JDBC:
Java Database Connectivity

Introduction to JDBC

+ JDBC is used for accessing databases

from Java applications

 Information is transferred from relations

to objects and vice-versa
- databases optimized for searching/indexing

- objects optimized for engineering/flexibility

Why Access a Database with
Java?

* There are queries that can not be
computed in SQL:
- Given a table Bus(Source, Destination) find

all pairs of places that it is possible o travel
(paths of any length)

- Java allows for a convenient user
interface to the database

Six Steps

+ Load the driver

+ Establish the Connection

* Create a Statement object
* Execute a query

* Process the result

+ Close the connection

JDBC Architecture

Application

+ Java code calls JDBC library

- JDBC loads a driver

+ Driver talks to a particular database

+ Can have more than one driver -> more than one
database

+ Ideal: can change database engines without
changing any application code

Loading the Driver

* We can register the Driver indirectly using the

Java statement:
Class. forName("oracle. jdbc.driver. OracleDriver");
Calling Class. forName, automatically

- creates an instance of the driver

- registers the driver with the DriverManager

* The DriverManager tries all the drivers

+ Uses the first one that works

Packages to Import

+ Inorder to connect to the Oracle
database from java, import the following

packages:
- java.sgl*; (usually enough)
- javax.sql.* (for advanced features, such as

scrollable result sets)

Connecting to the Database

String path = "jdbc:oracle:thin:";

String host = "sol4"; .

) N " This is
String port = "1521"; actually the
String db = "stud"; password

String login = "snoopy";
String url = path + login + "/" + login +
II@II + hosf +II:II + po” + II:II + db;

Class.forName("oracle. jdbc.driver. OracleDriver");

Connection con = DriverManager.getConnection(url);

Connection Methods

Statement createStatement()
- returns a new Statement ob ject
PreparedStatement prepareStatement(String sql)
- returns a new Prepared Statement ob ject
CallableStatement prepareCall(String sql)
- returns a new Callable Statement ob ject
+ Why all these different kinds of statements?
Optimization.

Querying with Statement

String queryStr =
"SELECT * FROM Sailors " +
"WHERE Lower(Name) = 'joe smith'";

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(queryStr);

* Statements are used for queries that are only
issued once.

* The executeQuery method returns a ResultSet
object representing the query result.

Changing DB with Statement

String deleteStr =
“"DELETE FROM Sailors " +
"WHERE sid = 15";

Statement stmt = con.createStatement();
int delnum = stmt.executeUpdate(deleteStr);

- executeUpdate is used for data manipulation:
insert, delete, update, create table, etc.
(anything other than querying!)

- executeUpdate returns the number of rows
modified.

About Prepared Statements

* Prepared Statements are used for queries
that are executed many times.

+ They are parsed only once.

+ Using setString(i, value) (setInt(i, value),
etc.) the i-th question mark is set to the
given value.

Querying with PreparedStatement

String queryStr =
"SELECT * FROM Sailors " +
"WHERE Name = ? and Rating < ?“;

PreparedStatement pstmt =
con.prepareStatement(queryStr);

pstmt.setString(l, “Joe");
pstmt.setInt(2, 8);

ResultSet rs = pstmt.executeQuery();

Changing DB with
PreparedStatement

String deleteStr =
“"DELETE FROM Boats " +
"WHERE Name = ? and Color = ?";

PreparedStatement pstmt =
con.prepareStatement(deleteStr);

pstmt.setString(1, "Fluffy");
pstmt.setString(2, "red");

int delnum = pstmt.executeUpdate();

Statements vs.
PreparedStatements: Be Carefull

* Are these the same? What do they do?

String val = “Joe";

PreparedStatement pstmt =
con.prepareStatement(“select * from Sailors

where sname=?");

pstmt.setString(l, val);
ResultSet rs = pstmt.executeQuery();

String val = “Joe";
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery('select * from
Sailors where sname=" + val);

Statements vs.
PreparedStatements: Be Carefull

+ Will this always work?

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery('select * from R

where A ='" + val +"'");

* The moral: When getting input from the
user, always use a PreparedStatement

Statements vs.
PreparedStatements: Be Carefull

+ Will this work?

PreparedStatement pstmt =
con.prepareStatement(‘select * from ?“);

pstmt.setString(l, "Sailors");

ResultSet

* A ResultSet provides access 1o a table of data

generated by executing a Statement.

* Only one ResultSet per Statement can be open

at once.

* The table rows are retrieved in sequence.

* A ResultSet maintains a cursor pointing to its

current row of data.

» The 'next' method moves the cursor to the

next row.

ResultSet Methods

Type get Type(int columnIndex)
- returns the given field as the given type
- fields indexed starting at 1 (not 0)
Type get Type(String columnName)
- same, but uses name of field
- less efficient

+ int findColumn(String columnName)

- looks up column index given column name

isNull

* In SQL, NULL means the field is empty

* Not the same as O or

+ In JDBC, you must explicitly ask if a field
is null by calling ResultSet.isNull(column)

Printing Query Output:
Result Set (1)

Print Column Headers:

ResultSetMetaData rsmd = rs.getMetaData();
int numcols = rsmd.getColumnCount();

for (inti =1 ;i <= numcols; i++) {
if (i > 1) System.out.print(",");
System.out.print(rsmd.getColumnLabel(i));

21

Printin uery Output:
Result Set (2

while (rs.next() {
for (inti =1 ;i <= numcols; i++) {
if (i > 1) System.out.print(",");
System.out.print(rs.getString(i));
}
System.out.printin("");
}

* To get the data in the i-th column: rs.getString(i)
* To get the data in column Abc: rs.getString(* Abc")

22

Mapping Java Types to SQL

Cleaning Up After Yourself

» Remember to close the Connections,
Statements, PreparedStatements and
ResultSets

lypes
SQL type Java Type
CHAR, VARCHAR, LONGVARCHAR String
NUMERIC, DECIMAL Jjava.math BigDecimal
BIT boolean
TINYINT byte
SMALLINT short
INTEGER int
BIGINT long
REAL float
FLOAT, DOUBLE double
BINARY, VARBINARY, LONGVARBINARY byte[]

DATE
TIME
TIMESTAMP

Jjavasql.Date
Jjavasql.Time

Jjavasql.Timestamp

con.close();
stmt.close();
pstmt.close();
rs.close()

Dealing With Exceptions

* A exception can have more exceptions in
it.

catch (SQLException e) {
while (e != null) {
System.out.printin(e.getSQLState();
System.out.printin(e.getMessage();
System.out.printin(e.getErrorCode());
e = e.getNextException();

Timeout

+ Use setQueryTimeOut(int seconds) to set
a timeout for the driver to wait for a
statement to be completed

* If the operation is not completed in the
given time, an SQLException is thrown

* What is it good for?

Advanced Topics

Transactions

- Transaction = more than one statement which
must all succeed (or all fail) together

+ If one fails, the system must reverse all
previous actions

+ Also can't leave DB in inconsistent state halfway
through a transaction

+ COMMIT = complete transaction
+ ROLLBACK = abort

Example

+ Suppose we want to transfer money from bank
account 13 to account 72:

PreparedStatement pstmt =
con.prepareStatement(‘update BankAccount

set amount = amount + ?

where accountId = ?");
pstmt.setInt(1,-100);
pstmt.setInt(2, 13);

pstmt.executeUpdate();
pstmt.setInt(1, 100);
pstmt.setInt(2, 72);
pstmt.executeUpdate();

What happens if this
update fails?

Transaction Management

* The connection has a state called AutoCommit
mode

+ if AutoCommit is true, then every statement is
automatically committed

+ if AutoCommit is false, then every statement is
added to an ongoing transaction

+ Default: true

AutoCommit

Connection.setAutoCommit(boolean val)

+ If you set AutoCommit to false, you must
explicitly commit or rollback the transaction
using Connection.commit() and
Connection.rollback()

31

Fixed Example

con.setAutoCommit(false);
try {
PreparedStatement pstmt =
con.prepareStatement(‘update BankAccount
set amount = amount + ?
where accountId = ?");
pstmt.setInt(1l,-100); pstmt.setInt(2, 13);
pstmt.executeUpdate();
pstmt.setInt(1, 100); pstmt.setInt(2, 72);
pstmt.executeUpdate();
con.commit();
catch (Exception e) {
con.rollback();

}

