Tingul 14

« All Shortest Paths N/
=

* Questions from exercises and exams

All Shortest Paths

The Problem: G = (V, E, w) isaweighted
directed graph. We want to find the shortest
path between any pair of verticesin G.
Example: find the distance between cities
on aroad map.

Can you use aready known a gorithms?

All Shortest Paths

« From every vertex in the graph Run
— Dijkstra: O(|V||E|log|V]) = O(|V[Flog|V])
— Run Bellman-Ford: O(|V|3E]) = O(|V|4)

+ Can we do better?

Dynamic Programming

Dynamic Programming is a technique for
solving problems “bottom-up”:

first, solve small problems, and then use the
solutions to solve larger problems.

What kind of problems can Dynamic
Programming solve efficiently?

Dynamic Programming

+ Optimal substructure: The optimal solution
contains optimal solutions to sub-problems.

+ What other algorithms can suit this kind of
problems?

+ Greedy algorithms

+ Overlapping sub-problems: the number of
different sub-problems is small, and a recursive
algorithm might solve the same sub-problem a few
times.

All Shortest Paths

How can we define the size of sub-problems for
the all shortest paths problem? (two way)
Suggestion 1: according to the maximal number of
edges participating in the shortest path (what
algorithm uses this idea?)

Suggestion 2: according to the set of vertices
participating in the shortest paths (Floyd-
Warshall)




All Shortest Paths - Suggestion 1

e The agorithm uses the |V|x|V| matrix
representation of agraph

e Theresult matrix - cell (j,k) contains the weight of
the shortest path between vertex j and vertex k .

« |nitialization: paths with 0 edges. What actual
values are used?

* dy=oforizk,d;=0

 Initeration m, we find the shortest paths between
all vertices with no more then m edges and keep
them in the matrix D™, How many iterations are
needed?

All Shortest Paths - Suggestion 1

« nocircleswith negativeweights- |V|-1 iterations.
* Initeration m:

— For every (v,u), find the minimum of:

* The current shortest path v ~> u (maximum m-1
edges)

* For every win Adj(u): The shortest path with
maximum m edges trough w, which is the shortest
path v~>w with maximum m-1 edges, plus the edge
(w,u).

All Shortest Paths - Suggestion 1

+ Time complexity:
—|V] iterations
— In each iteration: going over O(|V|? pairs of
vertices in
— For each pair (u,v): going over O(|V|) possible
neighbors
— Total: O(|V[*)

All Shortest Paths - Suggestion 1

+ Improvement: If we know the shortest paths
up to medges long between every pair of
vertices, we can find the shortest paths up to
2medges in one iteration:

¢ For (v,u) - the minimal path through vertex
W is v~>w~>u, when v~>w and w~>u have
at most medges.

+ Time complexity: O(|V|3log [V])

All Shortest Paths - Suggestion 1

+ Can we use this method to solve single-
source-shortest-paths?

+ Yes - we can update only the row vector
that matches the single source, by using the
results of previous iterations and the
weights matrix.

+ Note that this version is similar to Bellman-
Ford.

Floyd-Warshall Algorithm

Intermediate vertices on path p = <v,,...,v> are
all the vertices on p except the source v, and the
destination v,.

If we already know the all shortest paths whose
intermediate vertices belong to the set {1,...,k-1},
how can we find all shortest paths with
intermediate vertices {1,...,k}?

Consider the shortest path p between (i, j), whose
intermediate vertices belong to {1,...k}




Floyd-Warshall Algorithm

If kisnot an intermediate vertex in p, then p isthe
path found in the previous iteration.
If kisinp, then we can writep asi~>k ~>|,
where the intermediate verticesin i~> k and k~> j
belongto{1,...,k-1}.
The algorithm:
— Initialize: DO =W
— Fork=1...]V|

e Fori=1..|V|

—Forj=1..]V|
»d®, = min(d ;; &0, d , &V +d | kD)

Time complexity: O(|V|3)

Johnson’s Algorithm

+ We already wrote, debugged and developed
emotional attachement to the Dijkstra and
Bellman-Ford algorithms. How can we use
them to efficiently find all-shortest-paths?

+ Step 1: What should we do to successfully
run Dijkstra if we are sure that there are no
circles with negative weights?

Johnson’s Algorithm

We can find a mapping from the graph’s
weights to non-negative weights.

The graph with the new weights must have
the same shortest paths.

Step 2: How can we be sure that there are
no negative weighted circles?

Simply run Bellman-Ford

Johnson’s Algorithm

+ The algorithm:

+ Add a dummy vertex, v, and an edge with
weight 0 from v to every vertex in the
graph.

+ The modified graph has the same negative
circles.

Johnson’s Algorithm

Run Bellman-Ford from v to find negative
circles, if any.

Use the shortest paths from v to define non-
negative weights:

w’(s, t) = w(st) + h(s) - h(t)
Is W’ non-negative?
Yes, due to the fact that h(t) < w(s;t) + h(s)

Johnson’s Algorithm

+ Do shortest paths remain shortest?

* Let p be a shortest path between v, and v,
then W(p) = ZW’(V, 1, Vi) = Z[W(viy, V) +
h(vip) - h(w)] = w(p) + h(vy) - h(v)

+ The term h(vp) - h(v,) is common to all paths
between v, and v, so the minimal w’(p)
matches the minimal w(p)




Johnson’s Algorithm

¢ S0 - now we can use W’ to run Dijkstra
from each vertex in G.

» Time complexity: O(VE + |V|?|E| log|V])
» Good for sparse graphs

Questions From Previous exams

a) Define Spanning Tree and Minimal Spanning Tree.

Spanning Tree: Given a graph G=(V,E) , a spanning tree
T of G isaconnected graph T=(V,E’) with no cycles
(same vertices, asubset of the edges).

For example, this graph has three a

spanning trees:

{(ab);(ac)}, {(ab);(b,c)}, {(ac);(b.0)}

Questions From Previous exams

Minimal Spanning Tree (MST): Given aweighted
graph G=(V,E, w), define the weight of a spanning
tree T as W(T) =5 We) . Then aminimal spanning
tree T isaspanning tree with minimal weight, i.e. T

satisfies:
w(T) =min{w(T") | T"isaspanning tree}
a
For example, this graph has two minimal
spanning trees: 2 2
{(@b);(bo)}, {(ac);(b.c)} .
C

Questions From Previous exams

b) Either proveor disprovethefollowing claim:
In aweighted (connected) graph, if every edge
has a different weight then G has exactly one
MST.

First notice that if the edge weights are not distinct,
then the claim isincorrect, for example the
previous graph.

¢ S0, can we come up with a counter-example when
weights aredistinct ? (no, but thinking about it for
afew minutes sometimes helps...)

A useful feature of spanning trees
Claim: Suppose T, and T, are two spanning trees of G.
Then for any edge e, in T\T, there exists an edge e, in T,\T,
such that T1\{el} O{e2} isalso aspanning tree.

w el oy
—
To see this, consider the following Gy Gy
partition of G: PR N
Y u-

A useful feature of spanning trees

Proof: Suppose e,= (v,u). Denote by G, and G, the two connected
components of G when removing e, from T,.

Examine the path from v to u in T,: there must be an edge e,=(v’,u’)
inT,suchthat v’ isin Gyand u’ isin Gy.

Let. T'=T:\{e} O{e}

T’ is connected and has no cycles, thusit is a spanning tree, as
claimed.

Taketwo verticesx and y in G. If both arein G, or in G, then thereis
exactly one path from x toy since G, and G, are connected with no
cycles. If xisin Gy andy isin G, then there is also exactly one
path between them: from x tov’, thento u’, and then toy.




Back to the Question

Claim: In aweighted (connected) graph, if every edge
has a different weight, then G has exactly one MST.

Proof: Suppose by contradiction that there are two MSTs, T,
and T,. Suppose also that the largest edgein T,\T, islarger
than the largest edge in T,\T, (notice they can't be equal).
Let e, bethelargest edgein T,\;,. Thereisan edgee, in
T)\T, suchthat T'=T1\{e} [1{ez} isaspanning tree
with weight:

W(T") = W(T1) +[W(ez) ~We)] <wW(T)

so T, isnot an MST -> Contradiction.

Wrong proof for this claim

+ A common (but wrong) argument from exams:
“The Generic-MST algorithm always has a unique safe
edge to add, thus it can create only one MST.”
+ Why this is wrong?
— There might be other ways to find an MST besides the
Generic-MST algorithm.

— Itis not true that there is always one unique safe edge (!)
For example, Prim and Kruskal might choose a different edge
at the first step, although they are both Generic-MST variants

Questions From Previous exams

¢) Writean algorithm that receives an undirected graph
G=(V,E) and a sub-graph T=(V,E;) and determinesif T is
a spanning tree of G (not necessarily minimal).

+ What do we have to check?

+ Cycles - run DFS on T and look for back edges

+ Connectivity - if there are no cycles, it is enough to
check that |E|=|V|-1.

Question 2

a) Bothin Dijkstraand in Prim we have a set of
nodes S (that initially contains only s), and we add
one additional node in each iteration. Prove or
disprovethat in both algorithmsthe nodesare
added to Sin the same order.

The claim is not correct.

. a 2 b
A contradictory example: )
— Prim takes s,a,b,c s
— Dijkstra takes s,a,c,b 3

Question 2 - difficult

+ b) Consider adirected graph with positive
weights. Give an algorithm that receivesanode s
and printsthe shortest cyclethat containss.

+ Suggestion 1: for every outgoing edge from s, (s, v),
find the shortest path from vto s.

+ Suggestion 2: Add a new node s', and for every
edge (s,v) add an edge (s',v) with the same weight.
Now find a shortest path from s’ to s.

Question 3

e Anin-order treewalk can be
implemented by finding the minimum
element and then making n-1 callsto
TREE- SUCCESSCOR

* How many times at most do we pass
through each edge?




Question 3

TREE- SUCCESSOR( x)
if x.right==null «—  going up (1)

y=x. par ent
while yl=null &&
x==y.right - going up (2)
X=y
el se y=y-parent «——— going down (3)
y=x.right -— .
while y.left!=null going down (4)
y=y. left
return y

Question 3

* Right edges:
— Arightedgen -n. ri ght ispassed downwardsonly at (3), which
happens when we call TREE- SUCCESSOR( n)
— Since we call TREE- SUCCESSOR once for each node, we go down
each right edge once, at most
» Left edges:
— After wepassaleftedgen—n. | eft (at(1)or (2)), TREE-
SUCCESSCOR returns n
— Since TREE- SUCCESSOR returns each node once, we go up each left
edge once, at most
» Therefore, we pass each edge at most twice

* In-order walk takes O(n) steps

Question 4 DFS - Reminder
) DFS(G) DFS-VISIT(u)
* Youare '? Ias?juarfe maze of nxn Ce”ii”?_{ for each uOV[G] u.color=gray
ﬁﬁ“ygfj g‘;t Oﬁf,s 01 £oins [N Your pocket. Fow u.color=white u.d=++time
' u.prev=nil for each vladj[u]
+ The maze is a graph where = time=0 if v.color=white
— Each cell is a node for each u\V[G] v.prev=u
; if u.color=white DFS-VISIT(v)
— Each passage between cells is an
cge DFSVISIT(Y) ucolor=black
¢ Solve the maze by running DFS until u.f=++time
the exit is found
Question 4 Question 4

+ What does each color represent in the maze?
— White - a cell without any coins
— Gray - a cell with a coin lying with its head side up
— Black -a cell with a coin lying with its tail side up
+ An edge connecting a node to its parent is marked by
acoin
+ When visiting a cell, we color it gray
+ Ifit has a white cell adjacent to it — visit it
+ |If there are no such cells,
— Color the cell “black” by flipping the coin
— backtrack by going to the cell marked as parent

+ Each node has one parent

+ When backtracking, the parent will be the
only adjacent “gray” cell that has a coin

leading to it
Q| ebede e
I Sioolede
¢+ Can we solve it using BFS? gls|e
gladopsiede
+ No! In DFS we go between g|8adada]e
bobodods| e

adjacent cells; in BFS, the nodes
are in a queue, so the next cell
could be anywhere




