Useful to check assertions, use Design by
Contract, or validate framework assumptions

� The following checks that only certain factory
methods can put objects in a central Registry

aspect RegistrationProtection {
pointcut register():

call(void Registry.register(Element));
pointcut canRegister():

withincode(static * Element.make*(..));
before(): register() && !canRegister() {

throw new IllegalAccessException("Illegal call " +
thisJoinPoint); } }

Example 4: Profiling

� It’s easy to ask very specific questions, and
quickly modify them, all outside the real code

� Note that withincode wouldn’t work here

aspect SetsInRotateCounting {
int rotateCount = 0;
int setCount = 0;
before(): call(void Line.rotate(double)) {

rotateCount++; }
before():

call(void Point.set*(int)) &&
cflow(call(void Line.rotate(double))) {

setCount++; } }

Context-Based Pointcuts

� Pointcuts based on dynamic, runtime context
• this(JComponent+) // ‘this’ object inherits from JComponent

• target(MyClass) // match target object of current method call

• args(String,..,int) // match order & type of arguments

• args(IOException) // type of argument or exception handler

� Dynamic – so these are not equal:

• call(* Object.equals(String))

• call(* Object.equals(Object)) && args(String))

� Always used in conjunction with other pointcuts

Exposing Context in Pointcuts

� A pointcut can define arguments

• Each argument must have a type

• Each must be bound by a context-based pointcut

• The arguments can be passed to the advice

� Here’s another custom tracing example:

aspect TracePoint {
pointcut setXY(FigureElement fe, int x, int y):

call(void Point.setXY(int, int)) && target(fe) && args(x, y);

after(FigureElement fe, int x, int y): setXY(fe, x, y) {

System.out.println(fe + " moved to (" + x + ", " + y + ").");

} }

Example 5: Pre- and Post-Conditions

� Verify that setX() and setY() in class Point do not
receive out-of-bound arguments

aspect PointBoundsChecking {

pointcut setX(int x): call(void Point.setX(int)) && args(x));

pointcut setY(int y): call(void Point.setY(int)) && args(y));

before(int x): setX(x) {
if (x < MIN_X || x > MAX_X)

throw new IllegalArgumentException("x out of bounds"); }

before(int y): setY(y) {

if (y < MIN_Y || y > MAX_Y)

throw new IllegalArgumentException("y out of bounds"); } }

Execution Pointcuts

� Join point in which a method starts executing

• execution(* MyClass.myMethod*(..));

• execution(MyClass+.new(..))

� Behaviors different form call pointcuts

• In execution, the within and withincode pointcuts will refer to
the text of the called method

• In execution, The dynamic context pointcuts will refer to the

context of the called method

• call does not catch calls to (non-static) super methods

� Use call to match calling a signature,

use execution for actually running a piece of code

Advice

� Defines the code to run, and when to run it

� Advide kinds: before(), after() and around()

� Before advice runs before the join point

� After advice has three variants
• after(): register() { registry.update(); }

• after() returning move() { screen.update(); }

• after() throwing (Error e): { log.write(e); }

� Around advice surrounds original join point
• Can replace it completely, and return a different value

• Can run it one or more times with proceed()

• Can run it using different arguments

Example 6: Resource Pooling

� A global connection pool should be used
• Original code is oblivious of the pool, so the following code

surrounds Connection.close()

• To complete the implementation, the constructor of class
Connection must be surrounded as well

void around(Connection conn) :
call(Connection.close()) && target(conn) {

if (enablePooling) {
connectionPool.put(conn);

} else {
proceed();

}
}

More Pointcut Kinds

� Field access
• get(PrintStream System.out)

• set(int MyClass.x)

� Exception handling (entering catch execution)

• handler(RemoteException)

• handler(IOException+)

• handler(CreditCard*)

� Conditional tests
• if(EventQueue.isDispatchThread())

• The Boolean expression can use static methods and fields,
fields of the enclosing aspect, and thisJoinPoint

Example 7: Error Logging

� Log all errors (not exceptions) thrown out of package
com.acme.* to a log

� Use cflow() to prevent logging an error twice, in case
it was raised internally in com.acme.*

aspect PublicErrorLogging {

pointcut publicMethodCall():
call(public * com.acme.*.*(..));

after() throwing (Error e):

publicMethodCall() &&

!cflow(publicMethodCall())

if (Logger.traceLevel() > 0) {
Logger.write(e); }

}

Aspects

� Unit that combines pointcuts and advices

� Can contain methods and fields

� Can extend classes or implement interfaces

� Cannot create an ‘aspect object’ using new

� Aspects and pointcuts can be abstract

� Classes can define pointcuts too

• These must be declared static

• This is not recommended practice

• Advices can’t be declared inside classes

Fields in Methods in Aspects

� Fields can be used to collect data
• See example 4 – profiling

� Methods can be used as in any regular class
aspect YetAnotherLoggingAspect {

private static Log log = new Log();
public static void clearLog() { log.clear(); }
pointcut publicMethodCall(): call(public * com.acme.*.*(..));
after() throwing (Error e):

publicMethodCall() { log.write(e); } }

� Aspects are by default singletons
• But there are other supported association types:

perthis, pertarget, percflow, percflowbelow

Example 7: Authentication

� Abstract aspects allow even more reuse

� Here’s a generic aspect for authentication
through a singleton Authenticator:

// AbstratcAuthenticationAspect.java
public abstract aspect AbstractAuthenticationAspect {

public abstract pointcut opsNeeddingAuthentication();
before() : opsNeeddingAuthentication() {

// Perform authentication. If not authenticated,
// let the thrown exception propagate.
Authenticator.authenticate();

} }

Example 7: Authentication II

� A concrete aspect for a database app:

// DatabaseAuthenticationAspect.java

public aspect DatabaseAuthenticationAspect

extends AbstractAuthenticationAspect {

public pointcut opsNeeddingAuthentication():

call(* DatabaseServer.connect());

}

Example 8: Functional Guidelines

� “Every time a slow operation is used, the
cursor should turn into a wait cursor”

public abstract aspect SlowMethodAspect {
abstract pointcut slowMethods(UIManager ui);
void around(UIManager ui) :

slowMethods(ui) {
Cursor originalCursor = ui.getCursor();
Cursor waitCursor = Cursor.WAIT_CURSOR;
ui.setCursor(waitCursor);
try {

proceed(ui);
} finally {

ui.setCursor(originalCursor);
} } }

Functional Guidelines

� Code of aspected classes doesn’t change

� Multiple aspects can co-exist

� Same pattern is useful for many other cases
• Security

• Resource Pooling, Caching, Copy on write, …

• Creation by Factory, Lazy Creation, …

• Multi-Thread Synchronization

• Transaction Definition

• Monitoring System Notification

• Standard Exception Handling

Introductions

� Modify the static form of a class

� Add fields to an existing class
• private boolean Server.disabled = false;

• public String Foo.name;

� Add methods to an existing class
• public int Point.getX() { return x; }

• public String (Point || Line).getName() { return name; }

� Add Constructors
• public Point.new(int x, int y) { this.x = x; this.y = y; }

Introductions II

� Extend an existing class with another
• declare parents: Point extends GeometricObject;

� Implement an interface with an existing class
• declare parents: Point implements Comparable;

� “Soften” Exception

• Convert checked exceptions to unchecked ones

• Wraps exceptions in org.aspectj.lang.SoftException

• declare soft: CloneNotSupportedException:
execution(Object clone());

Example 9: Adding Mixins

� Given a standard Point class, with private

fields x,y we can make it cloneable:
aspect CloneablePoint {

declare parents: Point implements Cloneable;

declare soft: CloneNotSupportedException:
execution(Object clone());

Object Point.clone() { return super.clone(); }
}

� Being Cloneable is an example of a mixin, like

Comparable, Serializable or Persistent

Introductions: Compiler Warnings

� Add a compile-time warning or error

� Issued if there is a chance that code will reach

a given pointcut

� Warning / error string can be defined

� declare warning: Pointcut: String;

� declare error: Pointcut: String;

� The pointcuts must be statically determinable

• Not allowed: this, target, args, if, cflow, cflowbelow

Example 10: Flexible Access Control

� Control method access beyond private,

protected and public declarations

� Violations must be found at compile time

� For example, class Product can only be

initialized and configured by specific classes

public class Product {
public Product() {

/* constructor implementation */ }
public void configure() {

/* configuration implementation */ }

Example 10: Flexible Access Control II

� Use declare error to define access policy
aspect FlagAccessViolation {

pointcut factoryAccessViolation()

: call(Product.new(..)) && !within(ProductFactory+);

pointcut configuratorAccessViolation()
: call(* Product.configure(..)) &&

!within(ProductConfigurator+);
declare error

: factoryAccessViolation() ||

configuratorAccessViolation()
: "Access control violation";

}

Summary: The Syntax

� Pointcuts
• call, execution, within, withincode, cflow, cflowbelow

• this, target, args, if

• thisJoinPoint, thisJoinPointStaticPart

� Advices
• before, after (throwing & returning), around (proceed)

� Aspects
• Fields & methods, Abstract aspects & pointcuts

� Introductions
• Add fields, methods and constructor

• declare parents, declare soft

• declare error, declare warning

Summary: The Examples

� Development Time Examples

• 1,2: Tracing - Printing “Debug Messages”

• 3: Contract enforcement

• 4: Profiling with fine-grained control

• 5: Pre- and post-conditions

• 10: Flexible method access control

� Production Time Examples

• 6: Resource pooling

• 7: Logging (of errors)

• 8: Modularizing functional guidelines

• 9: Implementing Mixins: Making classes Cloneable

Summary

� AOP is a strong complement to OOD

• Separation of concerns for unrelated aspects

• Less code, more modular, easier to modify

• Many practical uses, a lot of hype

� AspectJ is the primary implementation today

• Many features, good tools and active support

• Yet the entire platform is still in ‘beta version’

� A good tool, during development for now

