
Design Patterns

David Talby

This Lecture

� Representing Data Structures

• Composite, Flyweight, Decorator

� Traversing Data Structures

• Iterator, Visitor

A Word Processor

� Pages, Columns, Lines, Letters, Symbols,
Tables, Images, ...

� Font and style settings per letter

� Frames, Shadows, Background, Hyperlink
attached to anything

� Unlimited hierarchy: Tables with several
Paragraphs containing hyper-linked images
inside tables

� Should be open for additions...

A Data Structure

� First, a uniform interface for simple
things that live in a document:
class Glyph

{

void draw(Window *w) = 0;

void move(double x, double y) = 0;

bool intersects(Point *p) = 0;

void insert(Glyph *g, int i) = 0;

void remove(int i) = 0;

Glyph* child(int i) = 0;

Glyph* parent() = 0;

}

Composite Documents At Runtime

� Unlimited Hierarchy problem solved

� Dynamic selection of composites

� Open for additions

2. Flyweight

� Use sharing to support a large number of

small objects efficiently

� For example, if every character holds font

and style data, a long letter will require

huge memory

� Even though most letters use the same

font and style

� How do we make it practical to keep each

character as an object?

The Requirements

� Reduce the memory demands of having

an object per character

� Keep the flexibility to customize each

character differently

The Solution

� Intrinsic state = worth sharing

� Extrinsic state = not worth sharing

The Solution II

� Put extrinsic state in a class:

class CharacterContext {

Font* font;

bool isItalic, isBold, ...;

int size;

int asciiCode;

// many others…

draw(int x, int y) { ... }

// other operational methods

}

The Solution III

� Original class holds rest of state:

class Character : public Glyph {

CharacterContext *cc;

int x, y;

draw() {

cc- >draw(x,y);

}

}

The Solution IV

� A factory manages the shared pool

� It adds the object to the pool if it doesn’t exists,
and returns it

� Here’s Character’s constructor:

Character(int x, int y, Font *f, …) {

this- >x = x;

this- >y = y;

this- >cc =

factory.createCharacter(f, …);

}

The UML The Fine Print

� There’s a lot of tradeoff in what is

defined as “extrinsic”

� Shared pool is usually a hash table

� Use reference counting to collect unused

flyweights

� Don’t rely on object identity

• Different objects will seem equal

Known Uses

� Word processors

• Average 1 flyweight per 400 letters

� Widgets

• All data except location, value

� Strategy design pattern

� State design pattern

3. Decorator

� Attach additional features to an objects

dynamically

� For example, many features can be

added to any glyph in a document

• Background, Note, Hyperlink, Shading,

Borders, …

The Requirements

� We can freely combine features

• An image can have a

background,

a border, a hyper-link and a note

� Features are added and removed

dynamically

� Can’t afford a class per combination

� Should be easy to add new features

• Don’t put it all in Glyph

The Solution

� Meet Decorator, a class for adding
responsibilities to another glyph:

class Decorator : public Glyph

{

void draw() {

component->draw();

}

// same for other features

private:

Glyph *component;

}

The Solution II

� Define concrete decorators:

class BackgroundDecorator

: public Decorator

{

void draw() {

drawBackground();

glyph->draw();

}

}

The Solution III

� Many decorators can be added and

removed dynamically:

� Behavior can be added before and after

calling the component

� Efficient in space

� Order of decoration can matter

The UML The Fine Print

� The Decorator class can be omitted if

there’s only one decorator or Glyph is

very simple

� The Glyph class should be lightweight

and not store data

Known Uses

� Embellishing Document

• Background, Border, Note, ...

� Communication Streams

• Encrypted, Buffered, Compressed

Data Structure Summary

� Patterns work nicely together

• Composite, Decorator, Flyweight don’t

interfere

� Data structures are not layered

• Instead, clients work on a Glyph interface
hiding structures of unknown, dynamic

complexity

Saving and Loading

� Each Glyph should have “deep” read()

and write() methods

� Save to disk / Send over network by

simply writing the root Glyph object of a

document

� All optimizations saved as well!

� Also works on subtrees

� Little coding

Cut, Copy, Paste

� Cut = Detach a subtree

� Copy = Clone a subtree

� Paste = Attach a subtree

� Also works on composite glyphs

� Glyphs should hold a reference to

parents for the cut operations

� Cloning of a flyweight should only

increase its reference count!

4. Iterator

� Traverse a data structure without
exposing its representation

� An extremely common pattern

� For example, a list should support
forward and backward traversals
• Certainly not by exposing its internal data

structure

� Adding traversal methods to List’s
interface is a bad idea

The Requirements

� Traversal operations should be

separate from List<G>’s interface

� Allow several ongoing traversals on the

same container

� Reuse: it should be possible to write

algorithms such as findItem that work

on any kind of list

The Solution

� Define an abstract iterator class:

class Iterator<G> {

void first() = 0;

void next() = 0;

bool isDone() = 0;

G* item() = 0;

}

The Solution II

� Each data structure implementation will

also implement an iterator class:
•ListIterator<G>

•HashTableIterator<G>

•FileIterator<G>

•StringIterator<G>

� Each data structure can offer more

than one iterator:
• Forward and backward iterators

• Preorder, inorder, postorder

The Solution III

� For example:
class BackwardArrayIterator<G>

: public Iterator<G>

{

Array<G> *container;

int pos;

public:

BackwardArrayIterator(Array *a)

{ container = a; first(); }

next()

{ --pos; }

// other methods easy

}

The Solution IV

� A data structure’s interface should return
iterators on itself:
class List<G>

{

Iterator<G>* getForwardIterator()

{ return new

ListForwardIterator(this); }

Iterator<G>* getBackwardIterator()

// similarly

}

� Now every LinkedList object can have many
active iterators

The Solution V

� Writing functions for containers:
void print(Iterator<int>* it)
{
for (it- >first();

!it- >isOver();
it- >next())

cout << it- >item();
}

� Using them:
print(myList- >getBackwardIterator());

print(myTable- >getColumnItr(“Age”));

print(myTree- >getPostOrderIterator());

The Solution VI

� Generic algorithms can be written:
G* findItem(Iterator<G>* it,

G *element)

{

while (!it- >isOver())

{

if (it- >item() == element)

return element;

it- >next();

}

return NULL;

}

The Requirements II

� Some iterators are generic:
• Traverse every n’th item

• Traverse items that pass a filter

• Traverse only first n items

• Traverse a computed view of items

� Such iterators should be coded once

� It should be easy to combine such
iterators and add new ones

� Their use should be transparent

The Solution

� Use the Decorator design pattern

� For example, FilteredIterator<G>
receives another iterator and the filtering
function in its constructor

� It delegates all calls to its internal iterator
except first() and next():
void next() {

do it- >next()

while (!filter(it- >item() &&
!it- >isOver());

}

The Solution II

� It is then easy to combine such generic
iterators

� Print square roots of the first 100
positive elements in a list:

print(new LimitedIterator(100,

new ComputedIterator(sqrt,

new FilteredIterator(positive,

list- >getForwardIterator()))));

� Adding an abstract DecoratorIterator

reduces code size if many exist

The UML

The Fine Print

� Everything is a container
• Character strings

• Files, both text and records

• Socket streams over the net

• The result of a database query

• The bits of an integer

• Stream of random or prime numbers

� This allows reusing the print, find

and other algorithms for all of
these

The Fine Print II

� Iterators may have privileged access
• They can encapsulate security rights

� Kinds of abstract iterators
• Direct access iterators

• Access the previous item

� Robustness issues
• Is the iterator valid after insertions or

removals from the container?

� Iterators and the Composite pattern

Known Uses

� All major standard libraries of popular

programming languages

• STL for C++

• The Java Collections Framework

� New libraries for file, network and

database access in C++ conform to

STL’s iterators as well

5. Visitor

� Separate complex algorithms on a complex

data structure from the structure’s

representation

� For example, a document is a composite
structure involved in many complex operations

• Spell check, grammar check, hyphenation, auto-

format, …

� How do we avoid cluttering Glyph subclasses
with all this code?

The Requirements

� Encapsulate complex algorithms and

their data in one place

� Outside the data structure

� Easily support different behavior for

every kind of Glyph

� Easily add new tools

The Solution

� Say hello to class Visitor:
class Visitor {

public:

void visitImage(Image *i) { }

void visitRow(Row *r) { }

void visitTable(Table *t) { }

// so on for every Glyph type

}

� Every tool is a subclass:
class SpellChecker : public Visitor

The Solution II

� Add to Glyph’s interface the ability to
accept visitors:
void accept(Visitor *v) = 0;

� Every glyph subclass accepts a visitor
by an appropriate callback:
class Image : public Glyph {

void accept(Visitor *v)

{ v- >visitImage(this); }

� This way the visitor is activated for the
right kind of glyph, with its data

The Solution III

� Initiating a spell check (one option):

• Create a SpellChecker object

• root->accept(sc);

� Graphic non-text glyphs will just
ignore the visit

• This is why Visitor includes default empty

method implementations

� Composite glyphs also do nothing

• They can forward the visit to children. This

can be coded once in CompositeGlyph

The Solution IV

� Easy to add operations
• Word count on characters

• Filters such as sharpen on images

• Page layout changes on pages

� Works on any glyph
• In particular, a dynamic selection as long as

it’s a composite glyph

� Adding a tool does not require
recompilation of Glyph hierarchy

The UML

The Fine Print

� The big problem: adding new Glyph
subclasses is hard
• Requires small addition to Visitor, and

recompilation of all its subclasses

� How do we traverse the structure?
• Using an iterator

• From inside the accept() code

• From inside the visitxxx() code

� Visitors are really just a workaround due to
the lack of double dispatch

Known Uses

� Document Editors

• Spell Check, Auto-Format, …

� Photo Editors

• Filters & Effects

� Compilers

• Code production, pretty printing, tests, metrics
and optimizations

on the syntax tree

Summary

� Pattern of patterns
• Encapsulate the varying aspect

• Interfaces

• Inheritance describes variants

• Composition allows a dynamic choice
between variants

� Design patterns are old, well known and
thoroughly tested ideas
• Over twenty years!

