
David Talby ���������	
����

Design Patterns

������ ��		�
��

David Talby

��������	
��

� Representing other objects
• Proxy, Adapter, Façade

� Re-routing method calls
• Chain of Responsibility

� Coding partial algorithms
• Template Method

� The Singleton Pattern
� Patterns Summary

�
�������

� Provide a placeholder for another object,
to control access to it

� For example, we’d like to defer loading
the images of a document until we must
display it

�������
���� ��	�

� Only load images when required
� Client code must not know whether lazy

load is used or not
� Images may be loaded from a file, a

database or a network
• Such code should be encapsulated
• Should be easy to add variations, such as

security and compression

�������
	���

� Define a new graphic ImageProxy, which
holds an image’s file name

� Holds an uninitialized Image object
� When its draw() method is called:

draw() {
if (image == NULL)

image = load(filename);
image->draw();

}

�������
	������

� Many ways to implement load:
• Read from a file or database
• Use a complex network protocol
• Use encryption, compression, …
• Compute the returned object

� Any such complex logic is well
encapsulated in the proxy

� The proxy can hold part of Image’s data
for efficiency

David Talby ���������	
����

Design Patterns �

������� �������������	

� The Proxy vocabulary
• Virtual Proxy – creates expensive objects on demand

• Remote Proxy – a local representative of an object in
another address space

• Protection Proxy – controls access to the original
object

• Smart Pointers – overload regular pointers with
additional actions

�������������	���

� Uses of smart pointers
• Reference counting
• Synchronization (lock management)
• Profiling and statistics
• Copy-on-write
• Cache coherence
• Pooling

� Smart pointers are easy in C++ thanks to
overloading = and –>

�������������	����

� Proxy is very much like Decorator
� Decorator = functional addition
� Proxy = technical addition

����������

� Every programming language
� Every middleware package
� Every database package

���� !"#	��

� Convert the interface of a class into
another that clients expect

� For example, We’d like to use advanced
Text and SpellCheck component that we
bought

� But Text doesn’t inherit Graphic or supply
iterators, and SpellCheck doesn’t inherit
Visitor

� We don’t have their source code

David Talby ���������	
����

Design Patterns �

�������
���� ��	�

� Convert the interface of a class into a
more convenient one

� Without the class’s source code
• No compilation dependencies

� The class may be a module in a non-
object oriented language

�������
	���

� If you can’t reuse by inheritance, reuse by
composition:
class TextGraphic

: public Graphic
{
public:

void draw() { text->paint(); }
// other methods adapted...

private:
BoughtTextComponent *text;

}

�������
���� ��	����

� Stacks and queues are kinds of lists, but
they provide less functionality

� LinkedQueue is a linked list implementation
of interface Queue

� We’d like to reuse LinkedList for it
� Inheritance can’t be used if children offer

less than their parents

�������
	������

� Object Adapter
• Class LinkedQueue will hold a reference to a

LinkedList and delegate requests to it
� Class Adapter

• Class LinkedQueue will inherit from both Queue
and LinkedList

• Method signatures in both classes must match
� In C++ class adapters are safer thanks to

private inheritance

�������

� Object Adapter:

����������

� Class Adapter:

David Talby ���������	
����

Design Patterns �

����������

� Using external libraries
� Reusing non O-O code
� Limiting access to classes

�$���"�"!�

� Provide a unified interface to a set of
interfaces of subsystems

� For example, a compiler is divided into
many parts
• Scanner, parser, syntax tree data structure,

optimizers, generation, …

� Most clients just compile files, and don’t
need to access inner parts

�������
���� ��	�

� Provide a simple, easy to use and
remember interface for compilation

� Keep the flexibility to tweak inner parts
when needed

�������
	���

� Define a façade Compiler class as the
entry point to the system

������� �������������	

� Advantages of a façade:
• Most users will use a very simple interface for the

complex system
• Clients are decoupled from the system
• Makes it easier to replace the entire system with

another

� Packages (Java) and namespaces (C++)
are ways to define “systems” of classes and
decide which classes are visible to the
system’s clients

David Talby ���������	
����

Design Patterns �

����������

� A Compiler or XML Parser
� Browsing objects at runtime
� The Choices O-O operating system

• The File and Memory systems

�%��&�"����'����#����(���	�

� Decouple the sender and receiver of a
message, and give more than one
receiver a chance to handle it

� For example, a context-sensitive help
system returns help on the object
currently in focus

� Or its parent if it has no help
� Recursively

�������
���� ��	�

� Allow calling for context-sensitive help from
any graphical object

� If the object can’t handle the request (it
doesn’t include help),
it knows where to forward it

� The set of possible handlers is defined and
changed dynamically

�������
	���

� Define a HelpHandler base class:

class HelpHandler
{

handleHelp() {
if (successor != NULL)
successor->handleHelp();

}
HelpHandler* successor = NULL;

}

�������
	������

� Class Graphic inherits HelpHandler

� Graphic descendants that have help to
show redefine handleHelp:
handleHelp() {

ShowMessage(“Buy upgrade”);

}

� Either the root Graphic object or
HelpHandler itself can redefine handleHelp
to show a default

�������

David Talby ���������	
����

Design Patterns �

�������������	

� Receipt isn’t guaranteed
� Usually parents initialize the successor of

an item upon creation
• To themselves or their successor

� The kind of request doesn’t have to be
hard-coded:
class Handler {

handle(Request* request) {
// rest as before

����������

� Context-sensitive help
� Messages in a multi-protocol network

service
� Handling user events in a user interface

framework
� Updating contained objects/queries in a

displayed document

�)����� #�"	����	��!

� Define the skeleton of an algorithm and let
subclasses complete it

� For example, a generic binary tree class or
sort algorithm cannot be fully implemented
until a comparison operator is defined

� How do we implement everything except
the missing part?

�������
���� ��	�

� Code once all parts of an algorithm that
can be reused

� Let clients fill in the gaps

�������
	���

� Code the skeleton in a class where only the
missing parts are abstract:
class BinaryTree<G>

{

void add(G* item) {

if (compare(item, root))

// usual logic

}

int compare(G* g1, G* g2) = 0;

}

�������
	������

� Useful for defining comparable objects in
general:
class Comparable
{

operator <(Comparable x) = 0;
operator >=(Comparable x) {

return !(this < x);
}
operator >(Comparable x) {

return !(this < x) &&
!(this == x);

}
}

David Talby ���������	
����

Design Patterns �

�������
	�������

� A very common pattern:

class HelpHandler
{

handleHelp() {
if (successor != NULL)
successor->handleHelp();

}
HelpHandler* successor = NULL;

}

�������

�������������	

� The template method is public, but the ones
it calls should be protected

� The called methods can be declared with an
empty implementation if this is a common
default

� This template can be replaced by passing
the missing function as a template parameter

� Java sometimes requires more coding due to
single inheritance

����������

� So fundamental that it can be found almost
anywhere

� Factory Method is a kind of template
method specialized for creation

*+�����,��	��

� Ensure that only one instance of a class
exists, and provide a global access point to it

� For example, ensure that there’s one
WindowManager, FileManager or PrintSpooler
object in the system

� Desirable to encapsulate the instance and
responsibility for its creation in the class

�������
	���

� O-O languages support methods shared by all
objects of a class
• static in C++ and Java
• class methods in SmallTalk, Delphi

� The singleton class has a reference to its single
instance

� The instance has a getter method which initializes it
on the first request

� The class’s constructor is protected to prevent
creating other instances

David Talby ���������	
����

Design Patterns �

�������
	���

class Spooler {
public:

static Spooler* instance() {
if (_instance == NULL)

_instance = new Spooler();
return _instance;

}
protected:

Spooler() { ... }
private:
static Spooler* _instance = 0;

}

�������

�������������	

� Passing arguments for creation can be done
with a create(...) method

� Making the constructor public makes it possible
to create other instance except the “main” one
• Not a recommended style

� instance() can manage concurrent access or
manage a list of instances

� Access to singletons is often a bottleneck in
concurrent systems

����������

� Every system has singletons!
� WindowManager, PrinterManager,

FileManager, SecurityManager, ...
� Class Application in a framework
� Log and error reporting classes
� With other design patterns

*���-��!,�

� Separate an abstraction from its
implementations

� For example, a program must run on several
platforms

� An Entire Hierarchy of Interfaces must be
supported on each platform

� Using Abstract Factory alone would result in
a class per platform per interface – too many
classes!

**����	��#��	��

� Given a language, define a data structure
for representing sentences along with an
interpreter for it

� For example, a program must interpret
code or form layout, or support search with
regular expression and logical criteria

� Not covered here

David Talby ���������	
����

Design Patterns �

*.����� ��	�

� Without violating encapsulation, store an
object’s internal state so that it can be
restored later

� For example, a program must store a
simulation’s data structures before a random
or approximation action, and undo must be
supported

� Not covered here

�"		������
� � "��

� O-O concepts are simple
• Objects, Classes, Interfaces
• Inheritance vs. Composition

� Open-Closed Principle
� Single Choice Principle
� Pattern of patterns

����-���'�	���'��"		����

� Finding the right classes
� Finding them faster
� Common design jargon
� Consistent format
� Coded infrastructures

� and above all:

Pattern = Documented Experience

