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• All Shortest Paths

• Questions from exercises and exams

• The Problem: G = (V, E, w) is a weighted 
directed graph. We want to find the shortest 
path between any pair of vertices in G.

• Example: find the distance between cities 
on a road map.

• Can you use already known algorithms?  

• From every vertex in the graph Run
– Dijkstra: O(|V||E|log|V|) = O(|V|3log|V|)

– Run Bellman-Ford: O(|V|2|E|) = O(|V|4)

• Can we do better?
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Dynamic Programming

• Dynamic Programming is a technique for 
solving problems “bottom-up”:

• first, solve small problems, and then use the 
solutions to solve larger problems.

• What kind of problems can Dynamic 
Programming solve efficiently?

Dynamic Programming

• Optimal substructure: The optimal solution 
contains optimal solutions to sub-problems.

• What other algorithms can suit this kind of 
problems?

• Greedy algorithms

• Overlapping sub-problems: the number of 
different sub-problems is small, and a recursive 
algorithm might solve the same sub-problem a few 
times.

All Shortest Paths

• How can we define the size of sub-problems for 
the all shortest paths problem? (two way)

• Suggestion 1: according to the maximal number of 
edges participating in the shortest path (what 
algorithm uses this idea?)

• Suggestion 2: according to the set of vertices 
participating in the shortest paths (Floyd-
Warshall)
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All Shortest Paths - Suggestion 1
• The algorithm uses the |V|x|V| matrix 

representation of a graph

• The result matrix - cell (j,k) contains the weight of 
the shortest path between vertex j and vertex k .

• Initialization: paths with 0 edges. What actual 
values are used?

• di,k= ∞ for i ≠ k, di,i= 0

• In iteration m, we find the shortest  paths between 
all vertices with no more then m edges and keep 
them in the matrix D(m). How many iterations are 
needed?

All Shortest Paths - Suggestion 1

• no circles with negative weights - |V| -1 iterations.

• In iteration m:

– For every (v,u), find the minimum of:
• The current shortest path v ~> u (maximum m-1 

edges)

• For every w in Adj(u): The shortest path with 
maximum m edges trough w, which is the shortest 
path v~>w with maximum m-1 edges, plus the edge 
(w,u).

All Shortest Paths - Suggestion 1

• Time complexity:
– |V| iterations

– In each iteration: going over O(|V|2) pairs of 
vertices in 

– For each pair (u,v): going over O(|V|) possible 
neighbors

– Total: O(|V|4)



4

All Shortest Paths - Suggestion 1

• Improvement: If we know the shortest paths 
up to m edges long between every pair of 
vertices, we can find the shortest paths up to 
2m edges in one iteration: 

• For (v,u) - the minimal path through vertex 
w is v~>w~>u, when v~>w and w~>u have 
at most m edges.

• Time complexity: O(|V|3 log |V|)

All Shortest Paths - Suggestion 1

• Can we use this method to solve single-
source-shortest-paths?

• Yes - we can update only the row vector 
that matches the single source, by using the 
results of previous iterations and the 
weights matrix.

• Note that this version is similar to Bellman-
Ford.

Floyd-Warshall Algorithm 

• Intermediate vertices on path p = <v1,…,vl> are 
all the vertices on p except the source v1 and the 
destination vl.

• If we already know the all shortest paths whose 
intermediate vertices belong to the set {1,…,k-1}, 
how can we find all shortest paths with 
intermediate vertices {1,…,k}?

• Consider the shortest path p between (i, j), whose 
intermediate vertices belong to {1,…k}
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Floyd-Warshall Algorithm 
• If k is not an intermediate vertex in p, then p is the 

path found in the previous iteration.

• If k is in p, then we can write p as i~> k ~> j, 
where the intermediate vertices in i~> k and k~> j
belong to {1,… ,k-1}.

• The algorithm: 
– Initialize: D(0) =W

– For k = 1…|V|

• For i = 1…|V|

– For j = 1…|V|

» d(k)
i,j= min(d i,j

(k-1), d ik(k-1) + d k,j
(k-1))

• Time complexity: O(|V|3)

Johnson’s Algorithm

• We already wrote, debugged and developed 
emotional attachement to the Dijkstra and 
Bellman-Ford algorithms. How can we use 
them to efficiently find all-shortest-paths?

• Step 1: What should we do to successfully 
run Dijkstra if we are sure that there are no 
circles with negative weights?

Johnson’s Algorithm

• We can find a mapping from the graph’s 
weights to non-negative weights. 

• The graph with the new weights must have 
the same shortest paths.

• Step 2: How can we be sure that there are 
no negative weighted circles?

• Simply run Bellman-Ford
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Johnson’ s Algorithm
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• The algorithm:

• Add a dummy vertex, v, and an edge with 
weight 0 from v to every vertex in the 
graph.

• The modified graph has the same negative 
circles.

Johnson’ s Algorithm

• Run Bellman-Ford from v to find negative 
circles, if any.

• Use the shortest paths from v to define non-
negative weights: 

• w’ (s, t) = w(s,t) + h(s) - h(t)

• Is W’ non-negative?

• Yes, due to the fact that h(t) ≤ w(s,t) + h(s) 

Johnson’ s Algorithm

• Do shortest paths remain shortest?

• Let p be a shortest path between v0 and vl, 
then w’ (p) = Σw’ (vi-1, vi)  = Σ[w(vi-1, vi) + 
h(vi-1) - h(vi)] =  w(p) + h(v0) - h(vl)

• The term h(v0) - h(vl) is common to all paths 
between v0 and vl, so the minimal w’ (p) 
matches the minimal w(p)
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Johnson’ s Algorithm

• So - now we can use W’ to run Dijkstra
from each vertex in G.

• Time complexity: O(VE + |V|2|E| log|V|)

• Good for sparse graphs

a) Define Spanning Tree and Minimal Spanning Tree.

Spanning Tree: Given a graph G=(V,E) , a spanning tree 
T of G is a connected graph T=(V,E’) with no cycles
(same vertices, a subset of the edges).

For example, this graph has three

spanning trees:

{(a,b);(a,c)}, {(a,b);(b,c)}, {(a,c);(b,c)}

a

b c

Minimal Spanning Tree (MST): Given a weighted
graph G=(V,E, w), define the weight of a spanning 
tree T as                         . Then a minimal spanning 
tree T is a spanning tree with minimal weight, i.e. T 
satisfies:

For example, this graph has two minimal

spanning trees:

{(a,b);(b,c)}, {(a,c);(b,c)}

∑∈= Te ewTw )()(
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b) Either prove or disprove the following claim: 
In a weighted (connected) graph, if every edge 
has a different weight then G has exactly one 
MST.

First notice that if the edge weights are not distinct, 
then the claim is incorrect, for example the 
previous graph.

• So, can we come up with a counter-example when 
weights are distinct ?  (no, but thinking about it for 
a few minutes sometimes helps...)

A useful feature of spanning trees
Claim: Suppose T1 and T2 are two spanning trees of G.

Then for any edge e1 in T1\T2 there exists an edge e2 in T2\T1

such that                            is also a spanning tree.

To see this, consider the following

partition of G:

}2{}1{\1 eeT ∪

Gv Gu

v u

v’ u
’

e1

e2

A useful feature of spanning trees
Proof: Suppose e1= (v,u). Denote by Gv and Gu the two connected 

components of G when removing e1 from T1. 

Examine the path from v to u in T2: there must be an edge e2=(v’,u’)
in T2 such that v’ is in Gv and u’ is in Gu. 

Let.
T’ is connected and has no cycles, thus it is a spanning tree, as 
claimed. 

Take two vertices x and y in G. If both are in Gv or in Gu then there is 
exactly one path from x to y since Gv and Gu are connected with no 
cycles. If x is in Gv and y is in Gu then there is also exactly one 
path between them: from x to v’, then to u’, and then to y.

}{}{\' 211 eeTT ∪=
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Claim: In a weighted (connected) graph, if every edge 
has a different weight, then G has exactly one MST.

Proof: Suppose by contradiction that there are two MSTs, T1

and T2. Suppose also that the largest edge in T1\T2 is larger 
than the largest edge in T2\T1 (notice they can’ t be equal). 
Let e1 be the largest edge in T1\T2. There is an edge e2 in 
T2\T1 such that                                       is a spanning tree 
with weight:

so T1 is not an MST -> Contradiction.

}{}{\' 211 eeTT ∪=
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Back to the Question

Wrong proof for this claim
• A common (but wrong) argument from exams:

“The Generic-MST algorithm always has a unique safe 
edge to add, thus it can create only one MST.”

• Why this is wrong?
– There might be other ways to find an MST besides the 

Generic-MST algorithm. 

– It is not true that there is always one unique safe edge (!)
For example, Prim and Kruskal might choose a different edge 
at the first step, although they are both Generic-MST variants

c) Write an algorithm that receives an undirected graph 
G=(V,E) and a sub-graph T=(V,ET) and determines if T is 
a spanning tree of G (not necessarily minimal).

• What do we have to check?

• Cycles - run DFS on T and look for back edges

• Connectivity - if there are no cycles, it is enough to 
check that |ET|=|V|-1. 
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Question 2

a)  Both in Dijkstra and in Prim we have a set of 
nodes S (that initially contains only s), and we add 
one additional node in each iteration. Prove or 
disprove that in both algorithms the nodes are 
added to S in the same order.

The claim is not correct. 

A contradictory example:

– Prim takes s,a,b,c

– Dijkstra takes s,a,c,b

s

a b

c

2

2

3

• b) Consider a directed graph with positive 
weights. Give an algorithm that receives a node s 
and prints the shortest cycle that contains s.

• Suggestion 1: for every outgoing edge from s, (s, v), 
find the shortest path from v to s.

• Suggestion 2: Add a new node s’ , and for every 
edge (s ,v) add an edge (s’ ,v) with the same weight. 
Now find a shortest path from s’ to s. 

Question 2 - difficult

Question 3

• An in-order tree walk can be 
implemented by finding the minimum 
element and then making n-1 calls to 
TREE-SUCCESSOR

• How many times at most do we pass 
through each edge?
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Question 3

TREE-SUCCESSOR(x)
if x.right==null 

y=x.parent
while y!=null && 
x==y.right

x=y
y=y.parent

else

y=x.right
while y.left!=null

y=y.left

return y

going up (1)

going up (2)

going down (3)

going down (4)

Question 3
• Right edges:

– A right edge n→n.right is passed downwards only at (3), which 
happens when we call TREE-SUCCESSOR(n)

– Since we call TREE-SUCCESSOR once for each node, we go down 
each right edge once, at most

• Left edges:
– After we pass a left edge n→n.left (at (1) or (2)), TREE-
SUCCESSOR returns n

– Since TREE-SUCCESSOR returns each node once, we go up each left 
edge once, at most

• Therefore, we pass each edge at most twice
• In-order walk takes O(n) steps

Question 4

• You are in a square maze of n××××n cells and 
you’ve got loads of coins in your pocket. How 
do you get out?

• The maze is a graph where

– Each cell is a node

– Each passage between cells is an 
edge

• Solve the maze by running DFS until 
the exit is found
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DFS-VISIT(u)
u.color=gray
u.d=++time
for each v∈adj[u]

if v.color=white
v.prev=u
DFS-VISIT(v)

u.color=black
u.f=++time

DFS(G)
for each u∈V[G]
u.color=white
u.prev=nil

time=0
for each u∈V[G]
if u.color=white
DFS-VISIT(u)

DFS - Reminder

Question 4

• What does each color represent in the maze?
– White - a cell without any coins
– Gray - a cell with a coin lying with its head side up
– Black -a cell with a coin lying with its tail side up

• An edge connecting a node to its parent is marked by 
a coin

• When visiting a cell, we color it gray
• If it has a white cell adjacent to it – visit it
• If there are no such cells,

– Color the cell “black” by flipping the coin
– backtrack by going to the cell marked as parent

• Each node has one parent

• When backtracking, the parent will be the 
only adjacent “gray” cell that has a coin 
leading to it

• Can we solve it using BFS?

• No! In DFS we go between 
adjacent cells; in BFS, the nodes 
are in a queue, so the next cell 
could be anywhere 

Question 4


