
1

Tirgul 1
Today’s topics:
• Course’s details and guidelines.
• Java reminders and additions:

– Packages
– Inner classes
– Command Line Arguments
– Primitive and Reference Data Types

• Guidelines and overview of exercise 1.
• Extra (to appear on webpage):

– Cloning
– I/O streams

Course Guidelines
• Two newsgroups are available for communication:

– local.course.dast.stud – Followed by us (for detecting
important questions), yet not moderated. Feel free to post
into it.

– local.course.dast.ta – Moderated by TAs. Used as the
primary communication channel to update on exercise
questions, dates etc…

– You cannot publish directly to the moderated newsgroup.
Send an e-mail instead to dast@cs.huji.ac.il.

– We will do our best to respond within 48-72 hours.

Special requests
• All special requests (extensions etc…) are only valid

if they received a written response with specific
details of the decision.

• Please specify only one of the following in the topic:
1. Extension request for PHW/THW#?
2. Question about PHW/THW#?
3. Special request about ????

Packages
• Java classes are organized in packages to help organize and share

programs and projects. Examples: java.util, java.io.
• The import keyword extends the scope of the program to contain

(part of) a specific package.
• We can build our own packages, using these guidelines:

– Locate all package classes in a subdirectory with the same name
as the package name.

– The first line of a class of some package should be:
package package_name;

– Set the CLASSPATH variable to point to the directory where the
package subdirectory resides. For example, to use the package
dast.util that resides in the subdirectory
/cs/course/2003/dast/www/public/dast/util
you should add the path
/cs/course/2003/dast/www/public/
to your CLASSPATH variable.

Inner classes

• Motivation:
• Suppose you need an iterator class for your LinkedList class.
• Defining a new class solely for this purpose complicates your

package structure.
• This class must get a handler to a specific LinkedList instance

and it can’t access its private data members.
• There would be such a class for every data structure.

• Solution : Inner classes.
• Useful for simple “helper” classes that serve a very specific

function at a particular place in the program.
• Not intended to be general purpose “top level” classes.
• They make your code clearer, and prevent cluttering your package

namespace.

Inner classes - Example & Syntax

public class LinkedList {
private Node head;

. . .
public Iterator iterator() { return new ListIterator() };

private class ListIterator implements Iterator {
Node current;

public ListIterator () {
current = head;

}

public boolean hasNext() {. . .}
public Object next() { . . . }

} // end class ListIterator

} // end class LinkedList

2

Command Line Arguments

• A way to pass parameters to a program.
• The method main() accepts a single argument that is an array of

strings.
• Command line arguments (separated by blank(s)) are stored in this

array (each argument is a string).
• For example, if we have:

class Test {
public static void main(String[] args){...}

}

then, when we run the command:
java Test 1 abc -a – b

we’ll have:
args[0] = "1", args[1] = "abc", args[2]="-a",
args[3]="-", args[4]="b"

Primitive and Reference Data Types

Primitive DT: (boolean, int, float, etc.) each is stored in a
unique memory place:

int a=5;
int b=a;
a = 6;

So after this command sequence b will have a value of 5.
(This is called copy “by value”).

a b

Primitive and Reference Data Types

Reference DT: (all objects) a variable points to a memory place created
by the new command. Many variables may point to the same
memory place

Employee a =
new Employee();

a.ID = 5;
Employee b = a;
a.ID = 6;

So after this command sequence b.ID will have a value of 6.
(by changing a we also changed b).

ID

b

a

Primitive and Reference DT

• When we pass an object as an argument to a method, a new reference to
the same object is created. When we pass primitive DT to a method, a
new variable is created.

• If an object variable has the value null, this actually means: “this
variable does not point to any memory place”

• How do we make an actual copy of the object, not another reference to
same object? This is called cloning.

• Cloning will not be discussed today, but details will appear in the
lecture slides on the course’s webpage.

Programming Exercise 1

• Handout date: Tuesday 2.03.2004
• Submission date: Sunday 28.03.2004, 12:00 Noon.
• Extensions: None.
• What is it about? An extremely advanced bookstore.
• Please make sure you read the entire exercise

description, regulations, and follow all of them.
• You may ask questions through the newsgroup. Do not

expect a response in less than 24-48 hours.

Some details

• Input and output is done through implementing
interfaces – no parsing is needed for the input.

• However:
– In order to efficiently test your program, we

recommend designing your own generic test
program, that accepts inputs.

– An example of a non-generic test program will be
given.

– Details on how to use input and output streams
appear in the tirgul slides on the webpage.

3

Internals

• A Map (as its name implies) is a mapping from keys to values. It
is used for fast searches of items in a set.

• Question: What does that say about the keys?

• A SortedMap is…a sorted mapping of the above.

Theoretical Homework 1

• Assigned: Tuesday 9.3.2004
• Due: Sunday 21.3.2004, 12:00 Noon.

Extra! Extra!

Java I/O Streams
• In order to import/export information to/from an external source (a file,

a network, etc.) we open a stream on an information source.
• The java.io package contains all classes, interfaces, exceptions, etc.

that involve I/O streams.

• Two types of I/O streams:
– Character:

• Information is represented by an encoding that gives a numeric value for each
symbol.

• Text is stored as a list of numbers. Java translates between internal Unicode
representation and external representation (e.g. ASCII).

• Class hierarchy based in Reader and Writer abstract classes.

– Binary (byte):
• Views information as a sequence of bytes (e.g. images, sound).
• No translation occurs.
• Class hierarchy based in InputStream and OutputStream abstract

classes.

Hierarchy Structure

• File streams: FileReader, FileWriter (similarly,
FileInputStream and FileOutputStream).

• Layered streams:
– A Reader may operate on top of an InputStream.
– BufferedReader on top of another Reader, to aggregate the

reading (e.g. read an entire line).
– PrintWriter, to format the output (prints integer, strings, etc.)
– Many possibilities – see API.

Java streams - Example
import java.io.*;

. . .

public void doSomething throws IOException {
FileReader in = new FileReader("results.txt");
FileWriter out = new FileWriter("statistics.txt");

BufferedReader r = new BufferedReader(in);
PrintWriter p = new PrintWrite(out);
String input, output;

while ((input = r.readLine()) != null) {
... //do something interesting and create

output string
p.print(output);

}
r.close(); in.close();
p.close(); out.close();

}

4

Default I/O Streams

• Class System has 3 default streams, available to every Java program:

• Input from the keyboard goes into the ‘standard input’. This is the data
member System.in of type java.io.InputStream

• Output (usually to the terminal window) written through 2 streams:
– ‘Standard output’ – System.out of type
java.io.PrintStream

– ‘Standard error’ – System.err of type
java.io.PrintStream

[PrintStream is an exception - it is a stream, but allows
character output through its print() and println() methods.]

• The standard output and error are directed by the Operating
System. By default - both to the terminal.

• The convention - standard error for error messages, standard
output for regular output.

• In UNIX, the user can redirect to a file:
– standard output by adding “> my_out.txt”. For example:
java MyClass param1 > out.txt

– both to the same file, by adding “>& my_out.txt”
– You can’t redirect only the standard error, but redirecting to

different files is possible (by outsmarting):
(java MyClass > out.txt) >& err.txt

Default I/O Streams

Cloning
• Cloning – The Java way of making a copy of an object.
Employee a = new Employee();
a.ID = 5;
if (a instanceof Cloneable) {

Employee b = (Employee) a.clone();
a.ID = 6;

}

• Now b is a reference to a new object (identical to a)
• A class that provides the clone() method should implement the
Cloneable interface.

• We can check if a class is Cloneable by using the instanceof
operator.

How to be “cloneable”
• Class Object contains the method clone(), which we override.
• Class Object implements clone() as a bit-by-bit memory

copy.

public class Employee implements Cloneable {
public int ID;

public Object clone() {
try {
return super.clone();

} catch (CloneNotSupportedExcetion e) { }
// this catch is not supposed to happen.

}

Cloning
• Method Object.clone() throws
CloneNotSupportedException if the class does not implement
Cloneable. Therefore, if you want to use Object.clone() you
should nest it in a try-catch block.

• Method Object.clone() is declared protected, therefore you
must override the clone() method, declaring it public.

public class Employee implements Cloneable {
public int ID;

public Object clone() {
try {
return super.clone();

} catch (CloneNotSupportedExcetion e) { }
// this catch is not supposed to happen.

}

Cloning - “deep” and “shallow” copy
• Shallow/Deep copy – Copies by reference/value the object

data members. For example:

A

B

A

B

A1

A

A1

B

B1

Shallow copy

Deep copy

Original

5

“deep” and “shallow” copy
• Notice that Object.clone() performs shallow copy
• For example, Java’s Vector implements shallow copy:

Emp e1 = new Emp(); Emp e2 = new Emp();
e1.id = 1; e2.id = 2;
Vector v1 = new Vector();
v1.addElement(e1) ; v1.addElement(e2);
Vector v2 = v1.clone();

Then:
((Emp)v2.elementAt(0)).id = 3;
System.out.println(((Emp)v1.elementAt(0)).id);

will print 3, but:
v2.removeElementAt(0);
System.out.println(((Emp)v1.elementAt(0)).id);

will still print 3.

Cloning vs. Copy Constructor
• Copy constructors can be used to solve the same problem as

cloning.
• They play an important role in languages (e.g. C++) where

objects can be passed by value as well as by reference.
• In Java, although you can use both techniques, cloning is

more general. For example, a deep copy of a list of objects of
different types. There is no way of knowing what kind of
copy constructor should be called for each element, but the
clone() method makes sure you get the right copy of each.

Debugger
• We recommend using a debugger for debugging your

program.
• There are currently two debuggers you can use, installed on

the HUJI machines:
• DDD: ‘Data Display Debugger’ unix debugger installed

on the HUJI machines, can be used for debugging
C++/Java applications.

• Jswat: a simple open source, multi-platform java
debugger. Can be used anywhere.
download from http://bluemarsh.com/java/jswat/

Debugger
• A debugger usually has the following basic features:

• Defining breakpoints.
• Using watches.
• Stepping into a method.
• Stepping over a method.
• Stepping out of a method (frame).

• For using the DDD debugger:
• Compile your program using the –g flag.
• Run > ddd –gdb <main_class> &

Using a Debugger
• For using the Jswat debugger: run > jswat2 &

