
David Talby ��������	�
����

Design Patterns �

������ ��		�
��

David Talby

��������	
��

� The Creational Patterns
• Abstract Factory
• Builder
• Prototype
• Factory Method

� Choosing Between Them

���
	���
���
		����

� Easily Change:
• What gets created?
• Who creates it?
• When is it created?

� Hide the concrete classes that get
created from client code

� Competing patterns, each with its own
strengths

������	�
�	��
�	���

� A program must be able to choose one of
several families of classes

� For example, a program’s GUI should run
on several platforms

� Each platform comes with its own set of
GUI classes:

WinButton, WinScrollBar, WinWindow

MotifButton, MotifScrollBar, MotifWindow

pmButton, pmScrollBar, pmWindow

�������
���� ��	�

� Uniform treatment of every button,
window, etc. in the code
• Easy - Define their interfaces:

� Uniform object creation
� Easy to switch between families
� Easy to add a family

�������
	���

� Define a Factory - a class that creates
objects:

class WidgetFactory {
Button* makeButton(args) = 0;
Window* makeWindow(args) = 0;
// other widgets…

}

David Talby ��������	�
����

Design Patterns �

�������
	������

� Define a concrete factory for each of the
families:
class WinWidgetFactory {

Button* makeButton(args) {
return new WinButton(args);

}
Window* makeWindow(args) {
return new WinWindow(args);

}
}

�������
	�������

� Select once which family to use:
WidgetFactory* wf =
new WinWidgetFactory();

� When creating objects in the code, don’t
use ‘new’ but call:
Button* b = wf->makeButton(args);

� Switch families - once in the code!
� Add a family - one new factory, no effect

on existing code!

��������� !�"����	
�� �������������	

� The factory doesn’t have to be abstract,
if we expect a remote possibility of
having another family

� Usually one factory per application, a
perfect example of a singleton

� Not easy to extend the abstract factory’s
interface

#��$�� ���

� Different operating systems
(could be Button, could be File)

� Different look-and-feel standards
� Different communication protocols

%���
��&��

� Separate the specification of how to
construct a complex object from the
representation of the object

� For example, a converter reads files
from one file format

� It should write them to one of several
output formats

David Talby ��������	�
����

Design Patterns �

�������
���� ��	�

� Single Choice Principle
• Same reader for all output formats
• Output format chosen once in code

� Open-Closed Principle
• Easy to add a new output format
• Addition does not change old code

� Dynamic choice of output format

�������
	���

� We should return a different object
depending on the output format:
• HTMLDocument, RTFDocument, …

� Separate the building of the output from
reading the input

� Write an interface for such a builder
� Use inheritance to write different

concrete builders

�������
	������

� Here’s the builder’s interface:

class Builder {

void writeChar(char c) { }

void setFont(Font *f) { }

void newPage() { }

}

�������
	�������

� Here’s a concrete builder:

class HTMLBuilder
: public Builder

{
private:

HTMLDocument *doc;
public:

HTMLDocument *getDocument() {
return doc;

}
// all inherited methods here

}

�������
	�����'

� The converter uses a builder:

class Converter
{

void convert(Builder *b) {
while (t = read_next_token())
switch (o.kind) {
CHAR: b->writeChar(o);
FONT: b->setFont(o);
// other kinds…

}
}

}

�������
	����'

� This is how the converter is used:

RTFBuilder *b = new RTFBuilder;

converter->convert(b);

RTFDocument *d = b->getDocument();

David Talby ��������	�
����

Design Patterns �

���� !� �������������	

� The builder’s interface affects the ease
of coding concrete builders

� Kinds of documents don’t need a
common base class

� Methods in class Builder are empty and
not abstract

� getResult() is not always trivial
• Optimizations
• Lazy Creation

#��$�� ���

� Converting to different formats
� Building a parse tree in a compiler
� Building a normalized database

(�����	�	�)�

� Specify the kind of object to create using
a prototypical instance

� For example, a photo/map editor has a
palette of tools and objects that can be
created

� How do we have only one class for
creations, and parameterize it by the
class of objects it initializes?

�������
���� ��	�

� One class for the creation tool
� Easy to add new objects
� Dynamic toolbox configuration

�������
	���

� Hold a prototype of object to create
� Creation is by cloning the prototype

David Talby ��������	�
����

Design Patterns �

�������
	������

� Less classes in the system
� Can be even less: same Graphic object

with different properties can be used for
different tools

� Tools can be chosen and configured at
runtime

���� !�

�������������	

� Prototype Manager - a runtime registry
of prototype can handle dynamically
linked classes

� Java, SmallTalk, Eiffel provide a default
clone() method. C++ has copy
constructors

� All of these are shallow by default
� When implementing deep clone, beware

of circular references!

#��$�� ���

� Toolboxes / Palettes
� Supporting dynamically defined

debuggers in a uniform GUI
� EJB / COM Servers
� Basically a plug-in mechanism

����
�	����!�	��&

� Let subclasses decide which objects to
instantiate

� For example, a framework for a
windowing application has a class
Application which must create an object of
class Document

� But the actual applications and
documents are not written yet!

�������
	���

� Separate creation into a method

David Talby ��������	�
����

Design Patterns �

�����&�'
��
�	

� A remote services package has a
RemoteService class that returns objects
of class Proxy to client

� A few clients wish to write a more potent
CachedProxy

� How do we support this without much
hassle?

�����&�'
��
�	����
	���

� Separate creation into a method
� RemoteService will have a virtual method

called CreateProxy()

� Write CachedProxy, then write:
class CachedRemoteService

: public RemoteService
{
Proxy* createProxy(...) {
return new CachedProxy(...);

}
}

���� !� �������������	

� Two Variants: Is the factory method
abstract or not?

� Good style to use factory methods even
for a slight chance of need

� Parameterized factory methods make it
easy to add created products without
affecting old code
Product* createProduct(int id) {

switch (id) { ... }
}

�������������	���

� C++ warning: You can’t call a factory
method from a constructor!
• Use lazy initialization instead

Product* getProduct() {
if (_product == NULL)
_product = createProduct();

return _product;
}

� Use templates to avoid subclassing
•Application<ExcelDocument>
•complex<float>, complex<double>

#��$�� ���

� A very common pattern
� Framework classes

• Application, Document, View, ...

� Changing default
implementations
• Proxy, Parser, MemoryManager, …

David Talby ��������	�
����

Design Patterns �

�
		�����*��
		����

� Encapsulate the varying aspect
� Interfaces
� Inheritance describes variants
� Composition allows a dynamic choice

between variants
����������	��
����

Open-Closed Principle
Single Choice Principle

�����)
�
	�+��,-
�)��

����,-
�)����������

Maze* MazeGame::CreateMaze () {

Maze* aMaze = new Maze;
Room* r1 = new Room(1);
Room* r2 = new Room(2);
Door* theDoor = new Door(r1, r2);

aMaze->AddRoom(r1);
aMaze->AddRoom(r2);

r1->SetSide(North, new Wall);
r1->SetSide(East, theDoor);
// set other sides, also for r2

return aMaze;

}

,���
�	�&�!
.��

� How do we reuse the same maze with
EnchantedRoom, TrapDoor?
• Pass createMaze an object that can create

different maze parts
• Pass createMaze an object that can build a

maze and then return it
• Pass createMaze initialized samples of each

kind of maze part
• Move creation with new to other methods

that descendants redefine

���	�
�	��
�	���

� Define a set of interfaces
• Door, Wall, Room, ...

� Write families of classes
• SimpleDoor, SimpleRoom, …
• EnchantedDoor, EnchantedRoom,...

� Define an abstract MazeFactory, and a
concrete class for each family
• SimpleFactory, EnchantedFactory, …

� Pass createMaze a factory

���	�
�	��
�	������

Maze* MazeGame::CreateMaze (MazeFactory*
mf) {

Maze* aMaze = mf->createMaze();
Room* r1 = mf->createRoom(1);
Room* r2 = mf->createRoom(2);
Door* d = mf->createDoor(r1,r2);

// rest is same as before

� Families don’t have to be disjoint
� Same factory can return variants of the

same class

David Talby ��������	�
����

Design Patterns �

���	�
�	��
�	��������

� Requires a new factory class for every
family

� Families are defined statically
� Parts of the complex maze are returned

right after creation
� The client of the factory builds the

connections between maze parts
� Maze stands for any complex object

�
��&��������/ �����

� Pros
• Each builder can create a totally different

kind of object
• Object returned only at the end of

construction - enables optimization
• Especially if object is on network

� Cons
• Complex Interface to builder

���	�	�)�������/ �����

� Pros
• Less Classes
• Prototype can be customized between

different creations

� Cons
• Requires memory to hold prototype
• Many prototypes must be passed
• Clone() may be hard to implement

�
�	����!�	��&��/�

� Pros
• The simplest design

� Cons
• Requires a new class for every change in

creation
• Compile-time choice only

����'��&��	

� Use Factory Methods when there is little
(but possible) chance of change

� Use Abstract Factory when different
families of classes are given anyway

� Use Prototype when many small objects
must be created similarly

� Use Builder when different output
representations are necessary

��� ��,
����
���

� Dynamic loading of classes whose
objects must be created
• only Prototype

� Creation can be highly optimized once
entire structure is known
• only Builder

David Talby ��������	�
����

Design Patterns �

�
� �
��0�������	����

� “Abstract Factories are usually
implemented using Factory Methods but
can also use Prototypes”

� “Builders and Abstract Factories are
often Singletons”

� “Builders can use Abstract Factories to
enjoy best of both worlds”

