Triggers: Correction

* The problems with mutating tables are

+ STATEMENT triggers can

Mutating Tables (Explanation)

mainly with FOR EACH ROW ftriggers

query/update/delete/etc the table that
they are running on since they are run only
at a point that processing is "complete"
and the table is no longer mutating

Mutating Tables, Cont.

+ So, the trigger of slide 13 in the trigger
lesson is actually ok. Tt would not work if
it was a FOR EACH ROW trigger

+ Can you think of an action that could not
be done with a trigger because of the
mutating table problem? Or, can we always
use a STATEMENT trigger to solve our
problems?

Design Theory

QOverview

- Starting Point: Set of function
dependencies that describe real-world
constraints

+ Goal: Create tables that do not contain
redundancies, so that

- there is less wasted space

- there is less of a chance to introduce errors
in the the database

From Start to Goal (1)

* Armstrong's axioms defined, so that we can

derive "implicit" functional dependencies

* Need to identify a key:

- find a single key (algorithm from homework)
- find all keys (algorithm taught in tirgul class)

* Both algorithms use as a subroutine an algorithm

that computes the closure. In class a polynomial
algorithm was given. Later today, a linear
algorithm will be shown

From Start to Goal (2)

+ Given a decomposition of a schema, need to be
able to determine functional dependencies that
hold on the sub-schemas.

+ Two important characteristics of a
decomposition:
- lossless join (necessary, otherwise original relation
cannot be recreated, even if tables are not modified)
- dependency preserving: allows us to check that
inserts/updates are correct without joining the
relations

From Start to Goal (3)

+ Check for a lossless join using the algorithm

from class (with the a-s and b-s)

* Check for dependency preserving using an

algorithm shown today

+ Normal Forms:

- 3NF: Every dependency X->A must be (1) trivial, (2) X
is a superkey or (3) A is an attribute of a key

- BCNF: Every dependency X->A must be (1) trivial or
(2) X is a key

From Start to Goal (3)

+ Algorithm for decomposition to 3NF that has a
lossless join and is dependency preserving uses a
minimal cover (algorithm for minimal cover
shown in class)

+ Polynomial algorithm for decomposition to BCNF
that has a lossless join not taught

* Question: Can you find a trivial decomposition
to BCNF of any relation?

Compute Closure in Linear Time

Closure of a Set of Attributes

- Let Ube a set of attributes and Fbe a set of
functional dependencies on U.

+ Suppose that X0 Uis a set of attributes.
- Definition: X' ={A| F e X = A}

- We would like to compute X*

* Note: We use the & symbol, not the +
symbol. Is there a difference?

Algorithm From Class

Conpute Cl osure(X, F)

1. Xt:=X
2. Wile thereif a V- Win F such
that (V O XY)and (WL X*) do
Xr:=X*0OW
3. Return X*

Complexity: |U*|Fl

A More Efficient Algorithm

We start by creating a table, with arow for
each FD and a column for each attribute. The

Example Table

[F={A—C,B—D, AD — E}|

table will have 2 additional columns called size
and tail. A|B|C|\D|E | Size | Tail
In the row for a dependency X - ¥, there will
be the value true in each column corresponding A->C |V 1 c
to an attribute in X The size column will
contain the size of the set X The tail column B8—0 d : %
will contain Y. AD — FE |V v 2 E
13 14
Conpute Closure(X, F, T) /* Tis the table */ Com_puﬂng AB*
X=X
Q:=X
VWiile Qis not enpty Start: X' = {AB}, Q= {A, B}
A = Q dequeue()
for i=1..|F| A B |C |D |F |Size| Tail
if T[i, Al=true then
Tli,size] := T[i, size] 1 A—>C Y ! 4
if T[i,size]=0, then B—= D v 1 D
X=X+ 0O Ti,tail]
Q:= QO Ti, tail] AD— EV v 2 E

Computing AB*

Iteration of A: X*={ABC}, Q= {BC}

A B |C D |E Size| Tail
A—C |V 0 C
B— D v 1 D
AD— E|Y v 1 E

Computing AB*

Iteration of B: X*= {AB,C,D}, Q= {CD}

A|B |C D |E |Size| Tail
A—C |V 0 c
B— D v 0 D
AD— E)Y v 1 E

Computing AB*

Iteration of C: X*={ABCD}, Q-={D}

A B |C D |E Size| Tail
A—C |V 0 C
B— D v 0 D
AD— E|Y v 1 E

Computing AB*

Iteration of D: X*={ABCDE}, Q= {E}

A|B |C D |E |Size| Tail
A—C |V 0 C
B— D v 0 D
AD— E)Y v 0 E

Computing AB*

Iteration of E: X*={ABCDE}, Q={}

A B |C D |E Size| Tail
A—C |V 0 C
B— D v 0 D
AD— E|Y v 0 E

Complexity?

+ To get an efficient algorithm, we assume that there

are pointers from each “true” box in the table to
the next "true" box in the same column.
Complexity:O(|X| + |F[)

A |B |C|D |E Size Tail
AsC | L ¢
B— D v 1 D
AD— E\V v 2 E

21

Decompositions that Preserve
Dependencies

+ Example: R=CSZ

Decompositions that Preserve

Dependencies

* Problem: Suppose that we decompose R and

then insert rows into the decomposition. Is it
possible that the join of these rows will
contradict a FD?

(city, street, zip-code)
then, CS>Z, Z->C hold in R, Suppose we
decompose into SZ and CZ. This is lossless.
However, we can contradict CS>Z

Definitions

+ We define 15 (F) to be the set of dependencies X->Y in
F* such that X and Y are in S.
+ We say that a decomposition R;..R, of R is dependency

preserving if for all instances r of R that satisfy the
FDs of R:

T, (F) V..Ut (F) implies F
+ Note that the other direction of implication clearly
holds always.

+ This definition implies and exponential algorithm to
check if a decomposition is dependency preserving

Testing Dependency
Preservation

* To check if the decomposition preserves X->V:

Z: =X
whi | e changes to Z occur do
for i:=1..n do
Z:=Z U ((ZaR)*aR)
/* closure wr.t. F */
Return true if Y is contained in Z
G herwi se return fal se

Example

+ Suppose R=ABCD and we have a
decomposition {AB, BC, CD}, and
dependencies {A>B, B>C, C>D, D>A}.

+ Does this decomposition preserve D>A?

