Views

What are views good for? (1)

+ Simplifying complex queries: We saw one
example. Here is another that allows the user to
"pretend" that there is a single table in the
database
- CREATE VIEW SRB as

SELECT S.sid, sname, rating, age, R.bid, day,
bname, color

FROM Sailors S, Boats B, Reserves R

WHERE S.sid = R.sid and R.bid = B.bid

What are views good for? (1)

+ Now: Find snames of Sailors who reserved
103 using SRB

What are views good for? (2)

+ Security issues - preventing unauthorized
access. Example: hiding the rating value

CREATE VIEW SailorInfo
SELECT sname, sid, age
FROM Sailors

grant SELECT on SailorInfo to joe:

Changing Tables though a View

+ If aview is based on a single table you can

Changing a Table through a View

insert, update and delete rows from the table

through the view, if you have the necessary

permissions, under the following conditions:

- You can't insert if the underlying table has non null
columns not appearing in the view

- You can't insert or update if any of the view columns
referenced in the command contains functions or
calculations

- You can't insert, update or delete if the view contains
group by or distinct.

o=

What can be changed?

Only Values of Only Values of
Rows seen through |Columns seen through
the View the View
Insert No Yes
Update Yes Yes
Delete Yes No

Inserting Allowed

CREATE VIEW OldSailors as
SELECT *

FROM Sailors

WHERE age > 50;

INSERT INTO OldSailors(sid,sname,age,rating)
VALUES(12, Joe ,51,10);

When we select from OldSailors
next time, we will see Joe

Inserting Allowed

CREATE VIEW OldSailors as
SELECT *

FROM Sailors

WHERE age > 50;

INSERT INTO OldSailors(sid,sname,age,rating)
VALUES(12, Mary ,49,10);

When we select from OldSailors
next time, we will not see Mary!

Preventing Insertions that are

not seen through the View

CREATE VIEW OldSailors as
SELECT *

FROM Sailors

WHERE age > 50

WITH CHECK OPTION;

INSERT INTO OldSailors(sid,sname,age,rating)
VALUES(12, Joe ,51,10);

INSERT INTO OldSailors(sid,sname,age,rating)
VALUES(12, Mary ,49,10);

Preventing Insertions that are
not seen through the View

* How can Oracle implement WITH CHECK
OPTION?

Inserting Not Allowed

CREATE VIEW Sailorsinfo as
SELECT sname, rating
FROM Sailors

WHERE age>50;

INSERT INTO Sailorsinfo VALUES(Joe ,10);

llegal!
Why?

N

Updating Allowed

Updating Allowed

CREATE VIEW Sailorsinfo as
SELECT sname, rating, age
FROM Sailors

UPDATE Sailorsinfo
SET rating =6
WHERE sname = Joe;

WHERE age>50;

Oracle only changes the rating of Joes who are
older than 50.

Implemented by adding WHERE condition of view
to WHERE condition of Update

UPDATE Sailors
SET rating =6
WHERE sname = Joe and age>50;

UPDATE Sailorsinfo2
SET age = age 1;

CREATE VIEW Sailorsinfo2 as
SELECT sname, rating, age
FROM Sailors

WHERE age>50;

How is it implemented?

Will cause tuples to "disappear from the view"
Can prevent this "WITH CHECK OPTION"

Updating Not Allowed

CREATE VIEW Sailorsinfo3 as
SELECT sname, rating + age as ra
FROM Sailors

WHERE age>50;

UPDATE Sailorsinfo3

SETra=7
WHERE sname = Joe ; 4= | lilegall
Why?

Deleting Allowed

CREATE VIEW Sailorsinfo3 as
SELECT sname, rating + age as ra
FROM Sailors

WHERE age>50;

DELETE FROM SailorsInfo3
WHERE sname = Joe
and ra = 56;

Oracle only deletes Joes visible through the view.
How do you think that this is implement by Oracle?

Some More Examples:
What will these commands do?

CREATE VIEW OldSailors as
SELECT *

FROM Sailors

WHERE age > 50;

UPDATE OldSailors
SET age = age +1
WHERE age <= 50;

UPDATE OldSailors
SET rating = 10;

DELETE FROM OldSailors;

Materialized Views

lw

What and Why?

+ What: A materialized view is a view that
actually exists as a table

* Why: This can be more efficient than re-
computing the view's query each time it is
accessed

* Problem: How is the materialized view kept up
to date when the underlying tables are changed?
* Note: We will just see the ideas here and not
the syntax

Simple vs. Complex

A Simple Materialized View:
1. Selects rows from only 1 table

2. Does not perform set operations, joins or
group bys

Otherwise, it is a Complex Materialized
View.

Options for Materialized Views

+ Refresh mode, one of

- Complete: Recompute the query

- Fast (only possible for Simple Materialized Views):
add minimal changes

*+ When is refresh performed?

- On demand: When refresh is specifically asked for

- On commit: When underlying table has changed

21

Fast Refresh

+ Consider a materialized view defined by
the query:

SELECT sname, age
FROM Sailors
WHERE rating < 10 and age > 50;

Fast Refresh

* How would the materialized view be
updated when the following commands are
performed?

INSERT INTO Sailors(sid,sname,rating,age)
VALUES (12, Joe ,8,52);

DELETE FROM Sailors
WHERE age < 54,

UPDATE Sailors SET age = age - 1
WHERE rating < 10;

Query Rewrite

* We can use a materialized view in a query,
similarly to a table and to a regular view

* The Query Rewrite Option specifies that
Oracle can automatically substitute a
materialized view in a query, instead of a
table mentioned in the query.

+ Why is this useful?

[

Query Rewrite

+ Suppose the materialized view from before was
called InterestingSailors.
* Given the query:

SELECT age
FROM Sailors
WHERE rating < 10 and age > 51

-+ Oracle could decide to evaluate instead

SELECT age
FROM InterestingSailors
WHERE age > 51,

Null Values

Null Values in Expressions

+ The result of an arithmetic expression, over something
that is null -> is null (e.g., null*0, null = null)
+ Nulls in logical expressions:
- null AND true -> null
- null AND false -> false
- null OR true -> true
- null OR false -> null
- NOT (null) -> null
+ Tuples only pass the WHERE condition if the WHERE
evaluates to true (not to false or null)

Nulls in Aggregation Functions

« count(*): counts all rows (even rows that
are all null values)
- count(A): counts non-null As. returns O if
all As are null
+ sum(A), avg(A), min(A), max(A)
- ignore null values of A

- if A only contains null value, the result is null

Distinct and Group By

Rows are considered identical if they have
all the same non-null values or both have
null values in the same columns

+ Distinct removes duplicates of such rows

* Such rows form a single group when using
GROUP BY

Example

SELECT count(*), count(c), min(c), sum(c)
FROM (SELECT c
FROM A

WHERE c IS NULL or ¢ <> NULL
4 GROUP BY c)

w w N =

[§)]

