Programming Tools

David Rabinowitz

/

This Lecture

Personal Productivity Tools
And how to use them

Refactoring

Static Analysis & Metrics

Profiling

-

Refactoring

~

Improving the design of existing code,
without changing its observable behavior

Here's the Extract Mef;:haa’ refactoring:
er’

Before: A
void f(int[]a) { void f() {
// compute score computeScore():
score = initial_score; }
for (int i=0; i<a.length; i++) computeScore(int[] a) {

}

score += afi] * delta; // code cut & pasted here
) J

March 3rd, 2004 Object Oriented Design Course

3

March 3rd, 2004 Object Oriented Design Course
Why?
Why Refactor?

.

Improve software design

Make software easier to understand

Help find bugs

Help program faster
Preconditions

Working code

Good set of unit tests

March 3rd, 2004 Object Oriented Design Course

/

When?

_

When to refactor
Before adding functionality
Before fixing a bug
During code review

When not to refactor
During adding functionality
During fixing a bug
No good set of unit tests
Small programs (usually)

March 3rd, 2004 Object Oriented Design Course

/

Code Smells

_

"If it stinks, change it"
Duplicate code
Switch statements
Long method
Data class
Long parameter list
Primitive obsession
Temporary field

March 3rd, 2004 Object Oriented Design Course

/

Documented Refactorings

There's a catalog
Fowler's book

There are many others
Way to learn good OOD principles
Pay attention to the mechanics

/

\

Automated Refactorings

March 3rd, 2004 Object Oriented Design Course 7

.

Eclipse’'s 'Refactor’' menu automates thing
Undo & Redo
Physical Structure
Class Level Structure
Structure Inside a Class
Wizards & Preview Windows Included

Other tools exist: see

)

March 3rd, 2004 Object Oriented Design Course 8

-

Automated Refactoring Example

~

.

The 'Rename’ Refactoring renames any
Java element, and references to it:

uRenﬂme Method

Enter new name: | mylewMethad|

¥ Updats refarences ko the renamed elemant

Freview > I o |

cencel |

-

~

Automated Refactoring Example IT

March 3rd, 2004 Object Oriented Design Course 9

You can preview your changes:

Encapsulate Field

_

Before: After:

public String name; private String name;
public String getName() {
return name;

}

public void setName(String n) {

name = n;

}

)

March 3rd, 2004 Object Oriented Design Course "

52
i
Ratscrstsaucs 1
b coss 1. T
I 1]
) '
[ro———) privae vod o)
(s st
¥ ¥
; > ‘
March 3rd, 2004 Object Oriented Design Course 10
Encapsulate Field in Eclipse
£ Self Encapsulate Field 1'
Getker name: I getMyField
Setter name: I setMyField
Inserk new methods after; ImyMethUd() j

Field access in declaring class: % use setter and getter ¢ keep field reference

Preview = I [a]:4 I

Cancel I

\

/

March 3rd, 2004 Object Oriented Design Course 12

/

Introduce Null Object

Before: After:

if (project == null)
plan = Plan.default():
else

plan = project.getPlan():

}
kThis is the Null Object Pattern

class NullProject
implements Project {

public Plan getPlan() {
return Plan.default();
}

// other Project methods

)

March 3rd, 2004

Object Oriented Design Course 13

-

Extract Subclass

U

k)
getEmpioyee

.

March 3rd, 2004

Object Oriented Desig!

n Course 15

/

Extract Interface in Eclipse

£ Extract Interface

x|

Interface name: | MyInterface

Members to derlare in the interface:

I~ Change references ta the class 'MyClass' into references to the interface (where possible)

@ myMethod()
O @ sethyFieldtinty
@ getMyField()

Preview > |

Select Al
Desslect Al

=]

cancel |

_

March 3rd, 2004

Object Oriented Design Course 17

Parameterize Method

\

Before:

class Server {
handleGet(...)
handlePut(...)
handleSet(...)

.

After:

class Server {
handle(Event Type ef, ...)
}

March 3rd, 2004

Object Oriented Design Course 14

-

Extract Interface

cnigrtsies
Billahle
gethiame 7
gellepztment J
qeRate
b Speiaiiag
geame
K gellrepartnert /
March 3rd, 2004 Object Oriented Design Course 16
Pull Up Method
Enmployee
Eniployte
; gelMame
Salesman Engineer
Salraman Engineer
gettlame gethlarne

_

)

March 3rd, 2004

Object Oriented Design Course 18

/

\

Replace Type Code with State/Strategy

March 3rd, 2004 Object Oriented Design Course 19

/

Replace Inheritance with Delegation

\

Stack 1 Vector
ey O isErigity
Y
A ~
=
I
Statk eturn _wecdor sEwgty () \T

March 3rd, 2004 Object Oriented Design Course 20

-

Hide Delegate

-

Separate Query from Modifier

Client Class Client Class
T T
L = |
“V \l/ Person
Person Department etanager
getDepariment o gefianager T
Department
k Obeys the Law of Demeter /
March 3rd, 2004 Object Oriented Design Course 21

‘ Database ‘ ‘ Database ‘
getNextResultAndAdvanceIndex \—> getNextResult
AdvanceIndex

K- Obeys Command-Query Separation

March 3rd, 2004 Object Oriented Design Course 22

/

Introduce Local Extension

Date

NG

Client Class N Z}
7)

nexiDay(Date) Date MiDate

nextDay() - Date

Alternative: Introduce Foreign Me*l'hod/

March 3rd, 2004 Object Oriented Design Course 23

/

The opposites are there too

Inline method (extract method)

Replace Parameter with Explicit
Methods (Parameterize Method)

Collapse Hierarchy (Extract subclass)
Remove middle man (Hide delegate)
Push down method (pull up method)
Replace delegation with inheritance

March 3rd, 2004 Object Oriented Design Course 24

/

\

More useful Refactorings in Eclipse

Rename

Move

Change Method Signature
Use Supertype where possible
Extract Constant

Introduce Factory

March 3rd, 2004 Object Oriented Design Course 25

/

How to Refactor

Recognize the smells

Refactor in small discrete steps
Test after each step

Refactor in pairs

Use documented refactorings

Don't mix with adding functionality or
fixing a bug

)

March 3rd, 2004 Object Oriented Design Course 26

-

~

Static Code Analysis

.

Programs that help gain understanding
of your code
Find areas in the code with
Possible Bugs
"Fishy" Design
Inconsistent Style
It's no replacement for testing

Finding (non-trivial) bugs is undecidable /

March 3rd, 2004 Object Oriented Design Course 27

-

Why is it so important?

.

BO%

s6ni jo abepuIng

$250
525 $100

Coding Unit Funcion Field Fost

Test Test Test Release /

March 3rd, 2004 Object Oriented Design Course 28

/

Available Tools

_

Commercial
Lint for C and C++ (see)
JTest ()
Free Eclipse Plugins
JLint ()
CPD - Copy Paste Detector
PMD
CheckStyle

JDepend - Metrics

March 3rd, 2004 Object Oriented Design Course 29

/

Lint

_

Looks for over 800 C/C++ Issues
Things that compilers either miss or allow
Specific C++ Errors, for example:
Throwing from a destructor
Not checking for NULL argument in ‘delete’
Order of initializations / constructors
Non-virtual over-riden methods
Macro scanning
Incorrect parameter passing, Side effects, .. /

March 3rd, 2004 Object Oriented Design Course 30

4 N
Lint IT

Value Tracking

Division by zero, null dereference, out-of-bounds,
memory leaks, double deallocation, ...

Casting & Values

Loss of sign, truncations, Assignment in 'if’, ...
Specific C Issues

printf() arguments, order of evaluation: a[i] = i++;
Style

Indentation, suspicious semi-colons (a > b); , ...

k Hundreds of other issues /

March 3rd, 2004 Object Oriented Design Course 31

4 N
JTest

Checks for 380 Java & Style Issues
Can automatically correct 160 of these
Extensible by user-defined issues
Supports metrics as well
Number of bytes, classes, lines, methods, ...
Issue = Deviation from acceptable metric range
Some issues are shared with C/C++

Values, Casting, Unreachable code, Indentation,
k Comments, Initialization, Exceptions, ... /

March 3rd, 2004 Object Oriented Design Course 32

4 N

JTest IT

Other Java Specific Issues
Portability
Security
Optimization
Garbage Collection
Threads and Synchronization
Internationalization
Servlets / EJBs
k Naming Conventions

March 3rd, 2004 Object Oriented Design Course 33

4 N

CPD - Copy Paste Detector

Works with Java,
C, C++ and PHP

http://pmd.
sourceforge.net/
cpd.hitml

From the examples:
A 307 lines(!) of
duplicated code in
Apache 2

March 3rd, 2004 Object Oriented Design Course 34

4 D)
PMD

For Java code
Checks

Unused local variables / parameters / private
methods

Empty catch blocks

Empty 'if' statements

Duplicate import statements

Classes which could be Singletons
Short/long variable and method names
And many many more ...

- /

March 3rd, 2004 Object Oriented Design Course 35

DON'T SHOUT THE MESSENGER

CheckStyle

Similar to PMD

Javadoc Comments, Naming Conventions, Headers,
Imports, Size Violations, Whitespace, Modifiers,
Blocks, Coding Problems, Class Design, Duplicate Code

o5 x
[1n Folder [tocstion [4]
JavaTestftestdatalrulesfFi... a2
JavaTest ftestdatarles(Fi... IneS

o Fielames' must motch pattern {a-21+(\, (o-2A2_J[or2A 2.
0.2 Javadec comment.

) 4 showd be. Ine6
i Missing Jav: JavaTestjtestdatafrues(FL.. e 7
i Missing 3 Javadoc Ines
o Name ‘CONSTANTZ'must metch pattern “A{A-Z_1{A-20-91)%. JavaTestftestdatafruesiFi.. o8
i Missing a Javadoc comment. JavaTestjtestdatafrues(FL... e 10

Name TION_CONSTANTI' 2 §. i . Ine 10

Variable NON_CONSTANTL' . Fiekdv e 10
adoc coneer

inc doc comment. FieldNames. java JavaTesttestdatajrules/Fi... Ine 11
a e -~ " eatt j

March 3rd, 2004 Object Oriented Design Course 36

/

\

JDepend

Calculates metrics for java packages
Calculated metrics

CC - Concrete Class Count

The number of concrete classes in this
package.

AC - Abstract Class Count
The number of abstract classes or

interfaces in this package. /

March 3rd, 2004 Object Oriented Design Course 37

/

JDepend (2)

Ca - Afferent Couplings
The number of packages that depend on classes in
this package.
" How will changes to me impact the rest of the
project?

Ce - Efferent Couplings

The number of other packages that classes in this
package depend upon.

""How sensitive am I to changes in other packages in

the project?'

.

)

March 3rd, 2004 Object Oriented Design Course 38

-

\
JDepend (3)

A - Abstractness (0-1)
Ratio (0.0-1.0) of Abstract Classes (and interfaces) in
this package.
AC/(CC+AC)
I - Instability (0-1)
Ratio (0.0-1.0) of Efferent Coupling to Total Coupling.
Ce/(Ce+Ca).
D - Distance from the Main Sequence (0-1)
Cyclic - If the package contains a dependency

cycle
/

March 3rd, 2004 Object Oriented Design Course 39

-

The main sequence

“ery High
Stabiliy
Interface
Packages

o

“ery High
Instakity
Implementation
Packages

A Abstractness

I, Instability

LT
Tor Gy

March 3rd, 2004 Object Oriented Design Course 40

Examples - Pet Store

Used By - Afferent Dependencies (58 Packages)

=] com sun j2ee blueprints catalog model (CC:4 AC:0 Cad Ce:0 A0 10 D:1)
D ©om.sun j2ee blueprints.catalog.util (CC:2 AC:0 Ca:0 Ce:0 A0 110 D:1)
[=] corn.sun j2ee blueprints contactinfo.ejb (CC:2 AC:3 Ca6 Ce:5 A'06 1045 D:0.05)
[£9 com sun j2ee blueprints.creditcard.ejb (CC:1 AC:3 Cab Ce:2 A0.75 1:0.25 Di0)
[com sun jZee blueprints customer accountejb (CC:0 AC:3 Ca'3 Ce:2 A1 1:0.4 D:0.4)
=] com sun j2ee blueprints.customer.ejb (CC:0 AC:3 Ca:4 Ce:2 A1 1033 D:039)
=3 vom.sun j2ee blueprints.customer.profile.gjb (GG 1 AC: 3 Ca:6 Ce:0 A 075 110 D:0.25)
[com.sun j2ee blueprints encodingfiterweb (CC:1 AC:D Ca:0 Ge:0 A0 110 D:i1)
23 com sun j2ee blueprints lingitem.ejb (CC:1 AC:2 Ca:2 Ce:2 A 0.67 .05 0:0.17)
['com.sun j2es biuaprints petstore.controller.ajb (CC:3 AC:8 Caz2 Ce:B A 0.73 L0.75 D: 0.48 Cyelicy
[com.sun j2ee blueprints petstore.controller ejb.actions
@ (E3 com.sun j2ee blueprints petstore controller web
[com.sun.j2ee blueprints petstare controller web. actions
D com.sun j2ee blueprints.petstore.controller.gjb. actions (CC:6 AC:0 Ca0 Ce: 24 A0 11 D: 0 Cyclic)

[=3 com.sun j2ee biueprinis petstore.confroller.events (CC:12 ACIO Ca:3 Ceid A D 1057 D:0.43)
: jb (CC:3 AC: 8 Ca:2 Ce:6 A:0.73 1:0.75 D: 0.48 Cyclic) /

March 3rd, 2004 Object Oriented Design Course 4“1

/

Examples - Pet Store (2)

File
Depends Upan - Efferent Dependencies (51 Packages)

com.sunjZee blueprints petstore controller gjb (CC: 3 AC:B Ca: 2 Ce 6 A0.73 1 0.75 D:0.48 Cyclic)
@[] com.sun.j2ee blueprints.can. gjb
@[3 com sun j2es blueprints.customer.ejb
D com.sun.j2ee blueprints.servicelocator
@[3 com.sun,j2ee blueprints, servicelocator.jb
9 [com sun.j2ee.blueprints.wat.controller efb
@ [com.sunij2ee blueprints waf sontroller ejnaction
@[] com.sun j2ee biueprints wa.controller ejo
[com sun j2ee biueprints waf event
[com.sun.jzee blueprints waf.event
[} com sun jzes blusprints wat exceptions
©om.sunhj2ee blueprints petstore.controller ejb.actions (CC:6 AC:0 Ca:0 Ce:24 A0 111 D: 0 Cyelic)

March 3rd, 2004 Object Oriented Design Course 42

/

How to improve the rating?

\

10 Distancs FromMain Sequence
N e servicaLooator ejb (modified)
+serwceLu:ator.ejb

D2 (008,05}

A Abstractness

©1 {0080}

I, Instahility
C

e
Ce+Cy /

March 3rd, 2004 Object Oriented Design Course 43

/

\
Profiling

A profiler is a program that can track

the performance of another program

Used to solve performance problems
"How come a simple file viewer take 30
seconds to start, and over 2 minutes to
find text in a medium text file?"

Used to solve memory problems

"Why does my text editor take 50MB on
startup, and 300MB after a hour of work?"”

March 3rd, 2004 Object Oriented Design Course 44

-

Performance Tuning

How can I make my program faster?

The 80 / 20 Principle
80% of the time is spent in 20% of the code
Key Issue: Find the bottlenecks

Classic Mistake: Assume the bottlenecks
You can't know where they'll be

Classic Mistake IT: Optimize in Advance
Start with the right design, then optimize /

March 3rd, 2004 Object Oriented Design Course 45

-

Performance Tuning Process

\

Step 1: Identify the bottlenecks
Use a profiler!
Find & measure the bottlenecks
Step 2: Decide how to solve bottlenecks
Make them faster (new algorithm, data str.)
Call them less often (caching, lazy execution)
Step 3: Measure again
Only way to make sure improvement happened

/

March 3rd, 2004 Object Oriented Design Course 46

/

Eclipse Profiler Plugin

_

We'll demonstrate on the (freel)
Eclipse Profiler Plugin
What is tracked

CPU

Memory usage

Number of objects

Object graph

Call graph /

March 3rd, 2004 Object Oriented Design Course 47

/

Call Graph

March 3rd, 2004 Object Oriented Design Course 48

4 N

Call hint

2, 14%. of time {1389 ms) used when method

de.dreger. logazer. parser. expression. TFunctionLibrary .05_NAME
EEE), [et
de.dreger. logazer. parser, expression. TFunctionLibrary . BROWSER _MAME
L

\ /

March 3rd, 2004

Object Oriented Design Course 49

/

Callers

.

March 3rd, 2004

Object Oriented Design Course 50

4 N

Callees

March 3rd, 2004 Object Oriented Design Course 51

-

Callers and callees

4 N

CPU Profiling

How many invocations were?

How much time have we spent in a
package / class / method?

Finds the bottlenecks
Just sort by time or number of invocations

- /

March 3rd, 2004

Object Oriented Design Course 53

March 3rd, 2004 Object Oriented Design Course 52
B x
Y B o T W
D e 57 doms s
R A)
T —
0% w03 oomsz 0o
0% W oom o
om ® om mwm w w
0 ; on omwes = w
0w 0w omms m w
o e pe 7| a0)
AT A
om om0 on ssomm 0 e
B benmartscsmerbscbupa : oom W oe smom s
5 coge g e o mm e ;s mm w0
o spache e dom sen s e s owsm we e
o o, ot eads M gm0 sz oo me s
oy apche it rs o om we s wesm a0
g ogoer s i S om m s omeawem an w0
s recs s s 1% 712 Ses owsst e s
Horgapache xxcon s e mm ws am omm w0
o apche s s W oa wm a0 o oe m
March 3rd, 2004 Object Oriented Design Course 54

4 N 4

Classes Methods

s gD oS Se 1 220
wone. doww 1w s om
S o rae o
foTE N R TTITR Y]
te om dom 1m
SR DT At 994 oo et 166
Cacnic_o5 e Touss ozt st 1l e a
counz 130 [047 .l Greoriencoleer cenpeTine oM o0 ey 103
oetTmezoneCfisotia 17282 0,07 do.cheger sgsze parse. gresson. TFrchonlEeary FIRST ... 6623687 168 6515 101
sonize 550
@ P
¥ TFuntion oI 66 X
frca o0 5% ;
oz 620 ;
iaa L L
k ackages / k Packoges Classos [ethods Traad methods | Thoac
March 3rd, 2004 Object Oriented Design Course 55 March 3rd, 2004 Object Oriented Design Course

4 N 4

Memory Memory Monitor

006 P ——
Session Edt Profler Views Window Holp

How much memory does the program take? [Slolal+]l3[e 8lz GIFol=[%”

& o T
g —— s, 0
Are there memory leaks? L ———— il %5;25[1]
ot | [—r5 T whk
e — G55 .
R R 5 oo
i tvien a8 e
Rl — o
] e o S Jore
VS i = & ek
[
L

=i
Vew it
Instances |Heap |
T Tows

March 3rd, 2004 Obiject Oriented Design Course 57 March 3rd, 2004 Object Oriented Design Course

4 N 4

Profiling - summery Summary

How does my application behave? Personal Productivity Tools
What are the critical paths? Refactoring

Where are the bottlenecks? Static Analysis & Metrics

Do I have memory leaks? Profilers

|
Java users - you are not exempted! Use ﬂ:‘em‘
There's more - see

- / -

March 3rd, 2004 Object Oriented Design Course 59 March 3rd, 2004 Object Oriented Design Course

