
Object Oriented Design

David Talby

Welcome!

� Introduction

� UML

• Use Case Diagrams

• Interaction Diagrams

• Class Diagrams

� Design Patterns

• Composite

UML

� Unified Modeling Language

• Standard for describing designs

• Visual: a set of diagrams

� Unifies entire design process:

• Use Cases for requirements

• Static class diagrams

• Object & Interaction diagrams

• Components, Packages, …

Use Cases

� A Use case is a narrative document
that describes the sequence of
events of an actor using a system
to complete a process.

� A use case diagram visualizes
relationships between a system’s
use cases and actors

Use Case Document

Name: Sell Item

Initiator: Customer

Type: Primary, Required

Actions: 1. Customer asks for X

2. Sales clerk checks if X

is in stock

3. …

Error Case A: if … then …

Use Case Diagram

� Actors participate in use cases

� Use cases use or extend others

Use Case Diagram II Sequence Diagrams

� A sequence diagram visualizes an
ordered interaction between
objects, by showing the messages
sent between them.

� One way to start a design is:

• Translating a UC to a sequence

• Turn its actions to messages

A Sequence Diagram

 : B u t t o n : D i a l e r : D i s p l a y

P r e s s (d i g i t)

S h o w (d ig i t)

V a l i d a t e (d ig i t)

L i g h t (o n)

Sequence Diagrams II

� Good time-line visualization

� Supports messages to self

� Supports object of same class:

Sequence Diagrams III

� Supports conditions and loops:

Collaboration Diagrams

� Another visual way to show the
same information that a sequence
diagram shows

� Uses numbering of messages
instead of a timeline

� Both diagrams are also called
interaction diagrams

Collaboration Diagrams Collaboration Diagrams

� Good object-centric view

� Identical to Sequence diagrams

• Loops, conditions, arguments

• Automatic translation possible

Class Diagrams

� Class diagrams show the static
picture of the system’s classes

� And relationships between them

Diagramming a Class

� All Additions are optional
• Types and argument lists

• Initial values and constants

Dependency

� Class A requires B to compile

� Creates it (Instantiates)
• Gets an argument

Association

� Class A points to a B object
• Can be Uni- or Bi-Directional

• Each role can be named

Aggregation

� Class A contains a list of B’s
• But B’s can exist without A’s

• Can be Uni- or Bi-Directional

• Can be numbered

Composition

� Class A contains a list of B’s
• B’s are destroyed with their

container A is destroyed

• Can be Uni/Bi-Di, Numbered

Inheritance

� Class A inherits from class B

Numbering

� Association, Aggregation and
Composition can constraint lists

Templates & Interfaces

T

� Both are supported

Stereotypes

� Attributes of classes or methods
• Standard: Interface, Abstract

• Can be project-specific

Package Diagrams

� Organize a system’s elements into
related groups to minimize
dependencies between them

� Provides a high-level view

� A UML package is analogous to
• a Java package

• a C++ namespace

Package Diagrams II

Package Diagrams III

Database

S erver User Interface

A lgorithm s

UML Notes

� Can be attached to anything

T

Other UML Diagrams

� State diagrams illustrate the states of a

system or an object, and events that cause

state transitions

� Component diagrams show compiler and

runtime dependencies between components.

� Deployment diagrams show the distribution

of processes and components to processing

nodes.

� UML is a large standard

Design Patterns

� O-O Design is Hard

� Errors are expensive

� Reuse experts’ designs

� Pattern = Documented experience

Expected Benefits

�Finding the right classes

�Finding them faster

�Common design jargon

�Consistent format

�Coded infrastructures

O-O Programming

� An interface is a contract to clients.

� A class implements interface(s).

� Objects are instances of classes.

� Objects are only accessed through their

public interfaces.

� Only two relations between classes:

Inheritance and composition

Object Relationships

� Inheritance: Static and efficient, but exposes

and couples modules

� Composition: Hides more from client and can

change dynamically

� Gang of Four:

“Favor composition over inheritance”

� Dijkstra: “Most problems in computer science

can be solved by another level of indirection”

Designing for Change

� The Open-Closed Principle

� The Single-Choice Principle

� Non-clairvoyance

� Key Issue: Prepare for change!

� Well, prepare for what?

Causes of Redesign

� Dependence on hardware or software

platform

� Dependence on representation or

implementation

� Specifying a class upon creation

� Algorithmic dependence

� Tight coupling

� Overuse of inheritance

� Inability to alter classes easily

Pattern Categories

� Creational - Replace explicit creation

problems, prevent platform

dependencies

� Structural - Handle unchangeable

classes, lower coupling and offer

alternatives to inheritance

� Behavioral - Hide implementation, hides

algorithms, allows easy and dynamic

configuration of objects

Pattern of Patterns

� Encapsulate the varying aspect

� Interfaces

� Inheritance describes variants

� Composition allows a dynamic
choice between variants

Criteria for success:

Open-Closed Principle
Single Choice Principle

1. Composite

� A program must treat simple and

complex objects uniformly

� For example, a painting program has

simple objects (lines, circles and texts)

as well as composite ones (wheel =

circle + six lines).

The Requirements

� Treat simple and complex objects

uniformly in code - move, erase, rotate

and set color work on all

� Some composite objects are defined

statically (wheels), while others

dynamically (user selection)

� Composite objects can be made of other

composite objects

� We need a smart data structure

The Solution

� All simple objects inherit from a common

interface, say Graphic:
class Graphic {

void move(int x, int y) = 0;

void setColor(Color c) = 0;

void rotate(double angle) = 0;

}

� The classes Line, Circle and others

inherit Graphic and add specific features

(radius, length, etc.)

The Solution II

� This new class inherits it as well:

class CompositeGraphic

: public Graphic,

public list<Graphic>

{

void rotate(double angle) {

for (int i=0; i<count(); i++)

item(i)- >rotate();

}

}

The Solution III

� Since a CompositeGraphic is a list, it had

add(), remove() and count() methods

� Since it is also a Graphic, it has rotate(),

move() and setColor() too

� Such operations on a composite object

work using a ‘forall’ loop

� Works even when a composite holds other

composites - results in a tree-like data

structure

The Solution IV

� Example of creating a composite:
CompositeGraphic *cg;

cg = new CompositeGraphic();

cg- >add(new Line(0,0,100,100));

cg- >add(new Circle(50,50,100));

cg- >add(t); // dynamic text graphic

cg- >remove(2);

� Can keep order of inserted items if the

program needs it

The GoF UML

� Single Inheritance

� Root has add(), remove() methods

The Fine Print

� Sometimes useful to let objects hold a

pointer to their parent

� A composite may cache data about its

children (count is an example)

� Make composites responsible for deleting

their children

� Beware of circles in the graph!

� Any data structure to hold children will do

(list, array, hashtable, etc.)

Known Uses

� In almost all O-O systems

� Document editing programs

� GUI (a form is a composite widget)

� Compiler parse trees (a function is

composed of simpler statements or

function calls, same for modules)

� Financial assets can be simple (stocks,

options) or a composite portfolio

Pattern of Patterns

� Encapsulate the varying aspect

� Interfaces

� Inheritance describes variants

� Composition allows a dynamic choice

between variants

Criteria for success:

Open-Closed Principle

Single Choice Principle

