David Talby

Object Oriented Design

Welcome!

Introduction

UML
Use Case Diagrams
Interaction Diagrams
Class Diagrams

Design Patterns

k Composite

)

-

UML

Unified Modeling Language
Standard for describing designs
Visual: a set of diagrams

Unifies entire design process:

Use Cases for requirements

Static class diagrams

Object & Interaction diagrams
k Components, Packages, ...

Use Cases

~

A Use case is a narrative document

that describes the sequence of

events of an actor using a system

to complete a process.
A use case diagram visualizes

relationships between a system’s

use cases and actors

_

)

Use Case Document

Name: Sell ltem

Initiator: Customer

Type: Primary, Required
Actions: 1. Customer asks for X

2. Sales clerk checks if X
is in stock

3. ...
kError Case A:if ... then ...

-

Use Case Diagram

~

A

Sales Clark
Check Cut Item

Customer

Actors participate in use cases
k Use cases use or extend others

-

Use Case Diagram Il

Al

Check Out Item

1 1

-

Sequence Diagrams

~

A sequence diagram visualizes an
ordered interaction between
objects, by showing the messages
sent between them.

One way to start a design is:
Translating a UC to a sequence
Turn its actions to messages

A Sequence Diagram

‘ : Button ‘ ‘ : Dialer ‘ ‘ : Display

Press(digit)

|
-1

\ \
\
J ooy
‘ V alidate(digit) ‘
\ o \
‘ T Show(digit) |
| o
! Light(on) ‘
\
\
|

-

Sequence Diagrams Il

Good time-line visualization
Supports messages to self
Supports object of same class:

source : Dialer dest - Dialer

call

_

Sequence Diagrams Il

Supports conditions and loops:

soutce ;- Dialer dest - Dialer

v T [i=1..10] request()

[condition] reply()

-

Collaboration Diagrams

Another visual way to show the
same information that a sequence
diagram shows

Uses numbering of messages
instead of a timeline

Both diagrams are also called
interaction diagrams

/

Collaboration Diagrams

~

_

dpegker
TI.J EmitTone(code)
1*:Digiticade) 2.1:Connectipno)
— .)
L 1.1:DisplayDigit(code)
2isend()
o0y)
Send:Butlon Display
‘_
L1 Inlsel)

)

Collaboration Diagrams

~

_

Good object-centric view
|dentical to Sequence diagrams
Loops, conditions, arguments
Automatic translation possible

1. *[i=1..10] request()

dest :

SOUrCE
Dialer

Dialer

-
2 [condition] reply()

)

-

Class Diagrams

~

_

Class diagrams show the static
picture of the system’s classes

And relationships between them

Class MName

attribute: Type = initialWalue

operationfarg list) retmn tvpe

-

Diagramming a Class

~

All Additions are optional
Types and argument lists
Initial values and constants

Class Name
+ public - attribute
- privede - attribute
protected + operation
+ operation
+ operation

_

-

Dependency

Class A requires B to compile
Creates it (Instantiates)
Gets an argument

Dialer Digit

Pdial digit)

-

Association

Class A points to a B object
Can be Uni- or Bi-Directional
Each role can be named

Car ONEIEY

Person

+wife +hushand

Person

Person

-

Aggregation

_

Class A contains a list of B’s
But B’s can exist without A’s
Can be Uni- or Bi-Directional
Can be numbered

Fersaon Ferson

childran

E ——

4 N

Composition

Class A contains a list of B's

B’s are destroyed with their
container A is destroyed

Can be Uni/Bi-Di, Numbered

Car Wi'h eel
-

o)

-

Inheritance

_

Class A inherits from class B

| Supertype |

| subtype 1 | | subtype 2 |

4 N

Numbering

Association, Aggregation and
Composition can constraint lists

1 1o more tham one Company
0.1 =avc oF one 1
® oy
0..% Zero oF Moy 1.*
1..% one or Iy Person

)

o J

-

Templates & Interfaces

~

Both are supported

List |)
Saddd b =
rerm ove
#CD._thl Cormparable
FizEm Pty

4 N

Stereotypes

Attributes of classes or methods
Standard: Interface, Abstract
Can be project-specific

)

<<abstract>> <<external=>=
“ehicle Loghdanager
Fdrival) Byyrit ef)
PhetSpecd]) Cread()
K ¥oofing == get“v’ersinnﬂ/

Package Diagrams

_

Organize a system’s elements into
related groups to minimize
dependencies between them
Provides a high-level view
A UML package is analogous to

a Java package

a C++ namespace

Package Diagrams Il

~

_

FPackagze Marne |

+&ttribuate 1
-&ttrbuate 2

| ==Citrnpaort==

| Fackage MNarme |

I
— —-

+Lttrabate 1
-&ttrbuate 2

-

Package Diagrams Il

Database Algorithms

< iiiiii

l P
~
~
e
~
e
e
-
Server User Interface

-

UML Notes

~

Can be attached to anything

Interface defined as
in Jdava standard

]

Sodd
BTrarmovel F - -
Tcount

SisErmpty

Comparable

T rmust provide ==
and = operataors

Other UML Diagrams

~

_

State diagrams illustrate the states of a
system or an object, and events that cause
state transitions

Component diagrams show compiler and
runtime dependencies between components
Deployment diagrams show the distribution
of processes and components to processing

nodes.
J

UML is a large standard

Design Patterns

O-O Design is Hard
Errors are expensive
Reuse experts’ designs

Pattern = Documented experience

Expected Benefits

Finding the right classes
Finding them faster
Common design jargon
Consistent format
Coded infrastructures

)

0-0 Programming

An interface is a contract to clients.
A class implements interface(s).
Objects are instances of classes.

Objects are only accessed through their
public interfaces.

Only two relations between classes:
Inheritance and composition

Object Relationships

Inheritance: Static and efficient, but exposes
and couples modules

Composition: Hides more from client and can
change dynamically

Gang of Four:
“Favor composition over inheritance”

Dijkstra: “Most problems in computer science

kcan be solved by another level of /ndirectiony

~

Designing for Change

The Open-Closed Principle
The Single-Choice Principle
Non-clairvoyance

Key Issue: Prepare for change!

Well, prepare for what?

-

Causes of Redesign

Dependence on hardware or software
platform

Dependence on representation or
implementation

Specifying a class upon creation
Algorithmic dependence

Tight coupling

Overuse of inheritance

K Inability to alter classes easily

~

Pattern Categories

)

o

Creational - Replace explicit creation
problems, prevent platform
dependencies

Structural - Handle unchangeable
classes, lower coupling and offer
alternatives to inheritance

Behavioral - Hide implementation, hides
algorithms, allows easy and dynamic
configuration of objects

)

Pattern of Patterns

Encapsulate the varying aspect
Interfaces
Inheritance describes variants

Composition allows a dynamic
choice between variants

Criteria for success:
Open-Closed Principle
k Single Choice Principle

1. Composite

A program must treat simple and
complex objects uniformly

For example, a painting program has
simple objects (lines, circles and texts)
as well as composite ones (wheel =
circle + six lines).

)

The Requirements

Treat simple and complex objects
uniformly in code - move, erase, rotate
and set color work on all

Some composite objects are defined

statically (wheels), while others
dynamically (user selection)

composite objects
k We need a smart data structure

Composite objects can be made of other

)

~

The Solution

_

All simple objects inherit from a common
interface, say Graphic:
class Graphic {
void move (int x, int y) = O;
void setColor (Color c) = 0;
void rotate (double angle) = O;
}
The classes Line, Circle and others

inherit Graphic and add specific features
(radius, length, etc.) J

The Solution 11

~

This new class inherits it as well:

class CompositeGraphic
: public Graphic,
public list<Graphic>
{
void rotate(double angle) {

for (int i=0; i<count(); i++)

L

item(i) - >xotate();

-

~

The Solution Il

_

Since a CompositeGraphic is a list, it had
add(), remove() and count() methods
Since it is also a Graphic, it has rotate(),
move() and setColor() too

Such operations on a composite object
work using a ‘forall’ loop

Works even when a composite holds other
composites - results in a tree-like data
structure

The Solution IV

Example of creating a composite:
CompositeGraphic *cg;

cg = new CompositeGraphic();

cg >add(new Line(0,0,100,100));
cg >add(new Circle(50,50,100));
cg >add(t); // dynamic text graphic
cg >xemove (2);

Can keep order of inserted items if the
k program needs it

)

The GoF UML

em onen.

Leaf Composite

Operation() Operation{) ©------|
Add{Component)
Femove(Component)

GatChild{int)

Single Inheritance
k Root has add(), remove() methods

The Fine Print

~

Sometimes useful to let objects hold a
pointer to their parent

A composite may cache data about its
children (count is an example)

Make composites responsible for deleting

their children
Beware of circles in the graph!

Any data structure to hold children will do

k (list, array, hashtable, etc.)

)

Known Uses

In almost all O-O systems
Document editing programs
GUI (a form is a composite widget)

Compiler parse trees (a function is
composed of simpler statements or
function calls, same for modules)

Financial assets can be simple (stocks,
k options) or a composite portfolio

)

Pattern of Patterns

~

Encapsulate the varying aspect
Interfaces
Inheritance describes variants

Composition allows a dynamic choice
between variants
Criteria for success:
Open-Closed Principle
k Single Choice Principle

