Query Optimization

Why Optimize?

* Given a query of size nand a database of size m,

how big can the output of applying the query to
the database be?
+ Example: R(A) with 2 rows. One row has value O.
One row has value 1.
- How many rows are in R x R?
- How many in R x R x R?

= Size of output as a function of input: O(?)

Data Complexity

+ Usudlly, queries are small. Therefore, it is
usually assumed that queries are of a fixed size.

* Use term Data Complexity when we analyze
time, assuming that query is constant

* What is the size of the output in this case?

Optimizer Architecture

Rewriter
Algebraic Space Cost Model
Planner
Method-Structure Size-Distribution
Space Estimator

Optimizer Architecture

* Rewriter: Finds equivalent queries that,
perhaps can be computed more efficiently. All
such queries are passed on to the Planner.

- Examples of Equivalent queries: Join orderings

* Planner: Examines all possible execution plans
and chooses the cheapest one, i.e., fastest one.

- Uses other modules to find best plan.

Optimizer Architecture (cont.)

* Algebraic Space: Determines which types of
queries will be examined.
- Example: Try to avoid Cartesian Products

* Method-Space Structure: Determines what
types of indexes are available and what types of
algorithms for algebraic operations can be used.

- Example: Which types of join algorithms can be used

Optimizer Architecture (cont.)

- Cost Model: Estimates the cost of
execution plans.

- Uses Size-Distribution Estimator for this.

+ Size-Distribution Estimator: Estimates
size of tables, intermediate results,
frequency distribution of attributes and
size of indexes.

+ Example:

Algebraic Space

+ We consider queries that consist of select, project and join.

(Cartesian product is a special case of join.)

+ Such queries can be represented by a tree.

emp(name, age, sal, dno)
dept(dno, dname, floor, mgr, ano)
act(ano, type, balance, bno)

bank(bno, bname, address)

select name, floor
from emp, dept
where emp.dno=dept.dno and sal>100K

3 Trees
Thame, floor Thame. floor Thame, floor
> < dno=dno Osas100K /M \d<=dno
Ogas100k DEPT > gno=cno Thno, name ~ Tlano, floor
/ EMP DEPT osal>‘100K
EMP | DEPT

Thame,sal,dno

@ | ® |«

Restriction 1 of Algebraic Space

+ Algebraic space may contain many equivalent

queries

* Important to restrict space - Why?
* Restriction 1: Only allow queries for which

selection and projection:
- are processed as early as possible

- are processed on the fly

* Which trees in our example conform to

Restriction 1?

Performing Selection and
Projection "On the Fly
+ Selection and pro jection are performed as part of other
actions

+ Projection and selection that appear one after another
are performed one immediately after another

Projection and Selection do not require writing to the
disk

+ Selection is performed while reading relations for the
first time

+ Projection is performed while computing answers from
previous action

Processing Selection/Projection
as Early as Possible

* The three trees differ in the way that
selection and projection are performed

+ In T3, there is "maximal pushing of
selection and projection"
- Rewriter finds such expressions

* Why is it good to push selection and
projection?

Restriction 2 of Algebraic Space

+ Since the order of selection and projection is
determined, we can write trees only with joins.

* Restriction 2: Cross products are never
formed, unless the query asks for them.

+ Why this restriction?

+ Example:

select name, floor, balance
from emp, dept, acnt
where emp.dno=dept.dno and

dept.ano = acnt.ano

Which trees
have cross
products?

3 Trees

> < ano=ano

> < dno=dno > 4 ano=ano,

dno=dno

>4 dno=ane ACNT >4 ano=an0 EMP /94\ ACNT
EMP DEPT ACNT DEPT EMP ACNT

Restriction 3 of Algebraic Space

* The left relation is called the outer relation in a
join and the right relation is the inner relation.
(as in terminology of nested loops algorithms)

+ Restriction 3: The inner operand of each join is
a database relation, not an intermediate result.

- Example:

select name, floor, balance

from emp, dept, acnt, bank
where emp.dno=dept.dno and dept.ano=acnt.ano

and acnt.bno = bank.bno

Which trees
follow
restriction 3?

3 Trees

> < bro=bno

CCDD > < bro=bno
S

> < ano=ano BANK

BANK > < ano=ano
/

ACNT

> < dno=dno ¥ ¢ bno=bno

N

EmMp DEPT ACNT BANK | pepT EMP

®» © ®

>4 gno=dno ACNT e
dno=dno

EMP DEPT

Algebraic Space - Summary

* We allow plans that
1. Perform selection and projection early and
on the fly
2. Do not create cross products

3. Use database relations as inner relations
(also called left -deep trees)

Planner

* Dynamic programming algorithm to find best
plan for performing join of N relations.

* Intuition:

- Find all ways to access a single relation. Estimate
costs and choose best access plan(s)

- For each pair of relations, consider all ways to
compute joins using all access plans from previous
step. Choose best plan(s)...

- For each i-1 relations joined, find best option to
extend to i relations being joined...

- Given dll plans to compute join of n relations, output
the best. "

Pipelining Joins

* Consider computing: (Emp><¢ Dept)b<¢ Acnt. In
principle, we should
- compute Emp ><¢ Dept, write the result to the disk
- then read it from the disk to join it with Acnt
* When using block and index nested loops join,
we can avoid the step of writing to the disk.

+ Do you understand now restriction 3?

Pipelining Joins - Example

Emp Dept Acnt Qutput
blocks blocks blocks blocks Buffer

Write final

Read block
from Emp @ @ output

@ Find matching Find matching @

Dept tuples Acnt tuples
using index using index

Reminder: Dynamic Programming

* To find an optimal plan for joining Ry, R, R3, Ry,

choose the best among:

- Optimal plan for joining R;, Rs, Ry + for reading R, +
optimal join of R; with result of previous joins

- Optimal plan for joining R;, Rs, R, + for reading R, +
optimal join of R, with result of previous joins

- Optimal plan for joining R;, R;, R, + for reading R; +
optimal join of R; with result of previous joins

- Optimal plan for joining Ry, R;, R; + for reading R, +
optimal join of R, with result of previous joins

21

Not Good Enough

+ Example, suppose we are computing (R(A,B) b«
S(B.C))»<«T(B,D)

* Maybe merge-sort join of R and S is not the
most efficient, but the result is sorted on B

+ If T is sorted on B, the performing a sort-
merge join of R and S, and then of the result
with T, maybe the cheapest total plan

Interesting Orders

+ For some joins, such as sort-merge join, the
cost is cheaper if relations are ordered

* Therefore, it is of interest to create plans
where attributes that participate in a join are
ordered on attributes in joins |ater on

+ For each interesting order, save the best plan.

* We save plans for non order if it better than all
interesting order costs

Example

* We want to compute the query:

select name, mgr

from emp, dept

where emp.dno=dept.dno and sal>30K and floor = 2

+ Available Indexes: B+tree index on emp.sal,
B+tree index on emp.dno, hashing index on
dept.floor

+ Join Methods: Block nested loops, index nested
loops and sort-merge

* Inthe example, all cost estimations are fictional.

Step 1 - Accessing Single Relations

Step 2 - Joining 2 Relations

- - Join Outer/Inner | Plan Cost
Relation | Interesting | Plan Cost
Method
Order
nested |empt/dno For each emp tuple obtained through | 1800
emp emp.dno Access through B+tree on emp.dno | 700
loops B+Tree on emp.sal, scan dept
Access through B+tree on emp.sal 200 through hashing index on dept.floor to
Sequential scan 600 find tuples matching on dno
dept Access through hashing on dept.floor | 50 For each emp tuple obtained through | 3000
Sequential scan 200 B+Tree on emp.dno and satisfying
selection, scan dept through hashing
Which do we save for the next step? index on dept.floor to find tuples
matching on dno
25 26
Step 2 - Joining 2 Relations
Step 2 - Joining 2 Relations Join_ louter/ |pian Cost
Method | |nner
sort Sort the emp tuples resulting from 2300
Join Outer/Inner | Plan Cost . .
merge accessing the B+Tree on emp.sal into L1
Method .
Sort the dept tuples resulting from
nested |dept/emp For each dept tuple obtained through | 2500 accessing the hashing index on dept.floor
loops hashing index on dept.floor, scan emp into L2
through B+Tree on emp.sal to find
. Merge L1 and L2
tuples matching on dno
) Sort the dept tuples resulting from 2000
For each dept tuple obtained through | 1500 . L
o accessing the hashing index on dept.floor
hashing index on dept.floor, scan emp into L2
through B+Tree on emp.dno to find .
tuples satisfying the selection on Merge L2 and the emp tuples resulting
from accessing the B+Tree on emp.dno
emp.sal
p and satisfying the selection on emp.sal 28

The Plan

* Which plan will be chosen?

Cost Model

+ Taught In class: estimate time of
computing joins

* Now: Estimating result size

Estimating Result Sizes

31

Picking a Query Plan

* Suppose we want to find the natural join of:

Reserves, Sailors, Boats.

* The 2 options that appear the best are (ignoring

the order within a single join):

(Sailors [> <] Reserves) [><| Boats
Sailors > <] (Reserves [><] Boats)

+ We would like intermediate results to be as

small as possible. Which is better?

Analyzing Result Sizes

* Inorder to answer the question in the previous
slide, we must be able to estimate the size of
(Sailors [> <] Reserves) and (Reserves [><]
Boats).

+ The DBMS stores statistics about the relations
and indexes.

* They are updated periodically (not every time
the underlying relations are modified).

Statistics Maintained by DBMS

+ Cardinality: Number of tuples N7uples(R)in each

relation R

+ Size: Number of pages MPages(R)in each relation R
+ Index Cardinality: Number of distinct key values

NKeys(I) for each index T

+ Index Size: Number of pages TMPages(I)in each index I
+ Index Height: Number of non-leaf levels THeight(I) in

each B+ Tree index T

- Index Range: The minimum ILow(I)and maximum value

IHigh(I) for each index T

Estimating Result Sizes

SELECT attribute-1ist
FROM rel ation-1i st
WHERE term and ... and term,

- Consider

+ The maximum number of tuples is the
product of the cardinalities of the
relations in the FROM clause

+ The WHERE clause is associating a
reduction factor with each term

- Estimated result size is: maximum size
times product of reduction factors

Estimating Reduction Factors

* column = value: 1/NKeys(I) if there is an index

T on column. This assumes a uniform
distribution. Otherwise, System R assumes 1/10.

« columnl = column2:

1/Max(NKeys(I1) NKeys(I2)) if there is an
index I1 on columni and 12 on columnZ. If only
one column has an index, we use it to estimate
the value. Otherwise, use 1/10.

* column > value: (High(I)-value)/(High(I)-

Low(I)) if there is an index I on cofumn.

Example

SELECT *
FROM Reserves R, Sailors S
WHERE R sid = S.sid and S.rating > 3 and
R agent = Joe

+ Cardinality(R) = 1,000 * 100 = 100,000
+ Cardinality(S) = 500 * 80 = 40,000

* NKeys(Index on R.agent) = 100

* High(Index on Rating) = 10, Low = 0

Example (cont.)

* Maximum cardinality: 100,000 * 40,000
+ Reduction factor of R.sid = S.sid: 1/40,000
+ Reduction factor of S.rating > 3: (10-3)/(10-0) =

7/10

* Reduction factor of R.agent = 'Joe': 1/100

+ Total Estimated size: 700

