Programming Tools

David Rabinowitz

/

This Lecture

Personal Productivity Tools
And how to use them

Refactoring

Static Analysis & Metrics

Profiling

-

Refactoring

~

Improving the design of existing code,
without changing its observable behavior

Here's the Extract Mef;:haa’ refactoring:
er’

Before: A
void f(int[]a) { void f() {
// compute score computeScore():
score = initial_score; }
for (int i=0; i<a.length; i++) computeScore(int[] a) {

}

score += afi] * delta; // code cut & pasted here
) J
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Why?
Why Refactor?

.

Improve software design

Make software easier to understand

Help find bugs

Help program faster
Preconditions

Working code

Good set of unit tests
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When?

\_

When to refactor
Before adding functionality
Before fixing a bug
During code review

When not to refactor
During adding functionality
During fixing a bug
No good set of unit tests
Small programs (usually)
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Code Smells

\_

"If it stinks, change it"
Duplicate code
Switch statements
Long method
Data class
Long parameter list
Primitive obsession
Temporary field
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Documented Refactorings

There's a catalog
Fowler's book

There are many others
Way to learn good OOD principles
Pay attention to the mechanics

/

\

Automated Refactorings
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Eclipse’'s 'Refactor’' menu automates thing
Undo & Redo
Physical Structure
Class Level Structure
Structure Inside a Class
Wizards & Preview Windows Included

Other tools exist: see

)
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Automated Refactoring Example

~

.

The 'Rename’ Refactoring renames any
Java element, and references to it:

uRenﬂme Method

Enter new name: | mylewMethad|

¥ Updats refarences ko the renamed elemant

Freview > I o |

cencel |

-

~

Automated Refactoring Example IT
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You can preview your changes:

Encapsulate Field

\_

Before: After:

public String name; private String name;
public String getName() {
return name;

}

public void setName(String n) {

name = n;

}

)
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Encapsulate Field in Eclipse
£ Self Encapsulate Field 1'
Getker name: I getMyField
Setter name: I setMyField
Inserk new methods after; ImyMethUd() j

Field access in declaring class: % use setter and getter ¢ keep field reference

Preview = I [a]:4 I

Cancel I

\

/

March 3rd, 2004 Object Oriented Design Course 12




/

Introduce Null Object

Before: After:

if (project == null)
plan = Plan.default():
else

plan = project.getPlan():

}
kThis is the Null Object Pattern

class NullProject
implements Project {

public Plan getPlan() {
return Plan.default();
}

// other Project methods

)
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Extract Subclass

U

k)
getEmpioyee

.
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Extract Interface in Eclipse

£ Extract Interface

x|

Interface name: | MyInterface

Members to derlare in the interface:

I~ Change references ta the class 'MyClass' into references to the interface (where possible)

@ myMethod()
O @ sethyFieldtinty
@ getMyField()

Preview > |

Select Al
Desslect Al

=]

cancel |

\_
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Parameterize Method

\

Before:

class Server {
handleGet(...)
handlePut(...)
handleSet(...)

.

After:

class Server {
handle(Event Type ef, ...)
}
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Extract Interface
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Pull Up Method
Enmployee
Eniployte
; gelMame
Salesman Engineer
Salraman Engineer
gettlame gethlarne

\_

)
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Replace Type Code with State/Strategy
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Replace Inheritance with Delegation

\

Stack 1 Vector
ey O isErigity
Y
A ~
=
I
Statk eturn _wecdor sEwgty () \T
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Hide Delegate

-

Separate Query from Modifier

Client Class Client Class
T T
L = |
“V \l/ Person
Person Department etanager
getDepariment o gefianager T
Department
k Obeys the Law of Demeter /
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‘ Database ‘ ‘ Database ‘
getNextResultAndAdvanceIndex \—> getNextResult
AdvanceIndex

K- Obeys Command-Query Separation
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Introduce Local Extension

Date

NG

Client Class N Z}
7)

nexiDay(Date) Date MiDate

nextDay() - Date

Alternative: Introduce Foreign Me*l'hod/

March 3rd, 2004 Object Oriented Design Course 23

/

The opposites are there too

Inline method (extract method)

Replace Parameter with Explicit
Methods (Parameterize Method)

Collapse Hierarchy (Extract subclass)
Remove middle man (Hide delegate)
Push down method (pull up method)
Replace delegation with inheritance
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More useful Refactorings in Eclipse

Rename

Move

Change Method Signature
Use Supertype where possible
Extract Constant

Introduce Factory
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How to Refactor

Recognize the smells

Refactor in small discrete steps
Test after each step

Refactor in pairs

Use documented refactorings

Don't mix with adding functionality or
fixing a bug

)
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Static Code Analysis

.

Programs that help gain understanding
of your code
Find areas in the code with
Possible Bugs
"Fishy" Design
Inconsistent Style
It's no replacement for testing

Finding (non-trivial) bugs is undecidable /
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Why is it so important?

.

BO%

s6ni jo abepuIng

$250
525 $100

Coding Unit Funcion Field Fost

Test Test Test Release /
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Available Tools

\_

Commercial
Lint for C and C++ (see )
JTest ( )
Free Eclipse Plugins
JLint ( )
CPD - Copy Paste Detector
PMD
CheckStyle

JDepend - Metrics
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Lint

\_

Looks for over 800 C/C++ Issues
Things that compilers either miss or allow
Specific C++ Errors, for example:
Throwing from a destructor
Not checking for NULL argument in ‘delete’
Order of initializations / constructors
Non-virtual over-riden methods
Macro scanning
Incorrect parameter passing, Side effects, .. /
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Lint IT

Value Tracking

Division by zero, null dereference, out-of-bounds,
memory leaks, double deallocation, ...

Casting & Values

Loss of sign, truncations, Assignment in 'if’, ...
Specific C Issues

printf() arguments, order of evaluation: a[i] = i++;
Style

Indentation, suspicious semi-colons (a > b); , ...

k Hundreds of other issues /
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JTest

Checks for 380 Java & Style Issues
Can automatically correct 160 of these
Extensible by user-defined issues
Supports metrics as well
Number of bytes, classes, lines, methods, ...
Issue = Deviation from acceptable metric range
Some issues are shared with C/C++

Values, Casting, Unreachable code, Indentation,
k Comments, Initialization, Exceptions, ... /
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JTest IT

Other Java Specific Issues
Portability
Security
Optimization
Garbage Collection
Threads and Synchronization
Internationalization
Servlets / EJBs
k Naming Conventions
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CPD - Copy Paste Detector

Works with Java,
C, C++ and PHP

http://pmd.
sourceforge.net/
cpd.hitml

From the examples:
A 307 lines(!) of
duplicated code in
Apache 2
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PMD

For Java code
Checks

Unused local variables / parameters / private
methods

Empty catch blocks

Empty 'if' statements

Duplicate import statements

Classes which could be Singletons
Short/long variable and method names
And many many more ...

- /
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DON'T SHOUT THE MESSENGER

CheckStyle

Similar to PMD

Javadoc Comments, Naming Conventions, Headers,
Imports, Size Violations, Whitespace, Modifiers,
Blocks, Coding Problems, Class Design, Duplicate Code

o5 x
[ 1n Folder [tocstion [ 4]
JavaTestftestdatalrulesfFi... a2
JavaTest ftestdatarles(Fi... IneS

o Fielames' must motch pattern {a-21+(\, (o-2A2_J[or2A 2.
0.2 Javadec comment.

) 4 showd be. Ine6
i Missing  Jav: JavaTestjtestdatafrues(FL.. e 7
i Missing 3 Javadoc Ines
o Name ‘CONSTANTZ'must metch pattern “A{A-Z_1{A-20-91)%. JavaTestftestdatafruesiFi.. o8
i Missing a Javadoc comment. JavaTestjtestdatafrues(FL... e 10

Name TION_CONSTANTI' 2 §. i . Ine 10

Variable NON_CONSTANTL' . Fiekdv e 10
adoc coneer

inc doc comment. FieldNames. java JavaTesttestdatajrules/Fi... Ine 11
a e -~ " eatt j
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JDepend

Calculates metrics for java packages
Calculated metrics

CC - Concrete Class Count

The number of concrete classes in this
package.

AC - Abstract Class Count
The number of abstract classes or

interfaces in this package. /
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JDepend (2)

Ca - Afferent Couplings
The number of packages that depend on classes in
this package.
" How will changes to me impact the rest of the
project?

Ce - Efferent Couplings

The number of other packages that classes in this
package depend upon.

""How sensitive am I to changes in other packages in

the project?'

.

)
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JDepend (3)

A - Abstractness (0-1)
Ratio (0.0-1.0) of Abstract Classes (and interfaces) in
this package.
AC/(CC+AC)
I - Instability (0-1)
Ratio (0.0-1.0) of Efferent Coupling to Total Coupling.
Ce/(Ce+Ca).
D - Distance from the Main Sequence (0-1)
Cyclic - If the package contains a dependency

cycle
/
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The main sequence

“ery High
Stabiliy
Interface
Packages

o

“ery High
Instakity
Implementation
Packages

A Abstractness

I, Instability

LT
Tor Gy
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Examples - Pet Store

Used By - Afferent Dependencies (58 Packages)

=] com sun j2ee blueprints catalog model (CC:4 AC:0 Cad Ce:0 A0 10 D:1)
D ©om.sun j2ee blueprints.catalog.util (CC:2 AC:0 Ca:0 Ce:0 A0 110 D:1)
[=] corn.sun j2ee blueprints contactinfo.ejb (CC:2 AC:3 Ca6 Ce:5 A'06 1045 D:0.05)
[£9 com sun j2ee blueprints.creditcard.ejb (CC:1 AC:3 Cab Ce:2 A0.75 1:0.25 Di0)
[ com sun jZee blueprints customer accountejb (CC:0 AC:3 Ca'3 Ce:2 A1 1:0.4 D:0.4)
=] com sun j2ee blueprints.customer.ejb (CC:0 AC:3 Ca:4 Ce:2 A1 1033 D:039)
=3 vom.sun j2ee blueprints.customer.profile.gjb (GG 1 AC: 3 Ca:6 Ce:0 A 075 110 D:0.25)
[ com.sun j2ee blueprints encodingfiterweb (CC:1 AC:D Ca:0 Ge:0 A0 110 D:i1)
23 com sun j2ee blueprints lingitem.ejb (CC:1 AC:2 Ca:2 Ce:2 A 0.67 .05 0:0.17)
[ 'com.sun j2es biuaprints petstore.controller.ajb (CC:3 AC:8 Caz2 Ce:B A 0.73 L0.75 D: 0.48 Cyelicy
[ com.sun j2ee blueprints petstore.controller ejb.actions
@ (E3 com.sun j2ee blueprints petstore controller web
[ com.sun.j2ee blueprints petstare controller web. actions
D com.sun j2ee blueprints.petstore.controller.gjb. actions (CC:6 AC:0 Ca0 Ce: 24 A0 11 D: 0 Cyclic)

[=3 com.sun j2ee biueprinis petstore.confroller.events (CC:12 ACIO Ca:3 Ceid A D 1057 D:0.43)
: jb (CC:3 AC: 8 Ca:2 Ce:6 A:0.73 1:0.75 D: 0.48 Cyclic) /
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Examples - Pet Store (2)

File
Depends Upan - Efferent Dependencies (51 Packages)

com.sunjZee blueprints petstore controller gjb (CC: 3 AC:B Ca: 2 Ce 6 A0.73 1 0.75 D:0.48 Cyclic)
@[] com.sun.j2ee blueprints.can. gjb
@[3 com sun j2es blueprints.customer.ejb
D com.sun.j2ee blueprints.servicelocator
@[3 com.sun,j2ee blueprints, servicelocator.jb
9 [ com sun.j2ee.blueprints.wat.controller efb
@ [ com.sunij2ee blueprints waf sontroller ejnaction
@[] com.sun j2ee biueprints wa.controller ejo
[ com sun j2ee biueprints waf event
[ com.sun.jzee blueprints waf.event
[} com sun jzes blusprints wat exceptions
©om.sunhj2ee blueprints petstore.controller ejb.actions (CC:6 AC:0 Ca:0 Ce:24 A0 111 D: 0 Cyelic)
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How to improve the rating?

\

10 Distancs FromMain Sequence
N e servicaLooator ejb (modified)
+serwceLu:ator.ejb

D2 (008,05}

A Abstractness

©1 {0080}

I, Instahility
C

e
Ce+Cy /
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Profiling

A profiler is a program that can track

the performance of another program

Used to solve performance problems
"How come a simple file viewer take 30
seconds to start, and over 2 minutes to
find text in a medium text file?"

Used to solve memory problems

"Why does my text editor take 50MB on
startup, and 300MB after a hour of work?"”
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Performance Tuning

How can I make my program faster?

The 80 / 20 Principle
80% of the time is spent in 20% of the code
Key Issue: Find the bottlenecks

Classic Mistake: Assume the bottlenecks
You can't know where they'll be

Classic Mistake IT: Optimize in Advance
Start with the right design, then optimize /
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Performance Tuning Process

\

Step 1: Identify the bottlenecks
Use a profiler!
Find & measure the bottlenecks
Step 2: Decide how to solve bottlenecks
Make them faster (new algorithm, data str.)
Call them less often (caching, lazy execution)
Step 3: Measure again
Only way to make sure improvement happened

/
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Eclipse Profiler Plugin

\_

We'll demonstrate on the (freel)
Eclipse Profiler Plugin
What is tracked

CPU

Memory usage

Number of objects

Object graph

Call graph /
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Call Graph
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Call hint

2, 14%. of time {1389 ms) used when method

de.dreger. logazer. parser. expression. TFunctionLibrary .05_NAME
EEE), [ et
de.dreger. logazer. parser, expression. TFunctionLibrary . BROWSER _MAME
L

\ /
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Callers

.
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Callees
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Callers and callees

4 N

CPU Profiling

How many invocations were?

How much time have we spent in a
package / class / method?

Finds the bottlenecks
Just sort by time or number of invocations

- /
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Classes Methods
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Memory Memory Monitor

006 P ——
Session Edt Profler Views Window Holp

How much memory does the program take? [Slolal+]l3[e 8lz GIFol=[%”

& o T
g —— s, 0
Are there memory leaks? L ———— il %5;25[1]
ot | [ —r5 T whk
e — G55 .
R R 5 oo
i tvien a8 e
Rl — o
] e o S Jore
VS i = & ek
[
L

=i
Vew it
Instances |Heap |
T Tows
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Profiling - summery Summary

How does my application behave? Personal Productivity Tools
What are the critical paths? Refactoring

Where are the bottlenecks? Static Analysis & Metrics

Do I have memory leaks? Profilers

|
Java users - you are not exempted! Use ﬂ:‘em‘
There's more - see

- / -
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