4 N

Software Correctness

When is a class correct?
It's a relative concept; what is required?
But it’s the correct question: the class is the basic
independent, reusable unit of software

Theory flashback: class = Abstract Data Type
Commands (push, pop, empty, full)
Axioms (count == Oiff empty)
Preconditions (pop requires not empty)

Why isn’'t this reflected in programming?

Design by Contract

David Talby

4 N

Design by Contract

Created by Bertrand Meyer, in Eiffel

Each class defines a contract, by placing

assertions inside the code

Assertions are just Boolean expressions
Eiffel: identified by language keywords
iContract: identified by javadoc attributes

Assertions have no effect on execution

k Assertions can be checked or ignored /

4 N

Approaches to Correctness

Testing

Tests only cover specific cases

Tests don't affect extensions (inheritance)

If something doesn’t work, where is the problem?

It is difficult to (unit-) test individual classes
Formal Verification

Requires math & logic background

Successful in hardware, not in software

The assert() macro

K Introduced to Java only in JDK 1.4 /

4 N

Methods IT

The same in iContract syntax:
//** return Square root of x

@pre x >=0

@post return * return == x ¥/
double sqrt (double x) { ... }

Assertions are just Boolean expressions
Except resul/t and o/din postconditions
Function calls are allowed, but...

K Don't modify data: +#, inc(x), a = b /

4 N

Methods

Each feature is equipped with a
precondition and a postcondition

double sqrt (double x)
require
x>=0
do

ensure
result * result == x

K end /

4 N

Class Invariants

Each class has an explicit invariant

class Stack[G]
private
int count;
boolean isEmpty() { ... }
... other things ...
invariant
iSEmpty() == (count == 0)

K end /

4 N

The Contract

Client Supplier
(caller) (feature)
Obligations: fulfill fulfill

precondition | postcondition

Benefits: can assume can assume
postcondition | precondition

- /

4 N

When is a Class Correct?

For every constructor:
{ Pre } code { Post » Inv }
For every public method call:
{ Pre n Inv } code { Post s Inv }

Origin is Abstract Data Type theory

Private methods are not in the contract
\ Undecidable at compile time /

4 N

Theory: Hoare Clauses

Hoare's Notation for discussing correctness:
{P}code{Q}
For example:
{x>=10}x=x+2{x>=12}
Partial Correctness: If a program starts from a

state satisfying P, runs the code and completes,
then Q will be true.

Full Correctness: If a program start from a

state satisfying Q and runs the code, then
k eventually it will complete with Q being true. /

4 N

Common Mistakes IT

Don't use defensive programming

The body of a routine must never check its pre-
or post-conditions.

This is inefficient, and raises complexity.
Don't hide the contract from clients

All the queries in a method's precondition must
be at least as exported as the method

Doesn't have to be so in postconditions

4 N

Common Mistakes

Not an input-checking mechanism
Use /f to test human or machine output
Assertions are always true

Not a control structure
Assertion monitoring can be turned of f

They are applicative, not imperative, and must not include
any side effects

Besides, exceptions are inefficient
An assertion violation is always a bug

In precondition: client bug
K In postcondition or invariant: supplier bug /

/

Inheritance and DbC IT

class Parent { class Child extends Parent{
void f{) { void f{) {
require PPre require CPre
ensure PPost ensure CPost
/ /
invariant Plnv invariant Clnv
/ /
Derivation is only legal if:
PPre — CPre

\ CPost — PPost
CInv - PInv

4 N

Inheritance and DbC

The LSP Principle

Functions that use references to base classes
must also work with objects of derived classes
without knowing it.

Or: Derived classes inherit obligations as well
How to break it

Derived method has a stronger precondition

Derived method has a weaker postcondition

k Derived class does not obey parent's invariant /

-

Loop Correcthess

Loops are hard to get right
Off-by-one errors
Bad handling of borderline cases
Failure to terminate

There are two kinds of loops
Approximation (while and recursion)
Traversal (traditional for)

\

4 N

Inheritance and DbC IIT

The Eiffel way
Child method's precondition is PPre v CPre
Child method's postcondition is PPost A CPost
Child's invariant is PInv A CInv
This is how the runtime monitors assertions
Abstract Specifications
Interfaces and Abstract methods can define

preconditions, postconditions and invariants
k A very powerful technique for frameworks /

/

Approximation Loops IT

The loop is correct if:
Variant is a decreasing positive integer
Invariant is true before each iteration
int gcd(int a, int b) {
intx=a,y=b;
while (x 1= y)
variant max(x, y)
invariant x>0 &&y >0 // && gcd(x,y)=gcd(a,b)
do if (x>y)x=x-y elsey=y-x;

K return x;
}

4 N

Approximation Loops

Prove that progress is made each step
State the invariant context of progress

Goal

K Invariant /

/

Why use Design by Contract?

Speed - find bugs faster
Testing - per class, including privates
Reliability - runtime monitoring
Documentation - part of the interface
Reusability - see Ariane 5 crash
Improving programming languages
Finding more bugs at compile time
k Removing redundant language features

/

/

\

Traversal Loops

\

Traverse a known collection or sequence
for (int i=0; i < 10; i++)
for (iterator<x> i = xlist.iterator(); ...)
Invariant: Total humber of elements
Variant: Number of elements left
Estimator: Number of elements left

Can be imitated by approximation loops
Use for only when variant = estimator

-

The Missing Ingredient

~

Sometimes no checks should be done:
A method's caller must ensure x /= null
x is never null “by nature”

We must be able to state that ensuring
a property is someone else's responsibility

We must document it as well

/

~

An Example: Null Pointers

The #1 Java runtime error: NullPointerException
How do we know that a call's target is not null?
{? x I= null} x.use {use postconditions}
Out of context:
x = new C; x.use;
Because we checked:
if (x I= null) x.use;
while (x I= null) { x.use; foo(x); }
But this is not enough!

/

/

Letting the Compiler Check IT

ADT Assertions:
precondition when feature begins
postcondition of called feature
the class invariant

Incremental, per-feature check
Test can be optional per class
\ All compile-time, yet fully flexible

/

\

Letting the Compiler Check

Rule: x.use does not compile if x /= null
can't can't be proved right before it

Computation Assertions:
x =new C
X =y, assuming y /= null
if (x I=null) ...
while (x = null) ...

4 N

The Big Picture

Contracts complement what is learnt from code
Identifying a simple kind of assertions is enough
But syntax is strict: not (x == null) won't work
This works even though:
Assertions aren't trusted to be correct
They have no runtime cost, unless requested
The same principle is used for language features
x.foo(); y.foo(); can run in parallel iff x /=y
k x.foo() can bind statically if x exact_instanceof C /

4 N

Sample Caught Bugs

Infinite recursion:

int count() { return 1 + left.count() + right.count(); }
Forgotten initialization:

Socket s = new BufferedSocket();
s.getBuffer().write(“x”); // s.connect() not yet called
Neglecting the empty collection:

do tok.getToken().print() while (ltok.done());

Using uncertain results:

__ = filemgr.find(filename); f.delete(); J

4 N

DbC in Real Life: UML

UML supports pre- and post-conditions as
part of each method's properties
Invariants are supported at class level
Object Constraint Language is used
Formal language - not code
Readable, compared to its competitors
Supports foral/ and exists conditions

- /

4 N

DbC in Real Life: C/C++

In C, the assert macro expands to an if

statement and calls abort if it's false
assert(strlen(filename) > 0);

Assertion checking can be turned off:
#define NDEBUG

In C++, redefine Assert to throw instead of

terminating the program

Every class should have an invariant

kNever’ use if() when assert() is required /

4 N

Exceptions

Definition: a method succeeds if it terminates in a
state satisfying its contract. It failsif it does not
succeed.
Definition: An exception is a runtime event that
may cause a routine to fail.
Exception cases

An assertion violation (pre-, post-, invariant, loop)

A hardware or operating system problem

Intentional call to throw
K A failure in a method causes an exception in its caller /

4 N

DbC in Real Life: Java

Assertions that can be turned on and of f are only
supported from JDK 1.4

assert interval > 0 && interval <= 1 : interval;
The most popular tool is iContract

Assertions are Javadoc-style comments
Instruments source code, handles inheritance

Based on the OCL

@invariant forall IEmployee e in getEmployees() |
getRooms().contains(e.getOffice())

K @post exists IRoom r in getRooms() | r.isAvailabley

4 N

Improper Flow of Control

Mistake 3: Using exceptions for control flow
try { value = hashtable.find(key); }
catch (NotFoundException e) { value = null; }
It's bad design
The contract should never include exceptions
It's extremely inefficient
Global per-class data is initialized and stored
Each try, catch, or exception specification cost time

\

Disciplined Exception Handling

Throwing an exception is orders of magnitude slower than

k returning from a function call /

\

Mistake 1: Handler doesn't restore stable state
Mistake 2: Handler silently fails its own contract
There are two correct approaches

Resumption: Change conditions, and retry method

Termination: Clean up and fail (re-throw exception)
Correctness of a catch clause

Resumption: { True } Catch { Inv A Pre }

Termination: { True } Catch { Inv }

/

Goals

Exception Neutrality

Exceptions raised from inner code (called
functions or class T) are propagated well

Weak Exception Safety

Exceptions (either from class itself or from inner
code) do not cause resource leaks

Strong Exception Safety
If a method terminates due to an exception, the

-

~

Case Study: Genericity

k object's state remains unchanged /

\

It's very difficult to write generic, reusable
classes that handle exceptions well

Genericity requires considering exceptions from the
template parameters as well

Both default and copy constructors may throw
Assighment and equality operators may throw
In Java: constructors, equals() and clone() may throw
“A False Sense of Security”
Tom Cargill paper’s on code for class Stack<T>
Affected design of STL, as well as Java containers
Among the conclusions: Exceptions affect class design /

/

\

Summary

\

Software Correctness & Fault Tolerance
Design by Contract
When is a class correct?
Speed, Testing, Reliability, Documentation,
Reusability, Improving Prog. Languages
Exceptions
What happens when the contract is broken?
Neutrality, Weak Safety, Strong Safety /

