David Talby

a"own/a 2TR/"™

Design Patterns

David Talby

-

This Lecture

The Creational Patterns
Abstract Factory
Builder
Prototype
Factory Method

Choosing Between Them

\

Creational Patterns

Easily Change:

What gets created?

Who creates it?

When is it created?
Hide the concrete classes that get
created from client code
Competing patterns, each with its own
strengths

-

6. Abstract Factory

~

A program must be able to choose one of
several families of classes
For example, a program’s GUI should run
on several platforms
Each platform comes with its own set of
GUI classes:
WinButton, WinScrollBar, WinWindow
MotifButton, MotifScrollBar, MotifWindow
K pmButton, pmScrollBar, pmWindow

-

The Requirements

Uniform treatment of every button,
window, etc. in the code
Easy - Define their interfaces:

Pl

[Prmwindgcw | [mosmwindow

Uniform object creation
Easy to switch between families
k Easy to add a family

-

The Solution

Define a Factory - a class that creates
objects:

class WidgetFactory {

Button* makeButton (args) 0;

Window* makeWindow (args)

1]
o

// other widgets..

Design Patterns

David Talby

-

The Solution Il

~

families:
class WinWidgetFactory {
Button* makeButton (args) {
return new WinButton (args);
}
Window* makeWindow (args) ({
return new WinWindow (args) ;

}

k }

Define a concrete factory for each of the

a"own/a 2TR/"™

-

The Solution Il

Select once which family to use:
WidgetFactory* wf =

new WinWidgetFactory();
When creating objects in the code, don'’t
use ‘new but call:
Button* b = wf->makeButton (args);

Switch families - once in the code!

Add a family - one new factory, no effect
k on existing code!

/

-

The Big (UML) Picture

CrealeProdiciAl)
CraateProductE))

AbstractProductA

CresteProduethl)
CroalsProductB)

CreateProduciAf)
CreateProductd])

A
; ;
| |

(MG

-

The Fine Print

~

The factory doesn’t have to be abstract,
if we expect a remote possibility of
having another family

Usually one factory per application, a
perfect example of a singleton

Not easy to extend the abstract factory’s
interface

/

Known Uses

Different operating systems
(could be Button, could be File)

Different look-and-feel standards
Different communication protocols

-

7. Builder

Separate the specification of how to
construct a complex object from the
representation of the object

For example, a converter reads files
from one file format

It should write them to one of several
output formats

Design Patterns

David Talby

The Requirements

Single Choice Principle
Same reader for all output formats
Output format chosen once in code
Open-Closed Principle
Easy to add a new output format
Addition does not change old code

Dynamic choice of output format

\

The Solution

We should return a different object
depending on the output format:
HTMLDocument, RTFDocument, ...

Separate the building of the output from

reading the input
Write an interface for such a builder

Use inheritance to write different
concrete builders

-

The Solution 1l

Here’s the builder’s interface:

class Builder {
void writeChar (char c) { }
void setFont (Font *f) { }

void newPage() { }

The Solution 11l

_

Here’s a concrete builder:

class HTMLBuilder
: public Builder
{
private:
HTMLDocument *doc;
public:
HTMLDocument *getDocument () {
return doc;
}
// all inherited methods here
}

-

The Solution IV

The converter uses a builder:

class Converter
{
void convert (Builder *b) {
while (t = read_next_token())
switch (o.kind) {
CHAR: b->writeChar (o) ;
FONT: b->setFont (o) ;
// other kinds..
}

}

NG

-

The Solution V

Design Patterns

This is how the converter is used:

RTFBuilder *b = new RTFBuilder;
converter->convert (b) ;

RTFDocument *d = b->getDocument () ;

a"own/a 2TR/"™

David Talby n'vown/l ﬁ-fN/U"’

The UML The Fine Print
The builder’s interface affects the ease

of coding concrete builders

Kinds of documents don’t need a
common base class
Methods in class Builder are empty and
not abstract

p— getResult() is not always trivial
GetResult) Optimizations

\ / \ Lazy Creation /

Director Luilger Builder

Conslruct{) 0 BuiloPart()
i
I
I
I

for all objects in stuciure { B
buider-»BulldPart()
}

[s— ,| Product |

4 N 4 N

Known Uses 8. Prototype

Converting to different formats Specify the kind of object to create using

Building a parse tree in a compiler a prototypical instance

Building a normalized database For example, a photo/map editor has a
palette of tools and objects that can be
created

How do we have only one class for
creations, and parameterize it by the
class of objects it initializes?

The Requirements The Solution
One class for the creation tool Hold a prototype of object to create
Easy to add new objects Creation is by cloning the prototype

Dynamic toolbox configuration

oraPoston
oo
E o
Lt p o v 3 3
= =
return copy of sl return copy of self

Design Patterns 4

David Talby

a"own/a 2TR/"™

-

The Solution Il

Less classes in the system

Can be even less: same Graphic object
with different properties can be used for
different tools

Tools can be chosen and configured at
runtime

-

.

The UML
Client protolype Pratotype
Operation() ¢ Clone()
I
:
p = prototype->Clone()
ConcretePrototypel ConcreteProlotype2
Clone) © Clone() ¢

L 1
retum copy of selr‘&‘ raturn copy of saﬁw

/

-

The Fine Print

~

Prototype Manager - a runtime registry
of prototype can handle dynamically
linked classes

Java, SmallTalk, Eiffel provide a default
clone() method. C++ has copy
constructors

All of these are shallow by default

When implementing deep clone, beware
k of circular references!

-

Known Uses

Toolboxes / Palettes

Supporting dynamically defined
debuggers in a uniform GUI

EJB / COM Servers
Basically a plug-in mechanism

-

9. Factory Method

~

Let subclasses decide which objects to
instantiate

For example, a framework for a
windowing application has a class
Application which must create an object of
class Document

But the actual applications and
documents are not written yet!

/

-

The Solution

Separate creation into a method

docs
Document a— -y Application

Open() CrealsDocument() Document* doc = CreateDocument(); =

Close() NewDocument) |- —-———-—— tocs Add(doc)
Sava() OpenDocument() doc->Open();

Revert) Z#
CreateDocument() o--------~ ‘(retum new MyDocument

/

Design Patterns

David Talby

-

Second Variant

A remote services package has a
RemoteService class that returns objects
of class Proxy to client

A few clients wish to write a more potent
CachedProxy

How do we support this without much
hassle?

a"own/a 2TR/"™

-

Second Variant Solution

~

Separate creation into a method

RemoteService will have a virtual method
called CreateProxy()

Write CachedProxy, then write:
class CachedRemoteService

: public RemoteService

{

Proxy* createProxy(...) {
return new CachedProxy(...);
}
s

/

-

~

The UML
Creator
FactoryMathod|)

I - Toducl = FactaryMathod)
A ZF

ConcreteProduct [¥—-="""""1 ConcreleCretor

FactoryMethod|) C-f------ refum new Concreterducta

-

The Fine Print

Two Variants: Is the factory method
abstract or not?

Good style to use factory methods even
for a slight chance of need
Parameterized factory methods make it
easy to add created products without
affecting old code

Product* createProduct (int id) {

K switch (id) { ... }
}

/

-

The Fine Print 1l

C++ warning: You can't call a factory
method from a constructor!
Use lazy initialization instead
Product* getProduct () {
if (_product == NULL)
_product = createProduct();
return _product;
}
Use templates to avoid subclassing

Application<ExcelDocument>
complex<float>, complex<double> /

Design Patterns

-

Known Uses

A very common pattern
Framework classes

Application, Document, View, ...
Changing default
implementations

Proxy, Parser, MemoryManager, ...

David Talby

a"own/a 2TR/"™

-

Pattern of Patterns

Encapsulate the varying aspect
Interfaces
Inheritance describes variants

Composition allows a dynamic choice
between variants
Criteria for success:
Open-Closed Principle
Single Choice Principle

\

-

A Comparative Example

MapSite
Enter(}
sides Room Wall Daor
Enter() Enteri) Enterl)

Maze SelSidef) -

rooms GetSida() isOpen
AddRoom(
RoomNof} roomNumber

)

The Example Problem

Maze* MazeGame: :CreateMaze () {

Maze* aMaze = new Maze;
Room* rl = new Room(l);
Room* r2 = new Room(2);
Door* theDoor = new Door(rl, r2);

aMaze—->AddRoom (rl) ;
aMaze—->AddRoom (r2) ;

rl->SetSide (North, new Wall);
rl->SetSide (East, theDoor);
// set other sides, also for r2

return aMaze;
K }

Enchanted Mazes

~

How do we reuse the same maze with
EnchantedRoom, TrapDoor?

Pass createMaze an object that can create
different maze parts

Pass createMaze an object that can build a
maze and then return it

Pass createMaze initialized samples of each
kind of maze part

Move creation with new to other methods
that descendants redefine

Abstract Factory

Define a set of interfaces
Door, Wall, Room, ...
Write families of classes
SimpleDoor, SimpleRoom, ...
EnchantedDoor, EnchantedRoom,...
Define an abstract MazeFactory, and a
concrete class for each family
SimpleFactory, EnchantedFactory, ...

k Pass createMaze a factory

Design Patterns

Abstract Factory 11

Maze* MazeGame: :CreateMaze (MazeFactory*
mf) {

Maze* aMaze = mf->createMaze();

Room* rl = mf->createRoom(1l);
Room* r2 = mf->createRoom(2);
Door* d = mf->createDoor (rl,r2);

// rest is same as before
Families don’t have to be disjoint
Same factory can return variants of the

k same class

David Talby

-

Abstract Factory Cons

.

Requires a new factory class for every
family
Families are defined statically

Parts of the complex maze are returned
right after creation

The client of the factory builds the
connections between maze parts

Maze stands for any complex object

a"own/a 2TR/"™

/

-

Builder Pros & Cons

Pros

Each builder can create a totally different
kind of object

Object returned only at the end of
construction - enables optimization

Especially if object is on network
Cons
Complex Interface to builder

.

-

Prototype Pros & Cons

_

Pros
Less Classes
Prototype can be customized between
different creations

Cons
Requires memory to hold prototype
Many prototypes must be passed
Clone() may be hard to implement

-

Factory Method P&C

Pros
The simplest design
Cons

Requires a new class for every change in
creation

Compile-time choice only

-

The Verdict

~

Use Factory Methods when there is little
(but possible) chance of change

Use Abstract Factory when different
families of classes are given anyway
Use Prototype when many small objects
must be created similarly

Use Builder when different output
representations are necessary

/

Design Patterns

-

Some Easy Cases

Dynamic loading of classes whose
objects must be created

only Prototype
Creation can be highly optimized once
entire structure is known

only Builder

David Talby nvvown/l ﬁ-fN/U"’

4 N

Summary: Connections

“Abstract Factories are usually
implemented using Factory Methods but
can also use Prototypes”

“Builders and Abstract Factories are
often Singletons”

“Builders can use Abstract Factories to
enjoy best of both worlds”

Design Patterns 9

